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Probabilities for SMT 2

• Find the most probable English sentence given a foreign language sen-
tence (this is often how the problem is framed - of course can be gen-
eralised to any language pair in any direction)

ê = arg max
e

p(e|f)

= arg max
e

p(f |e)p(e)

p(f)
= arg max

e
p(f |e)p(e)



Individual Models 3

• p(f |e) is the translation model
(note the reverse ordering of f and e due to Bayes)

– assigns a higher probability to English sentences that have the same
meaning as the foreign sentence

– needs a bilingual (parallel) corpus for estimation

• p(e) is the language model

– assigns a higher probability to fluent/grammatical sentences

– only needs a monolingual corpus for estimation (which are plentiful)

(picture of mt system: translation model, language model, search)



Model Interpretation as a Noisy Channel 4

• Noisy channel model has been applied to many language processing
problems

• Based on the notion of a noisy channel from Shannon’s information
theory

• First applied to a language problem by the speech recognition group at
IBM in the 70s

SOURCE words

noisy words DECODER

guess at
original
words



Speech Recognition as a Noisy Channel 5

SOURCE

P(W)

NOISY CHANNEL

Language Model Acoustic Model

P(A|W)

DECODER

W = arg max
W A W

W
P(W|A)

• Speaker has word sequence W

• W is articulated as acoustic sequence A

• This process introduces noise:

– variation in pronunciation

– acoustic variation due to microphone etc.

• Bayes theorem gives us:

W = arg max
W

P (W |A)

= arg max
W

P (A|W )
︸ ︷︷ ︸

likelihood

P (W )
︸ ︷︷ ︸

prior



Machine Translation as a Noisy Channel 6

SOURCE

P(e)

NOISY CHANNEL

Language Model Translation Model

P(f|e)

DECODER

e = arg max
e f e

eP(e|f)

• Translating French sentence (f) to English sentence (e)

• French speaker has English sentence in mind (P(e))

• English sentence comes out as French via the noisy channel (P(f|e))



n-gram Models 7

• In language modelling for ASR and MT, sequence information is impor-
tant

– e.g. W = The dogs were barking loudly

– trigram model captures some dependencies:

P (W ) = P (The)P (dogs|The)P (were|The, dogs)P (barking|dogs, were)P (loudly|were, barking)



Calculating Language Model Probabilities 8

• Unigram probabilities

p(w1) =
f(w1)

N

where f(w1) is the number of times w1 is seen in some corpus and N is
the total number of words seen in the corpus (by token)

• In this case the relative frequency estimation can be shown to be an
instance of maximum likelihood estimation



Calculating Language Model Probabilities 9

• Bigram probabilities

p(w2|w1) =
f(w1, w2)

f(w1)

where f(w1, w2) is the number of times w2 is seen following w1 in some
corpus



Calculating Language Model Probabilities 10

• Trigram probabilities

p(w3|w1, w2) =
f(w1, w2, w3)

f(w1, w2)

where f(w1, w2, w3) is the number of times w3 is seen following w2 and w1

in some corpus



Sparse Data 11

• As we move to trigram counts (and perhaps beyond) sparse data be-
comes a problem

• Language is extremely productive, meaning that we’re likely to encounter
n-grams not seen in the training data

• Zero counts are particularly problematic, leading to zero relative fre-
quency estimates (or undefined if the denominator is zero)

• Zero probabilities propogate through the product leading to a zero prob-
ability for the whole string



Smoothing 12

• Linear interpolation:

p̃(w3|w1, w2) = λ1p̂(w3|w1, w2) + λ2p̂(w3|w2) + λ3p̂(w3) + ǫ

λ1 + λ2 + λ3 + ǫ = 1.0



Can we go beyond trigrams? 13

• yes - commercial systems (speech recognisers, Google SMT) will use
5 or 6-grams

• see “All Our N-gram are Belong to You”

– Google have prepared a 1 trillion word n-gram corpus and made it
freely available

• But will still need smoothing, however much data we use (because lan-
guage is so productive)



Examples of 4-grams from Google 14

serve as the incoming 92
serve as the incubator 99

serve as the independent 794
serve as the index 223

serve as the indication 72
serve as the indicator 120
serve as the indicators 45

serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607

serve as the info 42
serve as the informal 102

serve as the information 838
serve as the informational 41

serve as the infrastructure 500

serve as the occurs once in a 1-million word corpus



Translation Model 15

• p(f |e) - the probability of some foreign language string given a hypoth-
esis English translation

• f = Ces gens ont grandi, vecu et oeuvre des dizaines d’annees dans
le domaine agricole.

• e = Those people have grown up, lived and worked many years in a
farming district.

• e = I like bungee jumping off high bridges.

• Allowing highly improbable translations (but assigning them small prob-
abilities) was a radical change in how to think about the MT problem



Translation Model 16

• How do we estimate p(f |e)?

• p(f |e) = count(f, e)/count(e)

• We’ve seen enough language modelling now to know this isn’t going to
work



Translation Model 17

• Introduce alignment variable a which represents alignments between
the individual words in the sentence pair

• p(f |e) = ∑

a p(a, f |e)

(word alignment diagram)



Alignment Probabilities 18

• Now break the sentences up into manageable chunks (initially just the
words)

• p(a, f |e) = ∏m
j=1 t(fj|ei)

where ei is the English word(s) corresponding to the French word fj and
t(fj|ei) is the (conditional) probability of the words being aligned



Alignment Probabilities 19

• Relative frequency estimates can be used to estimate t(fj|ei)

• Problem is that we don’t have word-aligned data, only sentence-aligned

• There is an elegant mathematical solution to this problem - the EM
algorithm (more on this later)



Example Translations 20

See Koehn and Callison-Burch slides


