Maximum Entropy Tagging

James Curran and Stephen Clark University of Edinburgh

August 2003

informatics

Outline

- Introduction to tagging
- Language modelling
- Tagging with probabilities
 - Markov Model tagging
- Feature-based tagging
- Maximum Entropy tagging
 - features in maximum entropy models
 - estimating the feature weights
- Named entity tagging

Tagging

Mr.	Vinken	is	chairman	of	Elsevier	N.V.	,
NNP	NNP	VBZ	NN	IN	NNP	NNP	,
I-NP	I-NP	I-VP	I-NP	I-PP	I-NP	I-NP	0
I-PER	I-PER	0	0	0	I-ORG	I-ORG	0

the	Dutch	publishing	group	•
DT	NNP	VBG	NN	•
I-NP	I-NP	I-NP	I-NP	0
0	0	0	0	0

Part of Speech (POS) Tagging

Mr.	Vinken	is	cha	airman	of	Elsevier	N.V.	,
NNP	NNP	VBZ	NN		IN	NNP	NNP	,
the DT	Dutch	publishi VBG	ng	group NN				

- 45 POS tags
- 1 million words Penn Treebank WSJ text
- 97% state of the art accuracy

Chunk Tagging

Mr.	Vinken	is	ch	airman	of	Elsevier	N.V.	,
I-NP	I-NP	I-VP	I-	NP	I-PP	I-NP	I-NP	0
the	Dutch	publishi	ng	group				
I-NP	I-NP	I-NP		I-NP	0			

- 18 phrase tags
- B-XX separates adjacent phrases of same type
- 1 million words Penn Treebank WSJ text
- 94% state of the art accuracy

Named Entity Tagging

is chairman Mr. Vinken of Elsevier N.V. . I-PER I-PER \bigcirc I-ORG I-ORG 0 \cap \bigcirc Dutch publishing group the . \bigcirc \bigcirc \bigcirc \bigcirc \cap

- 9 named entity tags
- B-XX separates adjacent phrases of same type
- 160,000 words Message Understanding Conference (MUC-7) data
- 92-94% state of the art accuracy

Language Modelling

Find the best sequence (words, tags, base pairs, ...)
 ⇒ the most probable sequence

 $\operatorname*{argmax}_{y_1\dots y_n} p(y_1\dots y_n)$

• Chain rule expansion:

$$p(y_1 \dots y_n) = p(y_1)p(y_2|y_1)p(y_3|y_1, y_2) \cdots p(y_n|y_1, \dots, y_{n-1})$$

```
predict y_1
predict y_2 given y_1
predict y_3 given y_1 and y_2
```

. . .

Markov Assumption

- Each prediction cannot depend on entire history
- Markov model approximation:

$$p(y_1 \dots y_n) = p(y_1)p(y_2|y_1)p(y_3|y_1, y_2) \cdots p(y_n|y_1, \dots, y_{n-1})$$

$$\approx p(y_1)p(y_2|y_1)p(y_3|y_2) \cdots p(y_n|y_{n-1})$$

- Current prediction only based on previous prediction
- In theory can use any fixed length history
- In practice a history of 2 is typically used (for English)

nformati

Tagging with Probabilities

• Find the best tag sequence *given the sentence* (conditional probability):

$$\operatorname*{argmax}_{t_1...t_n} p(t_1...t_n | w_1...w_n)$$

• Alternatively maximise $p(t_1 \dots t_n, w_1 \dots w_n)$ (joint probability):

$$\operatorname{argmax}_{t_1\dots t_n} p(t_1 \dots t_n | w_1 \dots w_n) = \operatorname{argmax}_{t_1\dots t_n} \frac{p(t_1 \dots t_n, w_1 \dots w_n)}{p(w_1 \dots w_n)}$$
$$= \operatorname{argmax}_{t_1\dots t_n} p(t_1 \dots t_n, w_1 \dots w_n)$$

- MaxEnt taggers directly maximise conditional probability
- Markov Model taggers maximise joint probability

nformatics

Markov Model Tagging

• Maximise the joint probability:

$$p(t_1 \dots t_n, w_1 \dots w_n) = p(t_1 \dots t_n) p(w_1 \dots w_n | t_1 \dots t_n)$$

• Tag sequence probability (first order Markov Model):

 $p(t_1...t_n) \approx p(t_1)p(t_2|t_1)p(t_3|t_2)\cdots p(t_n|t_{n-1})$

• Word sequence probability (given the tags):

 $p(w_1 \dots w_n | t_1 \dots t_n) \approx p(w_1 | t_1) p(w_2 | t_2) \cdots p(w_n | t_n)$

• Using $p(w_1 \dots w_n | t_1 \dots t_n)$ is counter-intuitive but correct since we're maximising the joint probability

nformatics

Probability Estimation for Markov Models

- Probabilties are estimated from markedup data
- Estimates are simple relative frequencies:

$$p(t_i|t_{i-1}) = \frac{\operatorname{count}(t_{i-1}, t_i)}{\operatorname{count}(t_{i-1})}$$
$$p(w_i|t_i) = \frac{\operatorname{count}(w_i, t_i)}{\operatorname{count}(t_i)}$$

Finding the most probable sequence

- Current decision depends on previous decision(s)
- Cannot simply take the most probable tag for each word
- Viterbi algorithm finds the shortest path through the tag lattice
 - $O(n^2)$ in the number of tags (e.g. POS tags 45^2)
- Beam search works well in practice
 - $O(n^2)$ in the beam width (typically 5^2)

Problems with Markov Model Taggers

- unreliable zero or very low counts
 - does a zero count indicate an impossible event?
 - \implies smoothing the counts solves this problem
- Words not seen in the data are especially problematic
 ⇒ would like to include word internal information
 e.g. capitalisation or suffix information
- Cannot incorporate diverse pieces of evidence for predicting tags e.g. global document information

Feature-based Models

• Features encode evidence from the context for a particular tag:

(title caps, NNP)Citibank, Mr.(suffix -ing, VBG)running, cooking

(POS tag DT, I-NP) (current word from, I-PP) the bank, a thief

(next word Inc., I-ORG) (previous word said, I-PER)

Lotus Inc. said Mr. Vinken

Complex Features

- Features can be arbitrarily complex
- Features can be combinations of atomic features

Feature-based Tagging

- How do we incorporate features into a probabilistic tagger?
- Hack the Markov Model tagger to incorporate features
 - estimate probabilities directly from feature counts
- Maximum Entropy (MaxEnt) Tagging
 - principled way of incorporating features
 - requires sophisticated estimation method

Unknown Words in Markov Model Tagging

• Calculate $p(w_i|t_i)$ separately for unknown words:

 $p(w_i|t_i) = p(\texttt{unknown}|t_i) \ p(\texttt{caps}|t_i) \ p(\texttt{suffix}|t_i)$

- Feature probabilities calculated using relative frequencies
- Assumes independence between features
 ⇒ does not account for feature interaction
- Cannot incorporate more complex features

nformati

Features in Maximum Entropy Models

- Features encode elements of the context C useful for predicting tag t
- Features are binary valued functions, e.g.

$$f_i(C,t) = \begin{cases} 1 \text{ if } word(C) = \text{Moody } \& t = \text{I-ORG} \\ 0 \text{ otherwise} \end{cases}$$

- word(C) = Moody is a contextual predicate
- Features determine (contextual_predicate, tag) pairs (as before)

The Model

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- f_i is a feature
- λ_i is a weight (large value implies informative feature)
- Z(C) is a normalisation constant ensuring a proper probability distribution
- Also known as a *log-linear* model
- Makes no independence assumptions about the features

nformati

Tagging with Maximum Entropy Models

• The conditional probability of a tag sequence $t_1 \dots t_n$ is

$$p(t_1 \dots t_n | w_1 \dots w_n) \approx \prod_{i=1}^n p(t_i | C_i)$$

given a sentence $w_1 \dots w_n$ and contexts $C_1 \dots C_n$

- The context includes previously assigned tags (for a fixed history)
- Beam search is used to find the most probable sequence

nformati

Model Estimation

$$p(t|C) = \frac{1}{Z(C)} \exp\left(\sum_{i=1}^{n} \lambda_i f_i(C, t)\right)$$

- Model estimation involves setting the weight values λ_i
- The model should reflect the data
 ⇒ use the data to *constrain* the model
- What form should the constraints take? \implies constrain the *expected value* of each feature f_i

The Constraints

$$E_p f_i = \sum_{C,t} p(C,t) f_i(C,t) = K_i$$

- Expected value of each feature must satisfy some constraint K_i
- A natural choice for K_i is the average empirical count:

$$K_{i} = E_{\tilde{p}}f_{i} = \frac{1}{N}\sum_{j=1}^{N}f_{i}(C_{j}, t_{j})$$

derived from the training data $(C_1, t_1), \ldots, (C_N, t_N)$

nformatics

Choosing the Maximum Entropy Model

- The constraints do not *uniquely* identify a model
- From those models satisfying the constraints: choose the Maximum Entropy model
- The maximum entropy model is the most uniform model
 makes no assumptions in addition to what we know from the data
- Set the weights to give the MaxEnt model satisfying the constraints
 use Generalised Iterative Scaling (GIS)

Generalised Iterative Scaling (GIS)

- Set $\lambda_i^{(0)}$ equal to some arbitrary value (e.g. zero)
- Repeat until convergence:

$$\lambda_i^{(t+1)} = \lambda_i^{(t)} + \frac{1}{C} \log \frac{E_{\tilde{p}} f_i}{E_{p^{(t)}} f_i}$$

where

$$C = \max_{x,y} \sum_{i=1}^{n} f_i(x,y)$$

Smoothing

- Models which satisfy the constraints exactly tend to overfit the data
- In particular, empirical counts for low frequency features can be unreliable
 - often leads to very large weight values
- Common smoothing technique is to ignore low frequency features
 - but low frequency features may be important
- Use a *prior* distribution on the parameters
 - encodes our knowledge that weight values should not be too large

Gaussian Smoothing

- We use a *Gaussian prior* over the parameters
 - penalises models with extreme feature weights
- This is a form of *maximum a posteriori* (MAP) estimation
- Can be thought of as relaxing the model constraints
- Requires a modification to the update rule