Inference and Word Meaning

Copyright, 2011, Ted Briscoe (ejb@cl.cam.ac.uk), GS18, Computer Lab

1 Semantics for Underspecified (R)MRS

Last week we saw that it is possible to construct an underspecified semantic representation of sentence meaning compositionally in (R)MRS. However, although much of this representation is motivated by work on formal semantics (e.g. generalized quantifiers), (R)MRS itself is not a logic with proof and model theory. Rather it describes sets of trees of well-formed formulas in a neo-Davidsonian version of FOL extended with generalized quantifiers. This implies that if you want to do inference and actual interpretation then it is still necessary to expand out the set of formulas and work with these. For instance, given the input (1a), a parser should produce a mostly resolved (R)MRS like (1b).

- (1) a Every man loves some woman
 - b l1:every(x, h1, h2), l2:man(x), l3:love(e), l3:arg(e, x), l3:arg2(e, y), l4: some(y, h3 h4), l5:woman(y), h2=q l3
 - c every(x man(x), (some y, woman(y), love(e), arg1(e, x), arg2(e, y)))
 - d some(y, woman(y), every(x man(x), love(e), arg1(e, x), arg2(e, y)))

From (1b) we can create two fully specified formuli (1c) or (1d). Given an appropriate model and theorem prover we can then compute truth-values or reason that (1d) entails (1c), etc. However, we can't do this directly with (1b). For some tasks this may not matter; e.g. for (S)MT we might be able to generate directly from (1b) into another language which also underspecifies quantifier scope morphosyntactically (most do).

Koller and Lascarides (2009) provide a model theory for RMRS which captures how removing underspecification reduces the set of trees of logical formuli denoted by a RMRS. This lays the groundwork for defining satisfiability of RMRSs and an entailment relation between RMRSs. This takes us a step closer to being able to reason directly with RMRS representations.

2 Boxer

Bos (2005, 2008) has developed the approach to obtaining a wide-coverage FOL semantics from CCG to support reasoning. Firstly, he uses Discourse Representation Theory (DRT) as his semantic representation. This is very similar to MRS in that it is a neo-Davidsonian FOL with generalized quantifiers and a similar approach to conjunction of formuli which was historically developed to handle anaphora better, rather than to support (more) underspecification; e.g. in (2a) and (2b), the pronouns function semantically like bound variables within the scope of *every* and *a*:

- (2) a Every farmer who owns a donkey beats it.
 - b Every farmer owns a donkey. He beats it.
 - c every(x, farmer(x), some(y, donkey(y), own(x y), beat(x y)))

That is the (simplified) semantics of these examples is captured by (2c). For (2b) it is fairly easy to see that syntax-guided traslation of sentences into FOL will lead to problems as the translation of the first sentence will 'close off' the scope of the quantifiers before the pronouns are translated. Something similar happens in (2a), at least in classical Montague-style semantics (as in Cann's book). Bos & Blackburn (2004) discuss DRT and pronouns in detail.

Although, DRT provides a technical solution that allows something similar to elementary predications being inserted into an implicitly conjunctive semantic representation within the scope of quantifiers (i.e. to fill a hole / link to a hook in MRS terms), this doesn't really solve the problem of choosing the right antecedent for a pronoun. So Bos (2008) extends Boxer with a simple anaphora resolution system and Bos (2005) extends it with meaning postulates for lexical entailments derived from WordNet (see next section).

At this point, Boxer is able to output a resolved semantics for quite a large fragment of English. This can (often) be converted to FOL and fed to a theorem prover to perform inference and to a model builder to check for consistency between meaning postulates and Boxer's output. Bos' papers give examples of inferences that are supported by the system and discuss where the system makes mistakes. The inferences mostly involve comparatively simple hyponymy, synonymy relations and the mistakes mostly involve discourse interpretation (pronouns, presuppositions). The off-the-shelf technology that he uses also means that natural, generalized quantifiers can't be handled unless they translate into FOL quantifiers. Nevertheless, the coverage of real data is impressive.

3 Word Meaning

Formal semantics has largely ignored word meaning except to point out that in logical formuli we need to replace a word form or lemma by an appropriate word sense (usually denoted as bold face lemma prime, lemma-number, etc (*loved*, **love'** / **love1**). We also need to know what follows from a word sense and this is usually encoded in terms of (FOL) meaning postulates:

(3) a $\forall x, y \text{ love'}(\mathbf{x}, \mathbf{y}) \rightarrow \text{like'}(\mathbf{x}, \mathbf{y})$ b $\forall x, y \text{ love'}(\mathbf{x}, \mathbf{y}) \rightarrow \neg \text{hate'}(\mathbf{x}, \mathbf{y})$ c $\neg \forall x, y \text{ desire'}(\mathbf{x}, \mathbf{y}) \rightarrow \text{love'}(\mathbf{x}, \mathbf{y})$

Although this is conceptually and representationally straightforward enough, there are at least three major issues:

- 1. How to get this information?
- 2. How to ensure it is consistent?
- 3. How to choose the right sense?

Bos solves 1) by pulling lexical facts from WordNet (nouns) and VerbNet – these are manually created databases (derived in part from dictionaries) which are certainly not complete and proabably inconsistent. The information they contain is specific to senses of the words defined, so is only applicable in context to a word sense, so Bos simply assumes the most frequent sense (sense 1, given Wordnet) is appropriate. If the background theory

built via WordNet/VerbNet is overall inconsistent, because the data is inconsistent, the algorithm for extracting relevant meaning postulates doesn't work perfectly, or a word sense is wrong, then the theorem prover cannot be used or will produce useless inferences.

There has been a lot of work on learning word meaning from text using distributional models of meaning (see Turney and Pantel, 2010 for a review). These models cluster words by contexts using approaches which are extensions of techniques used in information retrieval and document clustering, where a document is represented as a bag-of-words and retrieved via keywords indexed to documents, or the word-document matrix is reduced so that documents are clustered.

Words can be clustered according to their distributional similarity by choosing a representation of context (other words in a document or local window around the traget word, or set of words to which the target is linked by grammatical relations), obtaining word-context frequency counts from texts, and then clustering according to these (normalized) counts. This provides a general notion of word similarity where word senses are 'blended', to obtain a representation of word senses identified by contexts, we need to do second order clustering over the word vectors clusters at the first stage (and allow words to associate to more than one sense cluster). There are many ways to go about both steps, but one that is conceptually quite clean and results in a conditional probability distribution of word senses given a word is to use Latent Dirichlet Allocation (LDA) (as described in lecture 8 of ML4LP, L101). This is one of two approaches evaluated in Dinu and Lapata (2010) which works well. This work provides a more motivated way of picking a word sense to associate with a word occurrence in context than Bos' and so goes some way to solving 3) above.

Other researchers are trying to extend distributional semantics to recover more than just a notion of word (sense) similarity (clustering) so that the sort of information that Bos derives from WordNet/VerbNet might be learnable directly from text, but so far this work has not produced results comparable with these manual resources. So it seems that for the moment we can at best supplement these resources with some domain-specific incomplete and possibly inconsistent information using data-driven techniques.

4 Probabilistic Theorem Proving

Machine learning offers many models for classification (i.e. plausible propositional inference of the form:

 $\forall x \ p(x) \land \ q(x) \rightarrow \ C(x)$

Probabilistic logic programming or statistical relational inference of the form, e.g:

 $\forall x, y \ P(x, y) \land \ Q(x, y) \rightarrow \ R(x, y)$

is far less advanced. Recently, some progress has been made which is beginning to influence NLP and semantic interpretation.

Markov Logic Networks (MLNs, Richardson & Domingos, 2006) extend theorem proving to plausible probabilistic reasoning with finite (small) firstorder models in a conceptually neat and representationally convenient way, and thus open up the possibility of reasoning in the face of partial knowledge, uncertainty and even inconsistency. Some of the inspiration for MLNs comes from NLP work on statistical parsing as the approach basically applies a maximum entropy model to FOL. Garrette *et al.*, give a succinct introduction to MLNs and then explore how they can be used in conjkunction with Boxer to (partially) resolve issues 1) and 2) above. They also deploy an approach similar to Dinu and Lapata to resolve 3) above. Read the paper and see if you can understand how they do so. We'll discuss it in more detail in the class.

Homework

Do the readings below for the next two lectures and come to them prepared to ask questions. We'll look at the papers by Bos for the first lecture and those by Dinu and Lapata and Garrette *et al.* for the second.

5 Reading

Interpretation / Inference

Bos, J Towards wide-coverage semantic interpretation, 6th Int. Wkshp on Computational Semantics, 2005 www.meaningfactory.com/bos/pubs/Bos2005IWCS.pdf

Box, J. Wide-coverage semantic analysis with Boxer, 2nd Conf. on Seman-

tics in Text Processing, 2008 www.meaningfactory.com/bos/pubs/Bos2008STEP2.pdf

Koller, A & A. Las carides, A logic of semantic representations for shallow parsing, ACL 2009 a clweb.org/anthology-new/E/E09/E09-1052.pdf

Word Meaning / Inference

Dinu G, & M. Lapata, Measuring distributional similarity in context, EMNLP 2010

aclweb.org/anthology-new/D/D10/D10-1113.pdf

Garrette, D., K. Erk & R. Mooney, Integrating logical representations with probabilistic information using Markov logic, Int. Wkshp on Computational Semantics, 2011

aclweb.org/anthology-new/W/W11/W11-0112.pdf

Revision Reading[2mm] Sections 2.6 and 3 of my handout, *Theories of* Syn, Sem and Discourse Int. for NL for the Intro to NLP module (L100) and sections 4.3, 5.2 and 6.7 of the first handout for this module Intro to Formal Semantics for NL give background for Bos' papers

Lexical Semantics and Discourse Processing (L104) gives relevant background on word meaning and discourse interpretation. A quick look at lecture 2 or Cruse, chaps 1–3, *Lexical Semantics* CUP 1986 gives background for Bos and papers on word meaning and inference above

Optional More Background

Bos, J & P. Blackburn, Working with Discourse Representation Theory, 2004

http://homepages.inf.ed.ac.uk/jbos/comsem/book2.html

Turney P. & P. Pantel, Frome frequency to meaning: vector space models of semantics, JAIR, 37, 141–188, 2010 arxiv.org/pdf/1003/1141

Richardson, M. & P. Domingos, Markov logic networks, ML 62, 107–136, 2006

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.7952.pdf