An Algebraic Approach to Internet Routing Lectures 05 and 06

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term 2010

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

1/21

Outline

- 1 Lecture 05: A closer look at the lexicographic product
- Lecture 06: A gentle introduction to Metarouting
- 3 Bibliography

Revisit Lexicographic Semiring

[Lex Product Theorem] Assume $\oplus_{\mathcal{S}}$ is commutative and idempotent. Then

$$LD(S \times T) \iff LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T))$$

But wait! How could any semiring satisfy either of these properties?

Property Definition LC $\forall a, b, c : c \otimes a = c \otimes b \implies a = b$ LK $\forall a, b, c : c \otimes a = c \otimes b$

- For LC, note that we always have $\overline{0} \otimes a = \overline{0} \otimes b$, so LC could only hold when $S = {\overline{0}}$.
- For LK, let $a = \overline{1}$ and $b = \overline{0}$ and LK leads to the conclusion that every c is equal to $\overline{0}$ (again!). Thanks to Ramana Kumar for pointing this out!

My mistake! The theorem above was formulated in the context of a much more liberal algebraic setting [Sai70, GG07, Gur08] and I should not have introduced it in the context of semirings.

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

3/21

Bisemigroups – a more liberal setting

 (S, \oplus, \otimes) is a bisemigroup when

- is a associative

Each semiring properties may, or may not, hold

Property	Definition
COMM⊕	$\forall a, b : a \oplus b = b \oplus a$
∃Ō	$\exists \overline{0} : \forall a : a \oplus \overline{0} = \overline{0} \oplus a = a$
∃1	$\exists \overline{1} : \forall a : a \otimes \overline{1} = \overline{1} \otimes a = a$
$ANN\overline{0}$	$\forall a: a \otimes \overline{0} = \overline{0} \otimes \overline{0} = \overline{0}$
LD	$\forall a, b, c : c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$
RD	$\forall a, b, c : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Some bisemigroups (that are not semirings)

name	S	\oplus ,	\otimes	0	1	possible routing use
min_plus	N	min	+		0	minimum-weight routing
left(W)	2^W	\bigcup	left	{}		compute next-hop(s)
right(W)	2 ^W	U	right	{}		compute origin(s)

(D) (B) (E) (E) (O) (O)

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin©2010

5 / 21

Operation for inserting a zero

Suppose $\overline{0} \notin S$

$$\operatorname{add_zero}(\overline{0},\;(\mathcal{S},\;\oplus,\;\otimes)) = (\mathcal{S} \cup \{\overline{0}\}, \, \mathbin{\hat{\oplus}},\; \mathbin{\hat{\otimes}})$$

where

$$a \hat{\oplus} b = \begin{cases} a & (\text{if } b = \overline{0}) \\ b & (\text{if } a = \overline{0}) \\ a \oplus b & (\text{otherwise}) \end{cases}$$

$$a \hat{\otimes} b = \begin{cases} \overline{0} & (\text{if } b = \overline{0}) \\ \overline{0} & (\text{if } a = \overline{0}) \\ a \otimes b & (\text{otherwise}) \end{cases}$$

$$sp = add_zero(\infty, min_plus).$$

In previous lecture, when I wrote $\operatorname{sp} \times \operatorname{bw}$ it should have been add $\operatorname{zero}(\infty, \min \operatorname{plus} \times \operatorname{bw})$

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

6 / 21

T. Griffin (cl.cam.ac.uk)

Operation for inserting a one

Suppose $\overline{1} \notin S$

 $add_one(\overline{1},\ (\mathcal{S},\ \oplus,\ \otimes))=(\mathcal{S}\cup\{\overline{1}\},\hat{\oplus},\ \hat{\otimes})$

where

$$a \hat{\oplus} b = \begin{cases} \overline{1} & \text{(if } b = \overline{1}\text{)} \\ \overline{1} & \text{(if } a = \overline{1}\text{)} \\ a \oplus b & \text{(otherwise)} \end{cases}$$

$$a \hat{\otimes} b = \begin{cases} a & \text{(if } b = \overline{1}\text{)} \\ b & \text{(if } a = \overline{1}\text{)} \\ a \otimes b & \text{(otherwise)} \end{cases}$$

next hop semiring

For graph G = (V, E), let $nh = add_one(self, left(V))$. To use, label earch arc $(u, v) \in E$ as $w(u, v) = \{v\}$.

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

7/21

Prove $LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T)) \implies LD(S \times T)$

Assume S and T are bisemigroups, $LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T))$, and

$$(s_1,t_1),(s_2,t_2),(s_3,t_3)\in S\times T.$$

Then (dropping operator subscripts for clarity) we have

lhs =
$$(s_{1}, t_{1}) \otimes ((s_{2}, t_{2}) \overrightarrow{\oplus} (s_{3}, t_{3}))$$

= $(s_{1}, t_{1}) \otimes (s_{2} \oplus s_{3}, t_{lhs})$
= $(s_{1} \otimes (s_{2} \oplus s_{3}), t_{1} \otimes t_{lhs})$
rhs = $((s_{1}, t_{1}) \otimes (s_{2}, t_{2})) \overrightarrow{\oplus} ((s_{1}, t_{1}) \otimes (s_{3}, t_{3}))$
= $(s_{1} \otimes s_{2}, t_{1} \otimes t_{2}) \overrightarrow{\oplus} (s_{1} \otimes s_{3}, t_{1} \otimes t_{3})$
= $((s_{1} \otimes s_{2}) \oplus_{S} (s_{1} \otimes s_{3}), t_{rhs})$
= $(s_{1} \otimes (s_{2} \oplus s_{3}), t_{rhs})$

where t_{lhs} and t_{rhs} are determined by the definition of $\vec{\oplus}$.

We need to show that lhs = rhs, that is $t_{rhs} = t_1 \otimes t_{lhs}$.

Case 1 : LC(S)

Note that from LCNZ(S) we have

(*)
$$\forall a, b, c : a \neq b \implies c \otimes a \neq c \otimes b$$

There are four sub-cases to consider.

Case 1.1 :
$$s_2 = s_2 \oplus s_3 = s_3$$
. Then $t_{lhs} = t_2 \oplus t_3$ and $t_1 \otimes t_{lhs} = t_1 \otimes (t_2 \oplus t_3) = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3)$, by LD(S). Also, $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$ and $s_1 \otimes s_2 = s_1 \otimes (s_2 \oplus s_3) = (s_1 \otimes s_2) \oplus (s_1 \otimes s_3)$, again by LD(S). Therefore $t_{rhs} = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3) = t_1 \otimes t_{lhs}$.

Case 1.2 :
$$s_2 = s_2 \oplus s_3 \neq s_3$$
. Then $t_1 \otimes t_{lhs} = t_1 \otimes t_2$ Also $s_2 = s_2 \oplus s_3 \implies s_1 \otimes s_2 = s_1 \otimes (s_2 \oplus s_3)$ and by \star $s_2 \oplus s_3 \neq s_3 \implies s_1 \otimes (s_2 \oplus s_3) \neq s_1 \otimes s_3$. Thus, by LD(S), $(s_1 \otimes s_2) \oplus (s_1 \otimes s_3) \neq s_1 \otimes s_3$ and we get $t_{rhs} = t_1 \otimes t_2 = t_1 \otimes t_{lhs}$.

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

9/21

Case 1 : LC(S) (continued)

Case 1.3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to case 1.2.

Case 1.4 : $s_2 \neq s_2 \oplus_S s_3 \neq s_3$. Then $t_{lhs} = \overline{0}$ and $t_1 \otimes t_{lhs} = \overline{0}$. Using \star (twice), we have $s_1 \otimes s_2 \neq (s_1 \otimes s_2) \oplus_S (s_1 \otimes s_3) \neq s_1 \otimes s_3$, so $t_{rhs} = \overline{0}$.

Case 2 : LK(T)

Proving this case is problem 1 for problem set 2.

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin©2010

11 / 21

Necessary condition for left distributivity?

How about this?

$$LD(S \times T) \implies LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T))$$

Problem: does not (directly) give a "bottom up" method of constructing counter examples.

Alternative

Theorem

$$\mathsf{NLD}(S) \lor \mathsf{NLD}(T) \lor (\mathsf{NLC}(S) \land \mathsf{NLK}(T)) \implies \mathsf{NLD}(S \times T)$$

Property	Definition	
NLD	$\exists a,b,c:c\otimes (a\oplus b) eq (c\otimes a)\oplus (c\otimes b)$	
NLC	$\exists a,b,c:c\otimes a=c\otimes b\wedge a\neq b$	
NLK	$\exists a, b, c : c \otimes a \neq c \otimes b$	

Proving this is problem 2 for problem set 2. For additional credit, show clearly how counter examples to $LD(S \times T)$ can be constructed.

4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

3 / 21

Outline

- Lecture 05: A closer look at the lexicographic product
- 2 Lecture 06: A gentle introduction to Metarouting
- 3 Bibliography

The plan

Define a little language (syntax!) \mathcal{L} for bisemigroups,

with semantics

$$\llbracket E \rrbracket = (S, \oplus, \otimes).$$

- Let \mathcal{P} be the set of properties that we need or care about (yes, this is vague). We assume that for each property $Q \in \mathcal{P}$ there is a property $NQ \in \mathcal{P}$ where $\neg(Q \land NQ)$ holds.
- We may need a *well-formedness* predicate on language expressions, WF(*E*).

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin©2010

15 / 21

Now for the hard part ...

Closure

The language \mathcal{L} is closed w.r.t \mathcal{P} if

$$\forall Q \in P : \forall E \in \mathcal{L} : WF(E) \implies (Q(\llbracket E \rrbracket) \vee NQ(\llbracket E \rrbracket))$$

holds constructively.

The Research Challange

Define \mathcal{L} , \mathcal{P} , and WF(E) is such a way that

- ullet is expressive enough to model Internet protocols and more ...
- ullet $\mathcal L$ is closed with respect to $\mathcal P$

The approach — bottom up construction of $Q(\llbracket A \rrbracket) \vee NQ(\llbracket A \rrbracket)$

For example, with $S \times T$ we have

$$LD(S) \lor LD(T) \lor (LC(S) \land LK(T)) \implies LD(S \times T)$$

$$\mathsf{NLD}(\mathcal{S}) \vee \mathsf{NLD}(\mathcal{T}) \vee (\mathsf{NLC}(\mathcal{S}) \wedge \mathsf{NLK}(\mathcal{T})) \implies \mathsf{NLD}(\mathcal{S} \times \mathcal{T})$$

The ability to do this cleanly may hinge on the details!!

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin©2010

17/21

Example: suppose we make the mistake of defining Lexicographic Product of Semigroups this way....

Definition $(\vec{x}_{\overline{0}})$

Suppose $(S, \oplus_S, \overline{0}_S)$ is commutative idempotent monoid and $(T, \oplus_T, \overline{0}_T)$ is a monoid. The lexicographic product with zero is defined as the monoid

$$(\mathcal{S}, \oplus_{\mathcal{S}}) \overset{\rightarrow}{\times}_{\overline{0}} (T, \oplus_{T}) \equiv (((\mathcal{S} - \{\overline{0}_{\mathcal{S}}\}) \times T) \cup \{\overline{0}\}, \overset{\rightarrow}{\oplus}_{\overline{0}}, \overset{\rightarrow}{0})$$

where $\overline{0}$ is the identity for $\vec{\oplus}_{\overline{0}}$ and

$$(s_1,t_1)\vec{\oplus}_{\overline{0}}(s_2,t_2) = \begin{cases} (s_1 \oplus_S s_2, t_1 \oplus_T t_2) & s_1 = s_1 \oplus_S s_2 = s_2 \\ (s_1 \oplus_S s_2, t_1) & s_1 = s_1 \oplus_S s_2 \neq s_2 \\ (s_1 \oplus_S s_2, t_2) & s_1 \neq s_1 \oplus_S s_2 = s_2 \\ (s_1 \oplus_S s_2, \overline{0}_T) & \text{otherwise.} \end{cases}$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ で

The problem ...

If we restrict ourselves to Semirings, then our new lexicographic product requires rules such as

Property	Definition	
LD	$\forall a, b, c : c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$	
LCNZ	$\forall a,b,c: (c \neq \overline{0} \land c \otimes a = c \otimes b) \implies a = b$	
LKNZ	$\forall a, b, c : (a \neq \overline{0} \land b \neq \overline{0}) \implies c \otimes a = c \otimes b$	

These are very hard to work with!

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010

7/21

Outline

- 1 Lecture 05: A closer look at the lexicographic product
- Lecture 06: A gentle introduction to Metarouting
- Bibliography

Bibliography I

[GG07] A. J. T. Gurney and T. G. Griffin.

Lexicographic products in metarouting.

In Proc. Inter. Conf. on Network Protocols, October 2007.

[Gur08] Alexander Gurney.

Designing routing algebras with meta-languages.

Thesis in progress, 2008.

[Sai70] Tôru Saitô.

Note on the lexicographic product of ordered semigroups.

Proceedings of the Japan Academy, 46(5):413-416, 1970.

