
Parsing with Lexicalised PCFGs

ACS Introduction to NLP

Stephen Clark

1



Chart Parsing plus Search
Tbest = arg max

T
P (T, S)

• The number of possible parses increases exponentially with sentence
length

• For a typical newspaper sentence there are far too many possible parses
to enumerate (using a treebank grammar)

• Two key ideas allow the arg maxT to be performed efficiently:

– dynamic programming leads to an n5 algorithm (still not efficient
enough)

– heuristic search enables efficient parsing in practice

2



Chart Parsing with Lexicalised PCFGs

• Use a standard bottom-up chart parser, based on CKY

• The key data structure is the chart

– chart[start, end, label] is the set of all edges in the chart spanning
words start to end inclusive, with non-terminal label label

• We’ll look at the parser for Collins Model 1

– Model 2 just requires some extensions to deal with the modelling of
subcategorisation frames

[picture of chart]

3



The edge Datatype
label non-terminal label
headlabel non-terminal label of head child of the edge
headword the head word
headtag part of speech tag of the head word
start index of first word in edge’s span
end index of last word in edge’s span
stop TRUE if the edge has received its stop probabilities
prob log probability of the edge
children list of the children of the edge (left to right)

4



Dynamic Programming and Packed Charts

• A key idea for efficient parsing is the following: if two edges are equivalent
for the purpose of further parsing, then only one of them needs to be
used to form future edges (as long as the other is retained - if we want
to represent all parses)

• This notion of equivalence leads to a packed chart which can efficiently
represent an exponential number of parses

[example]

5



Dynamic Programming and Viterbi

• If we’re only looking for the highest scoring parse, no need to keep all
edges in an equivalence class

• If two edges are equivalent for the purposes of future parsing, and in
terms of the probability model, then the edge with the lowest score can
be discarded

• This form of dynamic programming is the Viterbi algorithm

[example]

6



The Equivalence Test
// assume e1 and e2 have the same start and end indices

boolean edges_eqivalent(edge e1, edge e2)
{

if(e1.label != e2.label OR
e1.headlabel != e2.headlabel OR
e1.headword != e2.headword OR
e1.headtag != e2.headtag OR
e1.stop != e2.stop)

return FALSE;
else

return TRUE;
}

7



Adding Edges to the Chart
void add_edge(edge e, int start, int end)
{

foreach edge x in chart[start, end, e.label]
if(edges_equivalent(e,x))
{

if(e.prob > x.prob)
replace x with e

return;
}

add e to chart[start, end, e.label]
}

8



Combining Edges
// e1 is adjacent and to the left of e2
// e2 is a modifier of e1

void join_2_edges_follow(edge e1, edge e2)
{

edge e3;

e3.label = e1.label;
e3.headlabel = e1.headlabel;
e3.headword = e1.headword;
e3.headtag = e1.headtag;
e3.start = e1.start;
e3.end = e2.end;
e3.stop = FALSE;
e3.children = e1.children ++ e2;
e3.prob = e1.prob + e2.prob + log P_r(e1,e2);
// P_r calculates the additional probability when the modifier is to the right

add_edge(e3,e1.start,e2.end);
}

9



Combining Edges II
// e1 is adjacent and to the left of e2
// e1 is a modifier of e2

void join_2_edges_precede(edge e1, edge e2)
{

edge e3;

e3.label = e2.label;
e3.headlabel = e2.headlabel;
e3.headword = e2.headword;
e3.headtag = e2.headtag;
e3.start = e1.start;
e3.end = e2.end;
e3.stop = FALSE;
e3.children = e1.children ++ e2;
e3.prob = e1.prob + e2.prob + log P_l(e1,e2);
// P_l calculates the additional probability when the modifier is to the left

add_edge(e3,e1.start,e2.end);
}

10



Initialising the Chart
void initialise()
{

edge e;
for i = 1 to n // n is number of words in input sentence
{

if(word_i is an ‘‘unknown’’ word)
set X = {POS tag from tagger for word_i}

else
set X = {set of all tags seen for word_i in training data}

foreach POS tag T in X
{

e.label = T; e.headword = word_i; e.headtag = T;
e.stop = TRUE; e.start = i; e.end = i+1;
e.prob = 0;

add_edge(e,i,i+1);
}

}
}

11



All Edge Combinations
void complete(int start, int end)
{

for split = start to end-1
{

foreach edge e1 in chart[start,split] such that e1.stop == FALSE
foreach edge e2 in chart[split+1,end] such that e2.stop == TRUE

join_2_edges_follow(e1,e2);

foreach edge e1 in chart[start,split] such that e1.stop == TRUE
foreach edge e2 in chart[split+1,end] such that e2.stop == FALSE

join_2_edges_precede(e1,e2);
}

}

12



The Final Parsing Algorithm
edge parse()
{

initialise();

// n is the number of words in the sentence
for span = 2 to n

for start = 1 to n-span+1
{

end = start + span - 1;
complete(start, end);

}

// assume TOP is the start symbol
X = edge in chart[1,n,TOP] with highest probability;

return X;
}

13



Parsing Complexity

• Calls to join 2 edges [precede|follow] take O(1) time

• These calls are buried within 5 loops:

Complexity Loop
O(n) for span = 2 to n
O(n) for start = 1 to n-span+1
O(n) for split = start to end-1
O(n) foreach edge e1 in chart[start,split] s.t. e1.stop == FALSE
O(n) foreach edge e2 in chart[split+1,end] s.t. e2.stop == TRUE

• Parsing algorithm is essentially an n5 algorithm

• I’ve ignored some constants along the way (related to size of tag set etc)

14



Heuristic Beam Search

• n5 (plus some non-neglible constants) is inefficient for practical parsing

• We need to prune low-probability constituents in the chart

• This is a “lossy” strategy since we may throw away the correct parse

– so there are now two sources of possible error in the parser: model
error and search error

– Viterbi finds the optimal solution so does not lead to search errors

• But in practice we can obtain great increases in efficiency with very small
losses in accuracy

15



Figures of Merit

• What score should we use for a partial parse (constituent)?

• Obvious score to use is prob - the (log) conditional probability of the
constituent: P (subtree|label,head-word,head-tag)

• This doesn’t work too well

– problem is that the conditional probability does not account for the
prior probability of seeing the particular (label,head-word,head-tag)
triple

[example]

16



Prior for a Figure of Merit

Score(subtree) = P (subtree|label,head-tag,head-word)
× Pprior(label,head-tag,head-word)

• One way to calculate the prior (Collins):

Pprior(label,head-tag,head-word) = P (head-tag,head-word)

× P (label|head-tag,head-word)

• Probabilities estimated using relative frequency from counts in the corpus;
second probability smoothed with interpolation

17



The Beam

• Let bestprob(start,end) be the highest score for any constituent spanning
start..end

• Discard all constituents with span start..end and with log prob < α best-
prob(start,end)

• α is the beam width; typical value is 1
10000

18



Pros and Cons of the Generative Model

• Pros:

– Conceptually easy to understand; well understood techniques

– Estimation is easy (max. likelihood = relative frequencies)

– Produces good results

• Cons:

– Models S when the sentence is given

– Independence assumptions required

– Locality restrictions on features required for efficient estimation and
decoding

– Guarantees on estimation (e.g. soundness) only apply with unlimited
training data

– Choosing the order for the chain rule, and independence assumptions
plus smoothing, something of a “black art”

19



References

• Appendix B, D and E of Collins’ thesis

• Caraballo and Charniak (1998), New Figures of Merit for best-first prob-
abilistic chart parsing. Computational Linguistics, 24(2), pages 275-298

all available from the web; Collins thesis from Collins’ web page

20


