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Path Weight with functions on arcs?

For graph G = (V , E), and path p = i1, i2, i3, · · · , ik .

Semiring Path Weight
Weight function w : E → S

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

How about functions on arcs?
Weight function w : E → (S → S)

w(p) = w(i1, i2)(w(i2, i3)(· · ·w(ik−1, ik )(a) · · · )),

where a is some value originated by node ik

How can we make this work?
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Algebra of Monoid Endomorphisms ([GM08])

A homomorphism is a function that preserves structure. An
endomprhism is a homomorphism mapping a structure to itself.

Let (S, ⊕, 0) be a commutative monoid.

(S, ⊕, F ⊆ S → S, 0, i , ω) is a algebra of monoid endomorphisms
(AME) if

∀f ∈ F ∀b, c ∈ S : f (b ⊕ c) = f (b)⊕ f (c)

∀f ∈ F : f (0) = 0
∃i ∈ F ∀a ∈ S : i(a) = a
∃ω ∈ F ∀a ∈ S : ω(a) = 0
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Solving (some) equations over a AMEs

We will be interested in solving for x equations of the form

x = f (x)⊕ b

Let
f 0 = i

f k+1 = f ◦ f k

and

f (k)(b) = f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f k (b)

f (∗)(b) = f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f k (b)⊕ · · ·

Definition (q stability)

If there exists a q such that for all b f (q)(b) = f (q+1)(b), then f is
q-stable. Therefore, f (∗)(b) = f (q)(b).
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Key result (again)

Lemma
If f is q-stable, then x = f (∗)(b) solves the AME equation

x = f (x) ⊕ b.

Proof: Substitute f (∗)(b) for x to obtain

f (f (∗)(b)) ⊕ b
= f (f (q)(b)) ⊕ b
= f (f 0(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q(b)) ⊕ b
= f 1(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q+1(b) ⊕ b
= f 0(b)⊕ f 1(b) ⊕ f 1(b) ⊕ f 2(b) ⊕ · · · ⊕ f q+1(b)

= f (q+1)(b)

= f (q)(b)

= f (∗)(b)
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AME of Matrices

Given an AME S = (S, ⊕, F ), define the semiring of n × n-matrices
over S,

Mn(S) = (Mn(S), ⊕, G),

where for A, B ∈ Mn(S) we have

(A⊕ B)(i , j) = A(i , j)⊕ B(i , j).

Elements of the set G are represented by n× n matrices of functions in
F . That is, each function in G is represented by a matrix A with
A(i , j) ∈ F . If B ∈ Mn(S) then define A(B) so that

(A(B))(i , j) =
⊕∑

1≤q≤n

A(i , q)(B(q, j)).
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Here we go again...

Path Weight
For graph G = (V , E) with w : E → F
The weight of a path p = i1, i2, i3, · · · , ik is then calculated as

w(p) = w(i1, i2)(w(i2, i3)(· · ·w(ik−1, ik )(ω⊕) · · · )).

adjacency matrix

A(i , j) =

{
w(i , j) if (i , j) ∈ E ,
ω otherwise

We want to solve equations like these

X = A(X)⊕ B
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So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings
Suppose (S, ⊕, F ) is a monoid of endomorphisms. We can turn it into
a semiring

(F , ⊕̂, ◦)

where (f ⊕̂ g)(a) = f (a)⊕ g(a)

Functions are hard to work with....
All algorithms need to check equality over elements of semiring,
f = g means ∀a ∈ S : f (a) = g(a),
S can be very large, or infinite.
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Lexicographic product of AMEs

(S, ⊕S, F ) ~× (T , ⊕T , G) = (S × T , ⊕S ~×⊕T , F ×G)

Theorem ([Sai70, GG07, Gur08])

D(S ~× T ) ⇐⇒ D(S) ∧ D(T ) ∧ (C(S) ∨ K(T ))

Where
Property Definition
D ∀a, b, f : f (a⊕ b) = f (a)⊕ f (b)
C ∀a, b, f : f (a) = f (b) =⇒ a = b
K ∀a, b, f : f (a) = f (b)
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Functional Union of AMEs

(S, ⊕, F ) +m (S, ⊕, G) = (S, ⊕, F + G)

Fact

D(S +m T ) ⇐⇒ D(S) ∧ D(T )

Where
Property Definition
D ∀a, b, f : f (a⊕ b) = f (a)⊕ f (b)
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Left and Right

right

right(S,⊕, F ) = (S,⊕, {i})

left

left(S,⊕, F ) = (S,⊕, K (S))

where K (S) represents all constant functions over S. For a ∈ S, define
the function κa(b) = a. Then K (S) = {κa | a ∈ S}.

Facts
The following are always true.

D(right(S))
D(left(S)) (assuming ⊕ is idempotent)
C(right(S))
K(left(S))
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Scoped Product

SΘT = (S ~× left(T )) +m (right(S) ~× T )

Theorem

D(SΘT ) ⇐⇒ D(S) ∧ D(T ).

Proof.

D(SΘT )

D((S ~× left(T )) +m (right(S) ~× T ))

⇐⇒ D(S ~× left(T )) ∧ D(right(S) ~× T )

⇐⇒ D(S) ∧ D(left(T )) ∧ (C(S) ∨ K(left(T )))

∧ D(right(S)) ∧ D(T ) ∧ (C(right(S)) ∨ K(T ))

⇐⇒ D(S) ∧ D(T )
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Delta Product (OSPF-like?)

S∆T = (S ~× T ) +m (right(S) ~× T )

Theorem

D(S∆T ) ⇐⇒ D(S) ∧ D(T ) ∧ (C(S) ∨ K(T )).

Proof.

D(SΘT )

D((S ~× T ) +m (right(S) ~× T ))

⇐⇒ D(S ~× T ) ∧ D(right(S) ~× T )

⇐⇒ D(S) ∧ D(left(T )) ∧ (C(S) ∨ K(T ))

∧ D(right(S)) ∧ D(T ) ∧ (C(right(S)) ∨ K(T ))

⇐⇒ D(S) ∧ D(T ) ∧ (C(S) ∨ K(T ))
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How do we represent functions?

Definition (transforms (indexed functions))
A set of transforms (S, L, B) is made up of non-empty sets S and L,
and a function

B ∈ L → (S → S).

We normally write l B s rather than B(l)(s). We can think of l ∈ L as
the index for a function fl(s) = l B s, so (S, L, B) represents the set of
function F = {fl | l ∈ L}.
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Examples

Example 1: Trivial
Let (S, ⊗) be a semigroup.

transform(S, ⊕) = (S, S, B⊗),

where a B⊗ b = a⊗ b

Example 2: Restriction
For T ⊂ S,

Restrict(T , (S, ⊕)) = (S, T , B⊗),

where a B⊗ b = a⊗ b
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Example 3 : mildly abstract description of BGP’s
ASPATHs

Let apaths(X ) = (E(Σ∗) ∪ {∞}, Σ× Σ, B) where

E(Σ∗) = finite, elementary sequences over Σ (no repeats)
(m, n) B ∞ = ∞

(m, n) B l =

{
n · l (if m 6∈ n · l)
∞ (otherwise)
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