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Module L101: Machine Learning for Language Processing

Training Latent Variable Models

• This lecture examines the training of generative classifiers with latent variables

– discriminative classifiers will be discussed in the next lecture

• The models are to be trained using maximum likelihood estimation

– could use general approaches such as gradient descent
BUT no guarantees of convergence, need to tune learning rate

• This lecture will describe Expectation Maximisation (EM) and Variational EM

– elegantly handles the case when there are unobserved variables
– guaranteed convergence properties, no parameters to tune
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Module L101: Machine Learning for Language Processing

Fully and Partially Observed Training
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• Two scenarios need to be considered when training models

– fully observed: all variables observed (including “hidden” state in HMM)
– partially observed: only the observation sequence observed

• For the fully observed case ML estimation performed by counting joint events

• For partially observed case more interesting

– the unobserved state-sequence means it is not possible to simply count
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Module L101: Machine Learning for Language Processing

Mixture Model Training

q

x

• Bernoulli mixture model, xi ∈ {0, 1}

P (x) =
∑M

m=1P (cm)P (x|cm)

P (x|cm) =
∏d

i=1 p
xi
mi(1− pmi)

1−xi

• Maximum likelihood estimate of parameters: λ = {p11, . . . , p1d, . . . , pM1, . . . , pMd}

– training data x1, . . . ,xn for the class of interest ω

λ̂ = argmax
λ

{

n
∏

τ=1

P (xτ |λ)

}

= argmax
λ

{

n
∑

τ=1

log (P (xτ |λ))

}

• If the indicator variable, qτ is known for each of the training example, xτ ,

pmi =
1

nm

∑

τ :qτ=cm

xτi, nm =
∑

τ :qτ=cm

1 BUT qτ not known
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Module L101: Machine Learning for Language Processing

Expectation Maximisation

• Rather than directly optimising the log-likelihood L(λ) where

L(λ) =
n
∑

τ=1

log (P (xτ |λ))

use an iterative approach and to ensure that for each iteration k

L(λ[k+1])− L(λ[k]) ≥ Q(λ[k+1];λ[k])−Q(λ[k];λ[k]) ≥ 0

where Q(λ[k+1];λ[k])−Q(λ[k];λ[k]) is a lower-bound on L(λ[k+1])−L(λ[k])

• If Q(λ;λ[k]) can be simply optimised wrt λ, then iterate until convergence

Need to select an appropriate form for auxiliary function Q(λ;λ[k])
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Module L101: Machine Learning for Language Processing

Jensen’s Inequality

• A useful lower-bound is Jensen’s inequality.

f

(

M
∑

m=1

λmxm

)

≥
M
∑

m=1

λmf(xm)

where f() is any concave function and
M
∑

m=1

λm = 1, λm ≥ 0 m = 1, . . . ,M

f(x)

xa bc

Take simple example to left:
Here c = (1− λ)a+ λb and 0 ≤ λ ≤ 1

f(c) = f((1− λ)a+ λb)

≥ (1− λ)f(a) + λf(b)
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Module L101: Machine Learning for Language Processing

Lower-Bound for Mixture Models

• Consider the change in the log likelihood:

L(λ[k+1])− L(λ(k) =

n
∑

i=1

log

(

P (xi|λ[k+1])

P (xi|λ[k])

)

Expand mixture model and multiply numerator/denominator by P (cm|xi,λ
[k])

L(λ[k+1])−L(λ[k]) =
n
∑

i=1

log

(

1

P (xi|λ[k])

M
∑

m=1

(

P (cm|xi,λ
[k])P (xi, cm|λ[k+1])

P (cm|xi,λ[k])

)

)

Treating P (cm|xi,λ
[k]) as λm for Jensen’s inequality (log() concave)

L(λ[k+1])−L(λ[k]) ≥
n
∑

i=1

M
∑

m=1

P (cm|xi,λ
[k])log

(

P (xi, cm|λ[k+1])

P (xi|λ[k])P (cm|xi,λ[k])

)

MPhil in Advanced Computer Science 6



Module L101: Machine Learning for Language Processing

Definition of Auxiliary Function

• Recalling the desired change

L(λ[k+1])− L(λ[k]) ≥ Q(λ[k+1];λ[k])−Q(λ[k];λ[k]) ≥ 0

Comparing with the derivation from Jensen’s inequality

Q(λ[k+1];λ[k]) =
n
∑

i=1

M
∑

m=1

P (cm|xi,λ
[k]) log

(

P (xi, cm|λ[k+1])
)

=
n
∑

i=1

M
∑

m=1

P (cm|xi,λ
[k])
(

log
(

P (cm|λ[k+1])
)

+ log
(

P (xi|cm,λ[k+1])
))

• So to ensure that the log-likelihood doesn’t decrease at each iteration

Q(λ[k+1];λ[k]) ≥ Q(λ[k];λ[k])
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Module L101: Machine Learning for Language Processing

GMM Auxiliary Function Example

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Log−Likehood
Auxilliary  

• Data generated from the following GMM:

x ∼ 0.4×N (1, 1) + 0.6×N (−1, 1)

Initial estimate of the model parameters is

x(0) ∼ 0.4×N (0.5, 1) + 0.6×N (−1, 1)

• Plot shows the variation of the log-likelihood difference and auxiliary function
difference as the estimate of the mean of component 1

– auxiliary function difference always a lower-bound
– peak of auxiliary function about 0.8
– peak of log-likelihood function 1.0
– gradient at current value (0.5) same for both
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Module L101: Machine Learning for Language Processing

Mixture Model Training Procedure

• The overall procedure for training a mixture model is:

1. initialise model parameters λ[0], k = 0
2. compute component posteriors given parameters λ[k] and observation xi

P (cm|xi,λ
[k]) =

P (cm|λ[k])P (xi|cm,λ[k])
∑M

j=1P (cj|λ[k])P (xi|cj,λ[k])
)

These are then used to accumulate the sufficient statistics for Q(λ;λ[k])
3. given the posterior derived sufficient statistics find

λ
[k+1] = argmax

λ

{

Q(λ;λ[k])
}

4. unless converged, let k = k + 1 goto (2)
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Module L101: Machine Learning for Language Processing

Bernoulli Mixture Model Updates

• Now consider the training of the mixture of Bernoulli distribution

– substituting the form into the auxiliary function (ignoring component prior)

Q(λ;λ[k]) =

M
∑

m=1

n
∑

i=1

P (cm|xi,λ
[k])

d
∑

j=1

[xij log(λmj) + (1− xij) log(1− λmj)]

Differentiate this with respect to λqr gives

∂Q(λ,λ[k])

∂λqr

=
n
∑

i=1

P (cq|xi,λ
[k])

[

xir

λqr

−
(1− xir)

(1− λqr)

]

Equating this expression to zero to find new estimates λ[k+1]

(1− λ[k+1]
qr )

n
∑

i=1

P (cq|xi,λ
[k])xir = λ[k+1]

qr

n
∑

i=1

P (cq|xi,λ
[k])(1− xir)

Rearranging yields: λ
[k+1]
mj =

∑n
i=1 P (cm|xi,λ

[k])xij
∑n

i=1 P (cm|xi,λ
[k])
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Module L101: Machine Learning for Language Processing

Update for Component Prior

• Also need to find component prior P (cm|λ[k+1]) so maximise wrt λ

Q(λ;λ[k]) =
n
∑

i=1

M
∑

m=1

P (cm|xi,λ
[k]) log (P (cm|λ))

subject to the constraints:
∑M

m=1P (cm|λ) = 1, P (cm|λ) ≥ 0

• Use Lagrange optimisation for this constrained optimisation problem

P (cm|λ[k+1]) =
1

n

n
∑

i=1

P (cm|xi,λ
[k])

MPhil in Advanced Computer Science 11



Module L101: Machine Learning for Language Processing

General Form for EM
• EM can be applied to a range of tasks (and latent variables)

– consider a set of continuous latent variables, Z
– introduce posterior distribution over latent variables, Z, p(Z|X,λ)

L(λ) = F (q(Z,λ),λ) =

∫

q(Z,λ) log

(

p(X,Z|λ)

q(Z,λ)

)

dZ

=

〈

log

(

p(X,Z|λ)

q(Z,λ)

)〉

q(Z,λ)

where q(Z,λ) = p(Z|X,λ)
• For any parameter values, e.g. λ̃, and associated posterior distribution q(Z, λ̃),

L(λ) ≥ F
(

q(Z, λ̃),λ
)

=

〈

log

(

p(X,Z|λ)

q(Z, λ̃)

)〉

q(Z,λ̃)

– uses Jensen’s inequality to yield a lower-bound
– equality only when λ̃ = λ
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Module L101: Machine Learning for Language Processing

General Form for EM (cont)

• Using the previous two expressions at iteration k + 1, find parameters λ[k+1]

L(λ[k]) = F
(

q(Z,λ[k]),λ[k]
)

≤ F
(

q(Z,λ[k]),λ[k+1]
)

≤ L(λ[k+1])

where q(Z,λ[k]) = p(Z|X,λ[k])

– E-step: F
(

q(Z,λ[k]),λ[k]
)

= L(λ[k]) find p(Z|X,λ[k])

– M-step: F
(

q(Z,λ[k]),λ[k+1]
)

≥ F
(

q(Z,λ[k]),λ[k]
)

find parameters

• Iterate until convergence:

– each iteration guaranteed not to decrease the likelihood
– finds a local maximum of the likelihood
– final solution depends on initial parameters λ[0]
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Module L101: Machine Learning for Language Processing

Variational EM

• Not always tractable to compute posterior distribution p(Z|X,λ[k])

– introduce a tractable approximation to this q(Z), using Jensen’s inequality

L(λ) ≥ F (q(Z),λ)) =

〈

log

(

p(X,Z|λ)

q(Z)

)〉

q(Z)

• Iterations for Variational EM consists of:

– E-step (approximate): q[k](Z) = argmaxq(Z)

{

F(q(Z),λ[k])
}

– M-step: λ[k+1] = argmaxλ
{

F(q[k](Z),λ)
}

• Though this makes the training tractable, not guaranteed to increase likelihood

L(λ[k]) ≥ F
(

q[k](Z),λ[k]
)

≤ F
(

q[k](Z),λ[k+1]
)

≤ L(λ[k+1])

• One standard form is the mean-field approximation where q(Z) =
∏n

i=1 qi(zi)
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