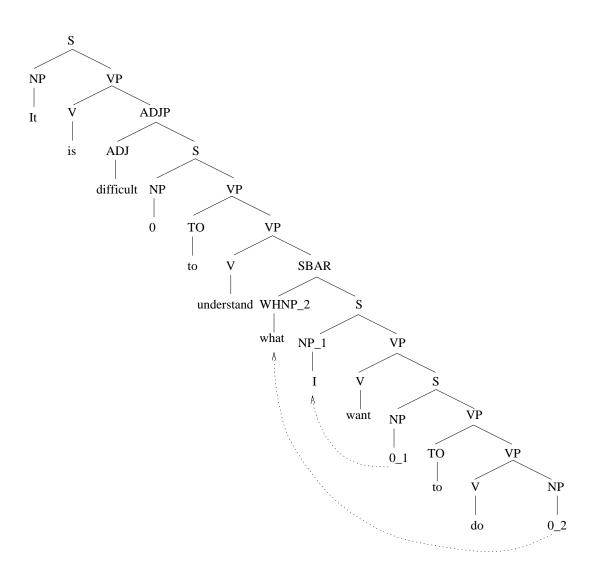
ACS Syntax and Semantics of Natural Language Lecture 5: Creating a Treebank for CCG


Stephen Clark

Natural Language and Information Processing (NLIP) Group

sc609@cam.ac.uk

- A CCG treebank consists of (sentence, CCG analysis) pairs
- The CCG analysis is likely to be a derivation, and may also contain additional information such as predicate-argument dependencies
- The treebank is useful for:
 - deriving a wide-coverage grammar (or extending an existing one)
 - inducing statistical disambiguation models
- How can we build a CCG treebank?
 - manually from scratch (or at least by correcting the output of an existing CCG parser)
 - by automatically transforming the analyses from an existing treebank (e.g. the Penn Treebank) into CCG derivations
- Manual creation of a treebank is expensive so we choose the 2nd option

- 50k sentences/1M words of WSJ text annotated with phrase-structure (PS) trees
- How might we turn this into a CCG treebank?
- What information do we need in the PS trees?
 - head information
 - argument/adjunct distinction (so we can derive the CCG categories)
 - trace information/extracted arguments so we can analyse long-range dependencies

- Ignoring long-range dependency/trace information, the basic algorithm is straightforward:
 - foreach tree au
 - ∗ determineConstituentTypes(τ)
 - * makeBinary(τ)
 - * assignCategories(\tau)

- Constituent type is either head, complement or adjunct
- This information is not marked explicitly in the PTB, but can be inferred (using heuristic rules) based on:
 - function tags in the PTB, e.g. -SBJ (subject), -TMP (temporal modifier), -DIR (direction)
 - constituent label of a node and its parent (e.g NP daughters of VPs are complements, unless they carry a function tag such as -LOC, -DIR, -TMP and so on)
- Appendix A of Collins' thesis gives a list of the head rules
- See p.362 of H&S 2007 and Appendix A of CCGbank manual

- A PTB tree is not binarized, whereas a CCG derivation is
- Insert dummy nodes into the tree such that:
 - all children to the left of the head branch off in a right-branching tree
 - all children to the right of the head branch off in a left-branching tree
- Some PTB structures are very flat, e.g. compound noun phrases in the compound noun case we just assume a right-branching structure (but see Vadas and Curran for inserting NP structure into the PTB)
- See p.362 of H&S 2007

The root node

– mapping from categories of root nodes of PTB trees to CCG categories, e.g. $\{VP\} \rightarrow S \setminus NP, \{S, SINV, SQ\} \rightarrow S$

Head and complement

- category of complement child defined by a similar mapping, e.g. $\{NP\} \rightarrow NP, \{PP\} \rightarrow PP$
- category of the head is a function which takes the category of the complement as argument and returns the category of the parent node; direction of the slash is given by the position of the complement relative to the head

Head and adjunct

– given a parent category C, the category of an adjunct child is C/C if the adjunct child is to the left of the head child (a premodifier), or $C \setminus C$ if it is to the right (postmodifier)

- Assigns a normal-form derivation, i.e. only uses type-raising and composition when necessary
- Sometimes modifier is allowed to compose with the head (giving a more elegant analysis – see p. 364 of H&S)
- Long-range dependencies require extensions to the basic algorithm, using type-raising and composition rules

- The co-indexed trace element *T*-1 is crucial in assigning the correct categories
 - used as an indication of the presence of a direct object for the verb
 - used to assign the correct category to the Wh-pronoun (using a similar mechanism to GPSG's "slash-passing")
- p.57 of the CCGbank manual has a detailed example

- 99.4% of the sentences in the PTB are translated into CCG derivations
- Words with the most number of category types:

Word	num cats	Freq	Word	num cats	Freq
as	130	4237	of	59	22782
is	109	6893	that	55	7951
to	98	22056	LRB	52	1140
than	90	1600	not	50	1288
in	79	15085	are	48	3662
_	67	2001	with	47	4214
'S	67	9249	SO	47	620
for	66	7912	if	47	808
at	63	4313	on	46	5112
was	61	3875	from	46	4437

- Lexicon has 74,669 entries for 44,210 word types (929,552 tokens)
- Average number of lexical categories per token is 19.2
- 1,286 lexical category types in total
 - 439 categories occur only once
 - 556 categories occur 5 times or more
- Coverage on uneen data: lexicon contains correct categories for 94% of tokens in section 00
 - 3.8% due to unknown words
 - 2.2% known words but not with the relevant category

References 13

 CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank. Julia Hockenamier and Mark Steedman. Computational Linguistics. 2007

- Data and models for statistical parsing with Combinatory Categorial Grammar, Julia Hockenmaier, PhD thesis, Edinburgh, 2003
- M. Marcus, B. Santorini, and M. Marcinkiewicz, Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics, 19(2), 1993
- Head-Driven Statistical Models for Natural Language Parsing, Michael Collins, PhD Thesis UPenn, 1999
- David Vadas and James R. Curran (2007). Adding Noun Phrase Structure to the Penn Treebank. In Proceedings of ACL-07.