Expectation-Maximisation and Variational Approaches

Mark Gales

Lent 2011

Machine Learning for Language Processing: Lecture 5

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Training Latent Variable Models

- This lecture examines the training of generative classifiers with latent variables
 - discriminative classifiers will be discussed in the next lecture
- The models are to be trained using maximum likelihood estimation
 - could use general approaches such as gradient descent
 BUT no guarantees of convergence, need to tune learning rate
- This lecture will describe Expectation Maximisation (EM) and Variational EM
 - elegantly handles the case when there are unobserved variables
 - guaranteed convergence properties, no parameters to tune

- Two scenarios need to be considered when training models
 - fully observed: all variables observed (including "hidden" state in HMM)
 - partially observed: only the observation sequence observed
- For the fully observed case ML estimation performed by counting joint events
- For partially observed case more interesting
 - the unobserved state-sequence means it is not possible to simply count

Mixture Model Training

• Bernoulli mixture model, $x_i \in \{0, 1\}$

$$P(\boldsymbol{x}) = \sum_{m=1}^{M} P(\mathbf{c}_m) P(\boldsymbol{x}|\mathbf{c}_m)$$
$$P(\boldsymbol{x}|\mathbf{c}_m) = \prod_{i=1}^{d} p_{mi}^{x_i} (1 - p_{mi})^{1 - x_i}$$

Maximum likelihood estimate of parameters: λ = {p₁₁,..., p_{1d},..., p_{M1},..., p_{Md}}
 training data x₁,..., x_n for the class of interest ω

$$\hat{\boldsymbol{\lambda}} = \operatorname*{argmax}_{\boldsymbol{\lambda}} \left\{ \prod_{\tau=1}^{n} P(\boldsymbol{x}_{\tau} | \boldsymbol{\lambda}) \right\} = \operatorname*{argmax}_{\boldsymbol{\lambda}} \left\{ \sum_{\tau=1}^{n} \log \left(P(\boldsymbol{x}_{\tau} | \boldsymbol{\lambda}) \right) \right\}$$

• If the indicator variable, $q_{ au}$ is known for each of the training example, $x_{ au}$,

$$p_{mi} = \frac{1}{n_m} \sum_{\tau: q_\tau = \mathsf{c}_m} x_{\tau i}, \quad n_m = \sum_{\tau: q_\tau = \mathsf{c}_m} 1 \quad \mathsf{BUT} \ q_\tau \text{ not known}$$

Expectation Maximisation

• Rather than directly optimising the log-likelihood $\mathcal{L}(\boldsymbol{\lambda})$ where

$$\mathcal{L}(\boldsymbol{\lambda}) = \sum_{ au=1}^{n} \log \left(P(\boldsymbol{x}_{ au} | \boldsymbol{\lambda}) \right)$$

use an iterative approach and to ensure that for each iteration \boldsymbol{k}

$$\mathcal{L}(\boldsymbol{\lambda}^{[k+1]}) - \mathcal{L}(\boldsymbol{\lambda}^{[k]}) \geq \mathcal{Q}(\boldsymbol{\lambda}^{[k+1]}; \boldsymbol{\lambda}^{[k]}) - \mathcal{Q}(\boldsymbol{\lambda}^{[k]}; \boldsymbol{\lambda}^{[k]}) \geq 0$$

where $\mathcal{Q}(\boldsymbol{\lambda}^{[k+1]}; \boldsymbol{\lambda}^{[k]}) - \mathcal{Q}(\boldsymbol{\lambda}^{[k]}; \boldsymbol{\lambda}^{[k]})$ is a lower-bound on $\mathcal{L}(\boldsymbol{\lambda}^{[k+1]}) - \mathcal{L}(\boldsymbol{\lambda}^{[k]})$

• If $\mathcal{Q}(\boldsymbol{\lambda}; \boldsymbol{\lambda}^{[k]})$ can be simply optimised wrt $\boldsymbol{\lambda}$, then iterate until convergence

Need to select an appropriate form for *auxiliary function* $Q(\lambda; \lambda^{[k]})$

Jensen's Inequality

• A useful lower-bound is Jensen's inequality.

$$f\left(\sum_{m=1}^{M} \lambda_m x_m\right) \ge \sum_{m=1}^{M} \lambda_m f(x_m)$$

where f() is any concave function and

$$\sum_{m=1}^{M} \lambda_m = 1, \quad \lambda_m \ge 0 \ m = 1, \dots, M$$

Take simple example to left: Here $c = (1 - \lambda)a + \lambda b$ and $0 \le \lambda \le 1$

$$f(c) = f((1 - \lambda)a + \lambda b)$$

$$\geq (1 - \lambda)f(a) + \lambda f(b)$$

Lower-Bound for Mixture Models

• Consider the change in the log likelihood:

$$\mathcal{L}(\boldsymbol{\lambda}^{[k+1]}) - \mathcal{L}(\boldsymbol{\lambda}^{(k)}) = \sum_{i=1}^{n} \log \left(\frac{P(\boldsymbol{x}_i | \boldsymbol{\lambda}^{[k+1]})}{P(\boldsymbol{x}_i | \boldsymbol{\lambda}^{[k]})} \right)$$

Expand mixture model and multiply numerator/denominator by $P(c_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]})$

$$\mathcal{L}(\boldsymbol{\lambda}^{[k+1]}) - \mathcal{L}(\boldsymbol{\lambda}^{[k]}) = \sum_{i=1}^{n} \log \left(\frac{1}{P(\boldsymbol{x}_i | \boldsymbol{\lambda}^{[k]})} \sum_{m=1}^{M} \left(\frac{P(\boldsymbol{c}_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]}) P(\boldsymbol{x}_i, \boldsymbol{c}_m | \boldsymbol{\lambda}^{[k+1]})}{P(\boldsymbol{c}_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]})} \right) \right)$$

Treating $P(c_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]})$ as λ_m for Jensen's inequality (log() concave)

$$\mathcal{L}(\boldsymbol{\lambda}^{[k+1]}) - \mathcal{L}(\boldsymbol{\lambda}^{[k]}) \geq \sum_{i=1}^{n} \sum_{m=1}^{M} P(\mathbf{c}_{m} | \boldsymbol{x}_{i}, \boldsymbol{\lambda}^{[k]}) \log \left(\frac{P(\boldsymbol{x}_{i}, \mathbf{c}_{m} | \boldsymbol{\lambda}^{[k+1]})}{P(\boldsymbol{x}_{i} | \boldsymbol{\lambda}^{[k]}) P(\mathbf{c}_{m} | \boldsymbol{x}_{i}, \boldsymbol{\lambda}^{[k]})} \right)$$

Definition of Auxiliary Function

• Recalling the desired change

$$\mathcal{L}(\boldsymbol{\lambda}^{[k+1]}) - \mathcal{L}(\boldsymbol{\lambda}^{[k]}) \ge \mathcal{Q}(\boldsymbol{\lambda}^{[k+1]}; \boldsymbol{\lambda}^{[k]}) - \mathcal{Q}(\boldsymbol{\lambda}^{[k]}; \boldsymbol{\lambda}^{[k]}) \ge 0$$

Comparing with the derivation from Jensen's inequality

$$\mathcal{Q}(\boldsymbol{\lambda}^{[k+1]};\boldsymbol{\lambda}^{[k]}) = \sum_{i=1}^{n} \sum_{m=1}^{M} P(\mathbf{c}_{m} | \boldsymbol{x}_{i}, \boldsymbol{\lambda}^{[k]}) \log \left(P(\boldsymbol{x}_{i}, \mathbf{c}_{m} | \boldsymbol{\lambda}^{[k+1]}) \right)$$
$$= \sum_{i=1}^{n} \sum_{m=1}^{M} P(\mathbf{c}_{m} | \boldsymbol{x}_{i}, \boldsymbol{\lambda}^{[k]}) \left(\log \left(P(\mathbf{c}_{m} | \boldsymbol{\lambda}^{[k+1]}) \right) + \log \left(P(\boldsymbol{x}_{i} | \mathbf{c}_{m}, \boldsymbol{\lambda}^{[k+1]}) \right) \right)$$

• So to ensure that the log-likelihood doesn't decrease at each iteration

$$\mathcal{Q}(oldsymbol{\lambda}^{[k+1]};oldsymbol{\lambda}^{[k]}) \geq \mathcal{Q}(oldsymbol{\lambda}^{[k]};oldsymbol{\lambda}^{[k]})$$

GMM Auxiliary Function Example

• Data generated from the following GMM:

$$x \sim 0.4 \times \mathcal{N}(1, 1) + 0.6 \times \mathcal{N}(-1, 1)$$

Initial estimate of the model parameters is

$$x^{(0)} \sim 0.4 \times \mathcal{N}(0.5, 1) + 0.6 \times \mathcal{N}(-1, 1)$$

- Plot shows the variation of the log-likelihood difference and auxiliary function difference as the estimate of the mean of component 1
 - auxiliary function difference always a lower-bound
 - peak of auxiliary function about 0.8
 - peak of log-likelihood function 1.0
 - gradient at current value (0.5) same for both

Mixture Model Training Procedure

- The overall procedure for training a mixture model is:
 - 1. initialise model parameters $oldsymbol{\lambda}^{[0]}$, k=0
 - 2. compute component posteriors given parameters $oldsymbol{\lambda}^{[k]}$ and observation $oldsymbol{x}_i$

$$P(\mathbf{c}_m | \mathbf{x}_i, \mathbf{\lambda}^{[k]}) = \frac{P(\mathbf{c}_m | \mathbf{\lambda}^{[k]}) P(\mathbf{x}_i | \mathbf{c}_m, \mathbf{\lambda}^{[k]})}{\sum_{j=1}^M P(\mathbf{c}_j | \mathbf{\lambda}^{[k]}) P(\mathbf{x}_i | \mathbf{c}_j, \mathbf{\lambda}^{[k]})})$$

These are then used to accumulate the sufficient statistics for $\mathcal{Q}(\lambda; \lambda^{[k]})$ 3. given the posterior derived sufficient statistics find

$$oldsymbol{\lambda}^{[k+1]} = rgmax_{oldsymbol{\lambda}} \left\{ \mathcal{Q}(oldsymbol{\lambda};oldsymbol{\lambda}^{[k]})
ight\}$$

4. unless converged, let k = k + 1 goto (2)

Bernoulli Mixture Model Updates

- Now consider the training of the mixture of Bernoulli distribution
 - substituting the form into the auxiliary function (ignoring component prior)

$$\mathcal{Q}(\boldsymbol{\lambda};\boldsymbol{\lambda}^{[k]}) = \sum_{m=1}^{M} \sum_{i=1}^{n} P(\mathbf{c}_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]}) \sum_{j=1}^{d} \left[x_{ij} \log(\lambda_{mj}) + (1 - x_{ij}) \log(1 - \lambda_{mj}) \right]$$

Differentiate this with respect to λ_{qr} gives

$$\frac{\partial \mathcal{Q}(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{[k]})}{\partial \lambda_{qr}} = \sum_{i=1}^{n} P(\mathbf{c}_{q} | \boldsymbol{x}_{i}, \boldsymbol{\lambda}^{[k]}) \left[\frac{x_{ir}}{\lambda_{qr}} - \frac{(1 - x_{ir})}{(1 - \lambda_{qr})} \right]$$

Equating this expression to zero to find new estimates $oldsymbol{\lambda}^{[k+1]}$

$$(1 - \lambda_{qr}^{[k+1]}) \sum_{i=1}^{n} P(\mathbf{c}_{q} | \mathbf{x}_{i}, \mathbf{\lambda}^{[k]}) x_{ir} = \lambda_{qr}^{[k+1]} \sum_{i=1}^{n} P(\mathbf{c}_{q} | \mathbf{x}_{i}, \mathbf{\lambda}^{[k]}) (1 - x_{ir})$$

Rearranging yields: $\lambda_{mj}^{[k+1]} = \frac{\sum_{i=1}^{n} P(\mathbf{c}_m | \mathbf{x}_i, \mathbf{\lambda}^{[k]}) x_{ij}}{\sum_{i=1}^{n} P(\mathbf{c}_m | \mathbf{x}_i, \mathbf{\lambda}^{[k]})}$

Update for Component Prior

• Also need to find component prior $P(\mathsf{c}_m|\boldsymbol{\lambda}^{[k+1]})$ so maximise wrt $\boldsymbol{\lambda}$

$$\mathcal{Q}(\boldsymbol{\lambda}; \boldsymbol{\lambda}^{[k]}) = \sum_{i=1}^{n} \sum_{m=1}^{M} P(\mathbf{c}_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]}) \log \left(P(\mathbf{c}_m | \boldsymbol{\lambda}) \right)$$

subject to the constraints: $\sum_{m=1}^{M} P(\mathbf{c}_m | \boldsymbol{\lambda}) = 1, \quad P(\mathbf{c}_m | \boldsymbol{\lambda}) \ge 0$

• Use Lagrange optimisation for this constrained optimisation problem

$$P(\mathbf{c}_m | \boldsymbol{\lambda}^{[k+1]}) = \frac{1}{n} \sum_{i=1}^n P(\mathbf{c}_m | \boldsymbol{x}_i, \boldsymbol{\lambda}^{[k]})$$

General Form for EM

- EM can be applied to a range of tasks (and latent variables)
 - consider a set of continuous latent variables, \boldsymbol{Z}
 - introduce posterior distribution over latent variables, ${\bm Z}$, $p({\bm Z}|{\bm X},{\bm \lambda})$

$$\begin{aligned} \mathcal{L}(\boldsymbol{\lambda}) &= \mathcal{F}\left(q(\boldsymbol{Z},\boldsymbol{\lambda}),\boldsymbol{\lambda}\right) &= \int q(\boldsymbol{Z},\boldsymbol{\lambda})\log\left(\frac{p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\lambda})}{q(\boldsymbol{Z},\boldsymbol{\lambda})}\right) d\boldsymbol{Z} \\ &= \left\langle \log\left(\frac{p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\lambda})}{q(\boldsymbol{Z},\boldsymbol{\lambda})}\right) \right\rangle_{q(\boldsymbol{Z},\boldsymbol{\lambda})} \end{aligned}$$

where $q(\pmb{Z},\pmb{\lambda}) = p(\pmb{Z}|\pmb{X},\pmb{\lambda})$

• For any parameter values, e.g. $\tilde{\lambda}$, and associated posterior distribution $q(m{Z}, \tilde{\lambda})$,

$$\mathcal{L}(\boldsymbol{\lambda}) \geq \mathcal{F}\left(q(\boldsymbol{Z}, \tilde{\boldsymbol{\lambda}}), \boldsymbol{\lambda}\right) = \left\langle \log\left(\frac{p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{\lambda})}{q(\boldsymbol{Z}, \tilde{\boldsymbol{\lambda}})}\right) \right\rangle_{q(\boldsymbol{Z}, \tilde{\boldsymbol{\lambda}})}$$

- uses Jensen's inequality to yield a lower-bound
- equality only when $\lambda = \lambda$

General Form for EM (cont)

• Using the previous two expressions at iteration k+1, find parameters $oldsymbol{\lambda}^{[k+1]}$

$$\mathcal{L}(\boldsymbol{\lambda}^{[k]}) = \mathcal{F}\left(q(\boldsymbol{Z}, \boldsymbol{\lambda}^{[k]}), \boldsymbol{\lambda}^{[k]}\right) \leq \mathcal{F}\left(q(\boldsymbol{Z}, \boldsymbol{\lambda}^{[k]}), \boldsymbol{\lambda}^{[k+1]}\right) \leq \mathcal{L}(\boldsymbol{\lambda}^{[k+1]})$$

where $q(\pmb{Z}, \pmb{\lambda}^{[k]}) = p(\pmb{Z} | \pmb{X}, \pmb{\lambda}^{[k]})$

- E-step: $\mathcal{F}\left(q(\boldsymbol{Z}, \boldsymbol{\lambda}^{[k]}), \boldsymbol{\lambda}^{[k]}\right) = \mathcal{L}(\boldsymbol{\lambda}^{[k]}) \text{ find } p(\boldsymbol{Z}|\boldsymbol{X}, \boldsymbol{\lambda}^{[k]})$
- M-step: $\mathcal{F}\left(q(\boldsymbol{Z}, \boldsymbol{\lambda}^{[k]}), \boldsymbol{\lambda}^{[k+1]}\right) \geq \mathcal{F}\left(q(\boldsymbol{Z}, \boldsymbol{\lambda}^{[k]}), \boldsymbol{\lambda}^{[k]}\right)$ find parameters
- Iterate until convergence:
 - each iteration guaranteed not to decrease the likelihood
 - finds a local maximum of the likelihood
 - final solution depends on initial parameters $oldsymbol{\lambda}^{[0]}$

Variational EM

- Not always tractable to compute posterior distribution $p({m Z}|{m X},{m \lambda}^{[k]})$
 - introduce a tractable approximation to this $q({m Z})$, using Jensen's inequality

$$\mathcal{L}(\boldsymbol{\lambda}) \ge \mathcal{F}(q(\boldsymbol{Z}), \boldsymbol{\lambda})) = \left\langle \log\left(\frac{p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{\lambda})}{q(\boldsymbol{Z})}\right) \right\rangle_{q(\boldsymbol{Z})}$$

- Iterations for Variational EM consists of:
 - E-step (approximate): $q^{[k]}(Z) = \operatorname{argmax}_{q(Z)} \left\{ \mathcal{F}(q(Z), \boldsymbol{\lambda}^{[k]}) \right\}$
 - M-step: $\boldsymbol{\lambda}^{[k+1]} = \operatorname{argmax}_{\boldsymbol{\lambda}} \left\{ \mathcal{F}(q^{[k]}(\boldsymbol{Z}), \boldsymbol{\lambda}) \right\}$
- Though this makes the training tractable, not guaranteed to increase likelihood

$$\mathcal{L}(\boldsymbol{\lambda}^{[k]}) \geq \mathcal{F}\left(q^{[k]}(\boldsymbol{Z}), \boldsymbol{\lambda}^{[k]}\right) \leq \mathcal{F}\left(q^{[k]}(\boldsymbol{Z}), \boldsymbol{\lambda}^{[k+1]}\right) \leq \mathcal{L}(\boldsymbol{\lambda}^{[k+1]})$$

• One standard form is the mean-field approximation where $q(\mathbf{Z}) = \prod_{i=1}^{n} q_i(z_i)$