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Intro Background 2

Natural Language Parsing

• Automatically assigning structure to a natural language input

• More specifically, taking a sentence as input and, using a
pre-defined grammar, assigning some structure to it
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Phrase Structure
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Dependency Structure

       John       hit            the             ball               with              the                 bat  

SUBJ DET

PREP

DET
DOBJ

POBJ
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Logical Form

From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were

sold , the company said .

_____________ _________________________________________________________________

| x1 | | x2 x3 |

|-------------| |-----------------------------------------------------------------|

(| company(x1) |A| say(x2) |)

| single(x1) | | agent(x2,x1) |

|_____________| | theme(x2,x3) |

| proposition(x3) |

| __________________ ____________ ________________ |

| | x4 | | x5 | | x6 x7 x8 | |

| x3: |------------------| |------------| |----------------| |

| (| card(x4)=billion |;(| filter(x5) |A| with(x4,x5) |)) |

| | 9.8(x4) | | plural(x5) | | sell(x6) | |

| | kent(x4) | |____________| | patient(x6,x4) | |

| | cigarette(x4) | | 1953(x7) | |

| | plural(x4) | | single(x7) | |

| |__________________| | 1955(x8) | |

| | single(x8) | |

| | to(x7,x8) | |

| | from(x6,x7) | |

| | event(x6) | |

| |________________| |

| event(x2) |

|_________________________________________________________________|
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Why Build these Structures?

• We want to know the meaning of the sentence

• Structured representations allow us to access the semantics

• Who did What to Whom
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Applications

• Question Answering/Semantic Search

• Machine Translation

• Information Extraction

• Dialogue Systems

• . . .
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Today’s Tutorial

• Part I

• why is automatic parsing difficult?
• Combinatory Categorial Grammar

• Part II

• parsing with CCG
• statistical parsing models
• parsing the web
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Why is Automatic Parsing Difficult?

• Obtaining a wide-coverage grammar which can handle arbitrary
real text is challenging

• Natural language is surprisingly ambiguous
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Syntactic Ambiguity
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Ambiguity: the problem is worse than you think
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Ambiguity: the problem is worse than you think

NP VP

S

John V NP PP

ate N P NP

NDT

DT

withpizzathe

anchovies

S

NP

John

VP

V

ate

NP

NP

DT N

the

PP

P

withpizza

NP

DT

the

N
the

anchovies

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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Ambiguity: the problem is even worse than that

• Put the block in the box on the table 2 analyses

• Put the block in the box on the table beside the chair 5 analyses

• Put the block in the box on the table beside the chair before the
table 14 analyses

• Put the block in the box on the table beside the chair before the
table in the kitchen 42 analyses

• . . . 132 analyses

• . . . 469 analyses

• . . . 1430 analyses

• . . . 4862 analyses
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Ambiguity: the problem is even worse than that

• Wider grammar coverage ⇒ more analyses

• In practice this could mean millions (or more) of parses for a
single sentence

• We need a parse model giving the goodness of each parse

• We need an efficient representation of the large parse space, and
an efficient way to search it
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Grammars for Natural Language Parsing

• Standard approach is to use a Context Free Grammar

S → NP VP
VP → V NP, V NP PP
PP → P NP
NP → DT N
DT → the, a
N → cat, dog
V → chased, jumped
P → over
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Combinatory Categorial Grammar (ccg)

• Categorial grammar (cg) is one of the oldest grammar formalisms
(Ajdukiewicz, 1935; Bar-Hillel, 1953; Lambek 1958)

• Various flavours of cg now available: type-logical cg, algebraic
pre-groups (Lambek), ccg

• ccg is now an established linguistic formalism
(Steedman, 1996, 2000)

• syntax; semantics; prosody and information structure;
wide-coverage parsing; generation

• http://groups.inf.ed.ac.uk/ccg/index.html
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Combinatory Categorial Grammar (CCG)

• CCG is a lexicalised grammar

• An elementary syntactic structure – for ccg a lexical category –
is assigned to each word in a sentence

walked: S\NP ‘give me an NP to my left and I return a sentence’

• A small number of rules define how categories can combine
– rules based on the combinators from Combinatory Logic
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ccg Grammar 18

ccg Lexical Categories

• Atomic categories: S , N , NP , PP , . . . (not many more)

• Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

• Complex categories encode subcategorisation information
• intransitive verb: S\NP walked
• transitive verb: (S\NP)/NP respected
• ditransitive verb: ((S\NP)/NP)/NP gave

• Complex categories can encode modification
• PP nominal: (NP\NP)/NP
• PP verbal: ((S\NP)\(S\NP))/NP
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A Simple ccg Derivation

interleukin − 10 inhibits production

NP (S\NP)/NP NP

S\NP

S
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A Simple ccg Derivation

interleukin − 10 inhibits production

NP (S\NP)/NP NP
>

S\NP

S

> forward application
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A Simple ccg Derivation

interleukin − 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
<

S

> forward application
< backward application
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Function Application Rule Schemata

• Forward (>) and backward (<) application:

X /Y Y ⇒ X (>)
Y X \Y ⇒ X (<)
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Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10        inhibits       production 

NP (S\NP)/NP NP

S\NP

S
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Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10        inhibits       production 

NP V NP

VP

S
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Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009



ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising
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Extraction out of a Relative Clause
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Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP
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Forward Composition and Type-Raising

• Forward composition (>B):

X /Y Y /Z ⇒ X /Z (>B)

• Type-raising (T):

X ⇒ T/(T\X ) (>T)
X ⇒ T\(T/X ) (<T)

• Extra combinatory rules increase the weak generative power to
mild context -sensitivity
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“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising
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“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009



ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S
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Combinatory Categorial Grammar

• ccg is mildly context sensitive

• Natural language is provably non-context free

• Constructions in Dutch and Swiss German (Shieber, 1985) require
more than context free power for their analysis

• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages = 
natural languages (?)
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Grammar Engineering vs. Grammar Extraction

• How can we obtain the wide-coverage grammar?
• a syntactician writes the rules (whilst consulting corpus data)
• a syntactician annotates sentences with grammatical structures,

and the grammar is read automatically off that
• the grammar is induced automatically from raw text
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Grammar Engineering vs. Grammar Extraction

• How can we obtain the wide-coverage grammar?
• a syntactician writes the rules (whilst consulting corpus data)
• a syntactician annotates sentences with grammatical structures,

and the grammar is read automatically off that
• the grammar is induced automatically from raw text

• Introduces a level of modularity into the process:

linguist | computer scientist
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The Penn Treebank (1993)

• 40,000 sentences (1M words) of English newspaper text
annotated with phrase-structure trees

• Took annotators at the University of Pennsylvania 3 years to build

• Has been very influential (dominant) in parsing and nlp research
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A PTB Phrase-Structure Tree
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A ccg Treebank: CCGbank

• CCGbank developed by Hockenmaier and Steedman
(Hockenmaier, 2003)

• Phrase-structure trees in Penn Treebank (semi-)automatically
converted into ccg derivations

• But note phrase-structure trees not isomorphic to ccg analyses
(e.g. coordination)
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A ccg Derivation Tree

NP

Marks

S[to]\NP(S[dcl]\NP)/(S[to]NP)

topersuades

(S[to]\NP)/(S[b]\NP)NP((S[dcl]\NP)/(S[to]\NP))/NP

Brooks

S[dcl]

S[dcl]\NP

merge

S[b]\NP
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Inducing a Grammar

NP

Marks

S[to]\NP(S[dcl]\NP)/(S[to]NP)

topersuades

(S[to]\NP)/(S[b]\NP)NP((S[dcl]\NP)/(S[to]\NP))/NP

Brooks

S[dcl]

S[dcl]\NP

merge

S[b]\NP

• Grammar (lexicon) can be read off the leaves of the trees

• In addition to the grammar, CCGbank provides training data for
the statistical models
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Inducing a Grammar

• ≈ 1 200 lexical category types in CCGbank
(compared with 45 pos tags in Penn Treebank)

• Frequency cut-off of 10 gives ≈ 400 types (when applied to
sections 2-21 of CCGbank)

• this set has very high coverage on unseen data (section 00)

• In addition to the grammar, CCGbank provides training data for
the statistical models
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Parsing with ccg

• Stage 1
• Assign pos tags and lexical categories to words in the sentence
• Use taggers to assign the pos tags and categories

– based on standard Maximum Entropy tagging techniques
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Parsing with ccg

• Stage 1
• Assign pos tags and lexical categories to words in the sentence
• Use taggers to assign the pos tags and categories

– based on standard Maximum Entropy tagging techniques

• Stage 2
• Combine the categories using the combinatory rules
• Can use standard bottom-up cky chart-parsing algorithm
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Parsing with ccg

• Stage 1
• Assign pos tags and lexical categories to words in the sentence
• Use taggers to assign the pos tags and categories

– based on standard Maximum Entropy tagging techniques

• Stage 2
• Combine the categories using the combinatory rules
• Can use standard bottom-up cky chart-parsing algorithm

• Stage 3
• Find the highest scoring derivation according to some model

– e.g. generative model, crf, perceptron
• Viterbi algorithm finds this efficently
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Maximum Entropy Tagging

BELL|NNP|N/N INDUSTRIES|NNP|N/N Inc.|NNP|N increased|VBD|(S [dcl ]\NP)/NP

its|PRP$|NP [nb]/N quarterly|NN|N to|TO|((S\NP)\(S\NP))/NP 10|CD|N/N

cents|NNS|N from|IN|((S\NP)\(S\NP))/NP seven|CD|N/N cents|NNS|N
a|DT|(NP\NP)/N share|NN|N .|.|.

• Consider pos tagging as an example

• 45 pos tags from the Penn Treebank
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Maximum Entropy Tagging (Ratnaparkhi, 1998)

• Use local log-linear models to estimate P (tag|context):

P (t|x) = 1
Zx
e

P
j λjfj(t,x)

Zx is a normalisation constant ensuring a proper distribution

• Conditional probability of tag sequence:

P (t1, t2, . . . , tn|w1, w2, . . . , wn) =
n∏
i=1

P (ti|xi)
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Feature-Based Tagging

• Context is a 5-word window surrounding target word

• Features are the words in the window, plus the two previously
assigned tags

• Additional features for rare and unknown words
• suffix information
• is the word capitalised?
• does the word contain a hyphen?
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Features in Log-Linear Tagging Models

• Features are binary-valued indicator functions

• Contextual predicates identify elements of the context which may
be useful for predicting the tag

fi(t, x) =
{

1 if word(x) = the & t = det
0 otherwise

• word(x) = the is an example of a contextual predicate

• Features can be arbitrary properties of the context

• No requirement for the features to be independent

• Variety of training algorithms available to automatically set the
weights
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ccg Supertagging

He goes on the road with his piano

NP (S [dcl ]\NP)/PP PP/NP NP/N N ((S\NP)\(S\NP))/NP NP/N N

A bitter conflict with global implications

NP/N N/N N (NP\NP)/NP N/N N

• ≈ 400 lexical category types

• Baseline tagging accuracy is ≈ 72%

• baseline is to assign tag most frequently seen with word in training
data, and assign N to unseen words

• Baseline for Penn Treebank pos tagging is ≈ 90%
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NP/N N/N N (NP\NP)/NP N/N N
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• Baseline for Penn Treebank pos tagging is ≈ 90%
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Lexical Category Sequence for Newspaper Sentence

In|IN an|DT Oct.|NNP 19|CD review|NN of |IN The|DT

(S/S)/NP NP[nb]/N N/N N/N N (NP\NP)/NP NP[nb]/N

Misanthrope|NNP at|IN Chicago|NNP ′s|POS Goodman|NNP Theatre|NNP

N (NP\NP)/NP N (NP[nb]/N )\NP N/N N

−LRB−|LRB Revitalized|JJ Classics|NNS Take|VBZ the|DT Stage|NN

(NP\NP)/S [dcl] N/N N (S [dcl]\NP)/NP NP[nb]/N N

. . .
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A Maximum Entropy Supertagger

• Maximum Entropy tagging method can be applied to ccg
supertagging

• Features are the words and pos tags in the 5-word window,
plus the two previously assigned categories

• Per-word tagging accuracy is ≈ 92%

• This accuracy is not high enough for the tagger to serve as an
effective front-end to a ccg parser
– roughly two errors per wsj sentence on average

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009



Supertagging Chart Parsing Statistical Models 54

Multitagging

• Potentially assign more than one category to a word
• assign all categories whose probability is within some factor β of

the highest probability category

• Accuracy is over 97% at only 1.4 categories per word

• Accuracy is now high enough to serve as a front-end to the parser
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Chart Parsing

• A chart is just a tabular data structure which stores the
constituents spanning each subsequence of words

• The chart can be filled in “bottom-up”
• start by combining lexical categories and continue to apply the

combinatory rules until the whole sentence is covered

• Fill in the cells corresponding to the shortest subsequences first:
• the CKY algorithm
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Chart Parsing

a_6

IN DT NN

telescope_7

NNDT

she_1

VP

1

2

5

7

saw_2 a_3

3

4

6

man_4 with_5

PRP

NP

PP

S

S

NP

NP

VBD

VP,VP

VP

• cky chart-parsing algorithm operates bottom-up

• Packing the chart efficiently represents a large derivation space
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Chart Parsing
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• cky chart-parsing algorithm operates bottom-up

• Packing the chart efficiently represents a large derivation space

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009



Supertagging Chart Parsing Statistical Models 57

CKY Algorithm

chart[i][j] is a cell containing categories spanning words from i to i + j

initialise chart with categories of span 1 (lexical categories)

LOOP over span of result category (j = 2 to SENT_LENGTH)

LOOP over start position of left combining category (i = 0 to SENT_LENGTH - j)

LOOP over span of left combining category (k = 1 to j - 1)

chart[i][j] ++ Combine(chart[i][k], chart[i + k][j - k])
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Chart Parsing

a_6

IN DT NN
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NNDT

she_1

VP

1

2

5

7

saw_2 a_3

3

4

6

man_4 with_5

PRP

NP

PP

S

S

NP

NP

VBD

VP,VP

VP

• DP algorithms can be run over the packed representation

• The Viterbi algorithm finds the highest scoring derivation
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Linear Parsing Model

Score(d, S) =
∑

i λifi(d) = λ · φ(d)

• Features are counts over d
• root category of d (plus lexical head)
• 〈lexical category, lexical item〉 pairs
• rule feature: S → NP S\NP (plus lexical head)
• predicate argument dependency: subj(bought, IBM)

(plus distance)
• “Backing-off” features with words replaced by pos tags

• Use Perceptron training to set the weights
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Training Data from CCGbank

NP

Marks

S[to]\NP(S[dcl]\NP)/(S[to]NP)

topersuades

(S[to]\NP)/(S[b]\NP)NP((S[dcl]\NP)/(S[to]\NP))/NP

Brooks

S[dcl]

S[dcl]\NP

merge

S[b]\NP

subj(persuades, Marks)
obj(persuades, Brooks)

subj(merge, Brooks)
to-inf(persuades, merge)
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Feature Representation

NP

Marks

S[to]\NP(S[dcl]\NP)/(S[to]NP)

topersuades

(S[to]\NP)/(S[b]\NP)NP((S[dcl]\NP)/(S[to]\NP))/NP

Brooks

S[dcl]

S[dcl]\NP

merge

S[b]\NP

fi : D → N (3 000 000 ≤ i ≤ 1)
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Linear Parsing Model

Score(d, s) =
∑
i

λi.fi(d) = λ · f(d)

• fi are the features (defined by hand)

• λi are the corresponding weights (which need to be learned)
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Perceptron Training

Score(d, S) =
∑
i

λifi(d) = λ · φ(d)

Inputs: training examples (xi, yi)
Initialisation: set λ = 0
Algorithm:

for t = 1..T , i = 1..N
calculate zi = arg maxy∈GEN(xi) Φ(xi, y) · λ
if zi 6= yi
λ = λ+ Φ(xi, yi)− Φ(xi, zi)

Outputs: λ
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Perceptron Training

DECODE:

S
S\NP
S/S

S/S
S/NP

S

S/NP
S/S

NP
N

S/(S\NP)
(S/S)/NP

(S\NP)/NP
S\NP

(S\NP)/PP

PP
NP\NP

NP
N

PP/PP

S\NP
(S\NP)/PP

S\NP
S/NP

S\NP
S\S

(S\NP)\NP

NP
VP\VP

(NP\NP)/NP
(VP\VP)/NP

PP

NP
N

NP\NP
VP\VP

W0 = <0,0,0,...,0,0,...,0,...0,0,0,0,...,0>

w1 w2 w3 w4 w5SENT1:

1

2

3

4

5
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Perceptron Training

S
S\NP
S/S

S/S
S/NP

S

S/NP
S/S

NP
N

S/(S\NP)
(S/S)/NP

(S\NP)/NP
S\NP

(S\NP)/PP

PP
NP\NP

NP
N

PP/PP

S\NP
(S\NP)/PP

S\NP
S/NP

S\NP
S\S

(S\NP)\NP

NP
VP\VP

(NP\NP)/NP
(VP\VP)/NP

PP

NP
N

NP\NP
VP\VP

W0 = <0,0,0,...,0,0,...,0,...0,0,0,0,...,0>

w1 w2 w3 w4 w5SENT1:

DECODE:

f1, f20, f55, f100, f210, f345
f19, f25, f75, f150, f211, f346, f450, f500, f525
f15, f21, f56, f120, f212, f348, f419

1

2

3

4

5
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Perceptron Training (Online)

S
S\NP
S/S

S/S
S/NP

S

S/NP
S/S

NP
N

S/(S\NP)
(S/S)/NP

(S\NP)/NP
S\NP

(S\NP)/PP

PP
NP\NP

NP
N

PP/PP

S\NP
(S\NP)/PP

S\NP
S/NP

S\NP
S\S

(S\NP)\NP

NP
VP\VP

(NP\NP)/NP
(VP\VP)/NP

PP

NP
N

NP\NP
VP\VP

W1 = <0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>

w1 w2 w3 w4 w5SENT1:

UPDATE WEIGHTS:

f1, f20, f55, f100, f210, f345
f19, f25, f75, f150, f211, f346, f450, f500, f525
f15, f21, f56, f120, f212, f348, f419

1

5

4

3

2
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Perceptron Training

S/S
S/NP

S

S

S/NP
S/S

NP
N

S/(S\NP)

(S\NP)/NP
S\NP

(S\NP)/PP

PP
PP/NP
NP\NP

NP
N

PP/PP

S\NP
(S\NP)/PP

S\NP
PP/NP

(NP\NP)/NP
(VP\VP)/NP

PP
NP

W1 = <0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>

w1 w2 w3 w4SENT2:

UPDATE WEIGHTS:

f11, f21, f57, f90, f145, f250
f21, f25, f76, f151, f222, f348, f444, f507, f575
f17, f45, f155, f167, f678

DECODE:

1

4

3

2
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Perceptron Training

S/S
S/NP

S

S

S/NP
S/S

NP
N

S/(S\NP)

(S\NP)/NP
S\NP

(S\NP)/PP

PP
PP/NP
NP\NP

NP
N

PP/PP

S\NP
(S\NP)/PP

S\NP
PP/NP

(NP\NP)/NP
(VP\VP)/NP

PP
NP

W1 = <0,1,0,...,-1,0,...,-1,...0,1,0,-1,...,0>

w1 w2 w3 w4SENT2:

UPDATE WEIGHTS:

f11, f21, f57, f90, f145, f250
f21, f25, f76, f151, f222, f348, f444, f507, f575
f17, f45, f155, f167, f678

DECODE:

1

4

3

2
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Perceptron Training

S/S
S/NP

S

S

S/NP
S/S

NP
N

S/(S\NP)

(S\NP)/NP
S\NP

(S\NP)/PP

PP
PP/NP
NP\NP

NP
N

PP/PP

S\NP
(S\NP)/PP

S\NP
PP/NP

(NP\NP)/NP
(VP\VP)/NP

PP
NP

W2 = <0,2,-1,...,-1,1,...,-1,...0,1,0,-2,...,-1>

w1 w2 w3 w4SENT2:

UPDATE WEIGHTS:

f11, f21, f57, f90, f145, f250
f21, f25, f76, f151, f222, f348, f444, f507, f575
f17, f45, f155, f167, f678

UPDATE WEIGHTS:

1

4

3

2
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Perceptron Training is Expensive

Score(d|S) =
∑
i

λifi(d) = λ · φ(d)

Inputs: training examples (xi, yi)
Initialisation: set λ = 0
Algorithm:

for t = 1..T , i = 1..N
calculate zi = arg maxy∈GEN(xi) Φ(xi, y) · λ
if zi 6= yi
λ = λ+ Φ(xi, yi)− Φ(xi, zi)

Outputs: λ

• Requires an efficient decoder
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Efficient Decoding with CCG

• Supertagging leaves decoder with (relatively) little left to do

• Each packed chart needs at most 20 MB ram

• Most probable derivation can be found very quickly with Viterbi

• Training takes 5 hours for 10 iterations
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Parser Evaluation

• Compare output of the parser with a gold standard

• Exact match metric sometimes used but a little crude

• Partial match against a set of grammatical relations currently the
method of choice

• measures recovery of semantically important relations
• relatively theory-neutral representation
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Head-Based Grammatical Relations

• She gave the present to Kim
(ncsubj gave She )
(dobj gave present)
(iobj gave to)
(dobj to Kim)
(det present the)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009



Evaluation Web Parsing 74

Head-Based Grammatical Relations

• She gave the present to Kim
(ncsubj gave She )
(dobj gave present)
(iobj gave to)
(dobj to Kim)
(det present the)

• The company wants to wean itself away from expensive gimmicks
(xcomp to wants wean)
(iobj wean from)
(ncmod prt wean away)
(dobj wean itself)
(dobj from gimmicks)
(ncmod gimmicks expensive)
. . .
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Mapping ccg Dependencies to grs

• Argument slots in ccg dependencies are mapped to grs

ccg lexical category arg slot gr

(S [dcl ]\NP1 )/NP2 1 (nsubj %l %f)
(S [dcl ]\NP1 )/NP2 2 (dobj %l %f)
(NP\NP1 )/NP2 1 (prep %f %l)
(NP\NP1 )/NP2 2 (pobj %l %f)
NP [nb]/N1 1 (det %f %l)

• Mapping is many-to-many
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Test Suite: DepBank

• 700 sentences of newspaper text manually annotated with grs

• Calculate precision and recall over grs

Prec =
# correct

# proposed by parser
Rec =

# correct

# in gold standard

F-score =
2P R
P +R
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Final Parsing Results

Prec Rec F-score

84.1 82.8 83.4

• These scores compare favourably with the best results in the
literature on this test set
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Results by Dependency Type

gr F-score

ncsubj 79.6
dobj 87.7
obj2 66.7
iobj 73.4
clausal 75.0

ncmod 76.1

aux 92.8
det 95.1
conj 77.5
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Parsing the Web

• Why parse the Web?
• semantic search
• provide massive amounts of data for knowledge acquisition
• . . .

• Need a fast parser (to process billions of web pages)

• Need a parser that isn’t overly tuned to newspaper text

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009



Evaluation Web Parsing 80

Speed Demo

• Use of the ccg supertagger (and some highly engineered C++)
leads to a highly efficient linguistically motivated parser

• Can process 1 billion words in less than 5 days with 18 machines

• Can we make the parser go faster still?
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Conclusion

• Robust linguistically-motivated parsing of real text is now possible
• but can it really help in nlp applications?

• What’s left?
• plenty of room for accuracy improvements
• cheap ways to get more training data
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