An Algebraic Approach to Internet Routing Lectures 05 and 06

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

> Michaelmas Term 2010

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin © 2010 1 / 21

< 回 > < 三 > < 三 >

Outline

Lecture 05: A closer look at the lexicographic product

2 Lecture 06: A gentle introduction to Metarouting

3 Bibliography

A (10) > A (10) > A (10)

Revisit Lexicographic Semiring

[Lex Product Theorem] Assume $\oplus_{\mathcal{S}}$ is commutative and idempotent. Then

$$\texttt{LD}(S \mathrel{\vec{\times}} T) \iff \texttt{LD}(S) \land \texttt{LD}(T) \land (\texttt{LC}(S) \lor \texttt{LK}(T))$$

But wait! How could any semiring satisfy either of these properties?

Property Definition

LC
$$\forall a, b, c : c \otimes a = c \otimes b \implies a = b$$

LK $\forall a, b, c : c \otimes a = c \otimes b$

- For LK, let $a = \overline{1}$ and $b = \overline{0}$ and LK leads to the conclusion that every *c* is equal to $\overline{0}$ (again!). Thanks to Ramana Kumar for pointing this out!

My mistake! The theorem above was formulated in the context of a much more liberal algebraic setting [Sai70, GG07, Gur08] and I should not have introduced it in the context of semirings

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

Bisemigroups - a more liberal setting

(S, \oplus, \otimes) is a bisemigroup when

- Sis a associative

Each semiring properties may, or may not, hold

Property	Definition
COMM⊕	$orall m{a},m{b}:m{a}\oplusm{b}=m{b}\oplusm{a}$
∃Ū	$\exists \overline{0} : \forall a : a \oplus \overline{0} = \overline{0} \oplus a = a$
∃1	$\exists \overline{1} : \forall a : a \otimes \overline{1} = \overline{1} \otimes a = a$
ann 0	$\forall a : a \otimes \overline{0} = \overline{0} \otimes \overline{0} = \overline{0}$
LD	$\forall a, b, c : c \otimes (a \oplus b) = (c \otimes a) \oplus (c \otimes b)$
RD	$\forall a, b, c : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

< 回 > < 三 > < 三 >

Some bisemigroups (that are not semirings)

name	S	\oplus ,	\otimes	Ō	1	possible routing use
min_plus	\mathbb{N}	min	+		0	minimum-weight routing
left(W)	2 ^{<i>W</i>}	U	left	{}		compute next-hop(s)
right(W)	2 ^{<i>W</i>}	U	right	{}		compute origin(s)

Image: A matrix and a matrix

Operation for inserting a zero

Suppose $\overline{\mathbf{0}} \notin S$

add_zero(
$$\overline{0}$$
, (S , \oplus , \otimes)) = ($S \cup \{\overline{0}\}, \hat{\oplus}, \hat{\otimes}$)

where

$$a \hat{\oplus} b = \begin{cases} a & (\text{if } b = \overline{0}) \\ b & (\text{if } a = \overline{0}) \\ a \oplus b & (\text{otherwise}) \end{cases}$$
$$a \hat{\otimes} b = \begin{cases} \overline{0} & (\text{if } b = \overline{0}) \\ \overline{0} & (\text{if } a = \overline{0}) \\ a \otimes b & (\text{otherwise}) \end{cases}$$

 $sp = add_zero(\infty, min_plus).$

In previous lecture, when I wrote $sp \times bw$ it should have been $add_zero(\infty, min_plus \times bw)$

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

Operation for inserting a one

Suppose $\overline{1} \notin S$

add_one(
$$\overline{1}$$
, (S , \oplus , \otimes)) = ($S \cup \{\overline{1}\}, \hat{\oplus}, \hat{\otimes}$)

where

$$a \hat{\oplus} b = \begin{cases} \overline{1} & (\text{if } b = \overline{1}) \\ \overline{1} & (\text{if } a = \overline{1}) \\ a \oplus b & (\text{otherwise}) \end{cases}$$
$$a \hat{\otimes} b = \begin{cases} a & (\text{if } b = \overline{1}) \\ b & (\text{if } a = \overline{1}) \\ a \otimes b & (\text{otherwise}) \end{cases}$$

next hop semiring

For graph G = (V, E), let $nh = add_one(self, left(V))$. To use, label earch arc $(u, v) \in E$ as $w(u, v) = \{v\}$.

Prove $LD(S) \land LD(T) \land (LC(S) \lor LK(T)) \implies LD(S \times T)$

Assume S and T are bisemigroups, $LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T))$, and

$$(s_1, t_1), (s_2, t_2), (s_3, t_3) \in S \times T.$$

Then (dropping operator subscripts for clarity) we have

$$\begin{array}{rcl} \text{lhs} & = & (\boldsymbol{s}_1, \boldsymbol{t}_1) \otimes ((\boldsymbol{s}_2, \boldsymbol{t}_2) \vec{\oplus} (\boldsymbol{s}_3, \boldsymbol{t}_3)) \\ & = & (\boldsymbol{s}_1, \boldsymbol{t}_1) \otimes (\boldsymbol{s}_2 \oplus \boldsymbol{s}_3, \boldsymbol{t}_{\text{lhs}}) \\ & = & (\boldsymbol{s}_1 \otimes (\boldsymbol{s}_2 \oplus \boldsymbol{s}_3), \boldsymbol{t}_1 \otimes \boldsymbol{t}_{\text{lhs}}) \end{array}$$

$$\begin{aligned} \text{rhs} &= ((\boldsymbol{s}_1, \boldsymbol{t}_1) \otimes (\boldsymbol{s}_2, \boldsymbol{t}_2)) \vec{\oplus} ((\boldsymbol{s}_1, \boldsymbol{t}_1) \otimes (\boldsymbol{s}_3, \boldsymbol{t}_3)) \\ &= (\boldsymbol{s}_1 \otimes \boldsymbol{s}_2, \boldsymbol{t}_1 \otimes \boldsymbol{t}_2) \vec{\oplus} (\boldsymbol{s}_1 \otimes \boldsymbol{s}_3, \boldsymbol{t}_1 \otimes \boldsymbol{t}_3) \\ &= ((\boldsymbol{s}_1 \otimes \boldsymbol{s}_2) \oplus_{\mathcal{S}} (\boldsymbol{s}_1 \otimes \boldsymbol{s}_3), \boldsymbol{t}_{\text{rhs}}) \\ &= (\boldsymbol{s}_1 \otimes (\boldsymbol{s}_2 \oplus \boldsymbol{s}_3), \boldsymbol{t}_{\text{rhs}}) \end{aligned}$$

where t_{lhs} and t_{rhs} are determined by the definition of $\vec{\oplus}$. We need to show that *lhs* = *rhs*, that is $t_{\text{rhs}} = t_1 \otimes t_{\text{lhs}}$.

Case 1 : LC(S)

Note that from LCNZ(S) we have

$$(\star) \quad \forall a, b, c : a \neq b \implies c \otimes a \neq c \otimes b$$

There are four sub-cases to consider.

Case 1.1 : $s_2 = s_2 \oplus s_3 = s_3$. Then $t_{\text{lhs}} = t_2 \oplus t_3$ and $t_1 \otimes t_{\text{lhs}} = t_1 \otimes (t_2 \oplus t_3) = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3)$, by LD(*S*). Also, $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$ and $s_1 \otimes s_2 = s_1 \otimes (s_2 \oplus s_3) = (s_1 \otimes s_2) \oplus (s_1 \otimes s_3)$, again by LD(*S*). Therefore $t_{\text{rhs}} = (t_1 \otimes t_2) \oplus (t_1 \otimes t_3) = t_1 \otimes t_{\text{lhs}}$.

Case 1.2 :
$$s_2 = s_2 \oplus s_3 \neq s_3$$
. Then $t_1 \otimes t_{lhs} = t_1 \otimes t_2$ Also
 $s_2 = s_2 \oplus s_3 \implies s_1 \otimes s_2 = s_1 \otimes (s_2 \oplus s_3)$ and by \star
 $s_2 \oplus s_3 \neq s_3 \implies s_1 \otimes (s_2 \oplus s_3) \neq s_1 \otimes s_3$. Thus, by LD(S),
 $(s_1 \otimes s_2) \oplus (s_1 \otimes s_3) \neq s_1 \otimes s_3$ and we get $t_{ths} = t_1 \otimes t_2 = t_1 \otimes t_{lhs}$.

A (1) A (1) A (1) A (1)

Case 1 : LC(S) (continued)

Case 1.3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to case 1.2.

Case 1.4 : $s_2 \neq s_2 \oplus_S s_3 \neq s_3$. Then $t_{\text{lhs}} = \overline{0}$ and $t_1 \otimes t_{\text{lhs}} = \overline{0}$. Using \star (twice), we have $s_1 \otimes s_2 \neq (s_1 \otimes s_2) \oplus_S (s_1 \otimes s_3) \neq s_1 \otimes s_3$, so $t_{\text{rhs}} = \overline{0}$.

Proving this case is problem 1 for problem set 2.

э

Necessary condition for left distributivity?

How about this?

$LD(S \times T) \implies LD(S) \wedge LD(T) \wedge (LC(S) \vee LK(T))$

Problem : does not (directly) give a "bottom up" method of constructing counter examples.

A (10) A (10) A (10) A

Alternative

Theorem

 $NLD(S) \lor NLD(T) \lor (NLC(S) \land NLK(T)) \implies NLD(S \times T)$

NLD $\exists a, b, c : c \otimes (a \oplus b) \neq (c \otimes a) \oplus (c \otimes b)$
NLC $\exists a, b, c : c \otimes a = c \otimes b \land a \neq b$
NLK $\exists a, b, c : c \otimes a \neq c \otimes b$

Proving this is problem 2 for problem set 2. For additional credit, show clearly how counter examples to $LD(S \times T)$ can be constructed.

A (1) > A (2) > A (2) > A

Outline

Lecture 05: A closer look at the lexicographic product

2 Lecture 06: A gentle introduction to Metarouting

3 Bibliography

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing Le

T.G.Griffin@2010 14 / 21

A (10) A (10) A (10)

The plan

Define a little language (syntax!) \mathcal{L} for bisemigroups,

 $E ::= \cdots$

with semantics

 $\llbracket E \rrbracket = (S, \oplus, \otimes).$

- Let *P* be the set of properties that we need or care about (yes, this is vague). We assume that for each property Q ∈ *P* there is a property NQ ∈ *P* where ¬(Q ∧ NQ) holds.
- We may need a *well-formedness* predicate on language expressions, WF(*E*).

Now for the hard part ...

Closure

```
The language \mathcal{L} is closed w.r.t \mathcal{P} if
```

 $\forall \mathsf{Q} \in \boldsymbol{P} : \forall \boldsymbol{E} \in \mathcal{L} : \mathsf{WF}(\boldsymbol{E}) \implies (\mathsf{Q}(\llbracket \boldsymbol{E} \rrbracket) \lor \mathsf{NQ}(\llbracket \boldsymbol{E} \rrbracket))$

holds constructively.

The Research Challange

Define \mathcal{L} , \mathcal{P} , and WF(E) is such a way that

- *L* is expressive enough to model Internet protocols and more ...
- \mathcal{L} is closed with respect to \mathcal{P}

A (10) A (10)

The approach — bottom up construction of $Q(\llbracket A \rrbracket) \lor NQ(\llbracket A \rrbracket)$

For example, with $S \times T$ we have

 $LD(S) \lor LD(T) \lor (LC(S) \land LK(T)) \implies LD(S \times T)$ $NLD(S) \lor NLD(T) \lor (NLC(S) \land NLK(T)) \implies NLD(S \times T)$

The ability to do this cleanly may hinge on the details!!

Example : suppose we make the mistake of defining Lexicographic Product of Semigroups this way....

Definition $(\vec{x}_{\overline{0}})$

Suppose $(S, \oplus_S, \overline{0}_S)$ is commutative idempotent monoid and $(T, \oplus_T, \overline{0}_T)$ is a monoid. The lexicographic product with zero is defined as the monoid

$$(\boldsymbol{S},\oplus_{\boldsymbol{S}})\times_{\overline{\mathbf{0}}}(\boldsymbol{T},\oplus_{\boldsymbol{T}})\equiv(((\boldsymbol{S}-\{\overline{\mathbf{0}}_{\boldsymbol{S}}\})\times\boldsymbol{T})\cup\{\overline{\mathbf{0}}\},\ \vec{\oplus}_{\overline{\mathbf{0}}},\ \overline{\mathbf{0}})$$

where $\overline{0}$ is the identity for $\vec{\oplus}_{\overline{0}}$ and

$$(s_1, t_1) \vec{\oplus}_{\overline{0}}(s_2, t_2) = \begin{cases} (s_1 \oplus_S s_2, t_1 \oplus_T t_2) & s_1 = s_1 \oplus_S s_2 = s_2 \\ (s_1 \oplus_S s_2, t_1) & s_1 = s_1 \oplus_S s_2 \neq s_2 \\ (s_1 \oplus_S s_2, t_2) & s_1 \neq s_1 \oplus_S s_2 = s_2 \\ (s_1 \oplus_S s_2, \overline{0}_T) & \text{otherwise.} \end{cases}$$

The problem ...

If we restrict ourselves to Semirings, then our new lexicographic product requires rules such as

Property	Definition
LD	$orall a,b,c$: $c\otimes (a\oplus b)=(c\otimes a)\oplus (c\otimes b)$
LCNZ	$\forall a, b, c : (c \neq \overline{0} \land c \otimes a = c \otimes b) \implies a = b$
LKNZ	$\forall a, b, c : (a \neq \overline{0} \land b \neq \overline{0}) \implies c \otimes a = c \otimes b$

These are very hard to work with!

< 回 > < 三 > < 三 >

Outline

Lecture 05: A closer look at the lexicographic product

Lecture 06: A gentle introduction to Metarouting

< ロ > < 同 > < 回 > < 回 >

Bibliography I

[GG07] A. J. T. Gurney and T. G. Griffin. Lexicographic products in metarouting. In *Proc. Inter. Conf. on Network Protocols*, October 2007.

[Gur08] Alexander Gurney. Designing routing algebras with meta-languages. Thesis in progress, 2008.

[Sai70] Tôru Saitô. Note on the lexicographic product of ordered semigroups. Proceedings of the Japan Academy, 46(5):413–416, 1970.

4 **A** N A **B** N A **B** N