
Human-Computer Interaction

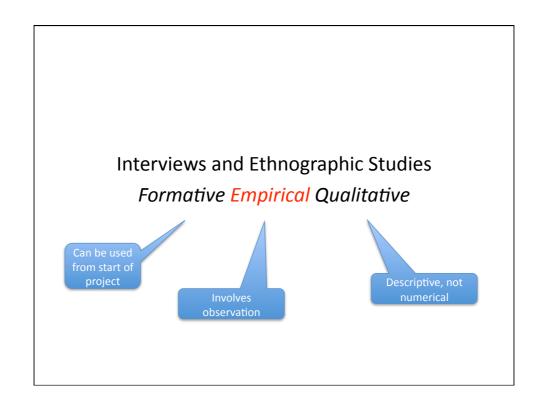
Lecture 8: Usability evaluation methods

Different kinds of system evaluation/research

- · Analytic/Empirical
 - 'Analytic' means reasoning and working by analysis
 - 'Empirical' means making observations or measurements
- Formative/Summative
 - Formative research (earlier in a project) evaluates & refines ideas
 - Summative research (later in a project) tests & evaluates systems
- · Qualitative/Quantitative
 - Qualitative data involves words (or pictures), and can provides broad / detailed information about a small number of users and their context.
 - Quantitative data involves *numbers*, and can be used to compare data from larger numbers of users, or measure some specific aspect of their behaviour.

From cognitive theory of exploratory learning

- User sets a *goal* to be accomplished, in terms of the expected system capabilities.
- User searches interface for currently available actions.
- User *selects* the action that seems likely to make progress toward the goal.
- User *performs* the selected action and *evaluates* the feedback given by the system, looking for evidence that progress has been made.
 - The user learns what to do in future by observing what the system does

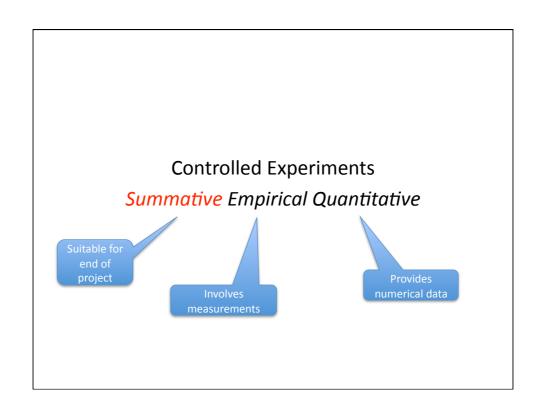

Evaluation procedure

- Manually simulate an (imaginary) user carrying out the stages of the model.
 - relies on knowing enough about this person to anticipate their prior knowledge / mental model.
- Evaluators move through task, telling a *story* about why user would choose each action.
- Evaluate the story according to:
 - user's current goal.
 - accessibility of correct control.
 - quality of match between label and goal.
 - feedback after the action.

GOMS: Goals, Operators, Methods, Selection

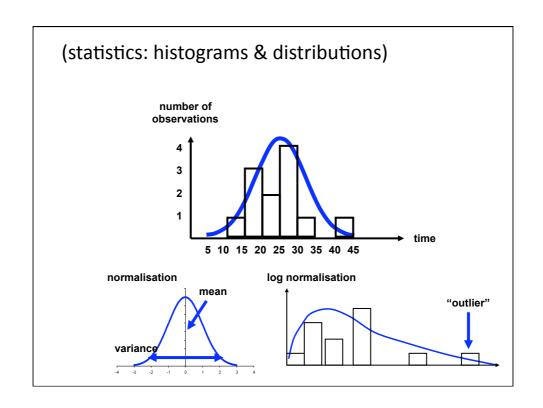
- Goals: what is the user trying to do?
- Operators: what actions must they take?
 - Home hands on keyboard or mouse
 - Key press & release (tapping keyboard or mouse button)
 - Point using mouse/lightpen etc
- Methods: what have they learned in the past?
- Selection: how will they choose what to do?
 - Mental preparation

Structured interviews

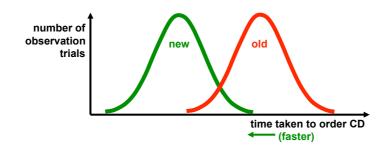

- Additional to requirements definition meetings.
- Encourage participation from a range of users.
- Structured in order to:
 - collect data into common framework
 - ensure all important aspects covered
- Newman & Lamming's proposed structure:
 - activities, methods and connections
 - measures, exceptions and domain knowledge
- Semi-structured interviews:
 - Ask further questions to probe topics of interest

Observational task analysis

- · Less intrusive than interviews
- · Potentially more objective
- Inspired huge debate between cognitive and sociological views of HCI: see Lucy Suchman
- Harder work:
 - transcription from video protocol
 - relative duration of sub-tasks
 - transitions between sub-tasks
 - · interruptions of tasks
 - alternatively, transcription from audio recording

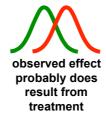

Ethnographic field studies

- · Field observation to understand users and context
- Division of labour and its coordination
- · Plans and procedures
 - When do they succeed and fail?
- Where paperwork meets computer work
- · Local knowledge and everyday skills
- Spatial and temporal organisation
- · Organisational memory
 - How do people learn to do their work?
 - Do formal methods match reality?
- See Beyer & Holtzblatt, Contextual Design


Controlled experiments

- Based on a number of observations:
 - How long did Fred take to order a CD from Amazon?
 - How many errors did he make?
- But every observation is different.
- So we compare averages:
 - over a number of trials
 - over a range of people (experimental participants)
- Results often have a normal distribution

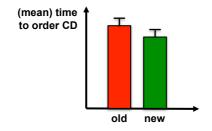
Experimental treatments


- A *treatment* is some modification that we expect to have an effect on usability:
 - How long does Fred take to order a CD using this great new interface, compared to the crummy old one?
 - Expected answer: usually faster, but not always



Hypothesis testing

- Null hypothesis:
 - What is the probability that this amount of difference in means could be random variation between samples?
 - Hopefully very low (p < 0.01, or 1%)
 - Use a statistical *significance test*, such as the *t-test*.



Sources of variation

- People differ, so quantitative approaches to HCI must be statistical.
- We must distinguish sources of variation:
 - The effect of the treatment what we want to measure.
 - Individual differences between subjects (e.g. IQ).
 - Distractions during the trial (e.g. sneezing).
 - Motivation of the subject (e.g. Mondays).
 - Accidental intervention by experimenter (e.g. hints).
 - Other random factors.
- Good experimental design and analysis isolates these.

Effect size – means and error bars

- Difference of two means may be statistically significant (if sample has low variance), without being very interesting.
 - But mean differences must *always* be reported with a confidence interval, or plotted with 'error bars'

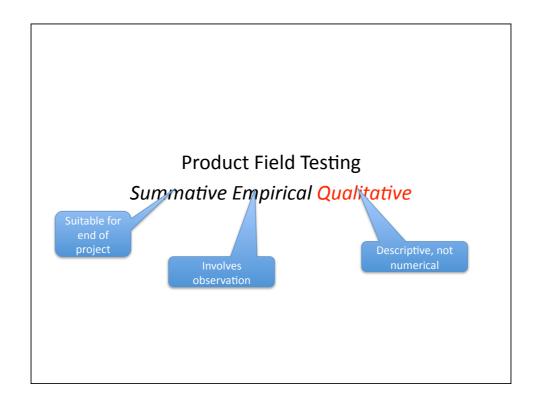
Experiment A: 'significant' but boring

Experiment B: interesting, but treat with caution

Problems with controlled experiments

- Huge variation between people (~200%)
- Mistakes mean huge variation in accuracy (~1000%)
- Improvements are often small (~20%)
- ... or even negative (because new & unfamiliar)
- Most people give up using a new product at learning time anyway, so quantitative measures of 'expert' speed and accuracy performance may not be of great commercial interest
 - We don't care if it's slow, so long as users like it
 - (and user's perception of speed is inaccurate anyway)

Surveys and Questionnaires


Self-report measures

Surveys and questionnaires

- Standardised psychometric instruments can be used
 - To evaluate mental states such as fatigue, stress, confusion
 - To assess individual differences (IQ, introversion ...)
- Alternatively, questionnaires can be used to collect subjective or self-report evaluation from users
 - as in market research / opinion polls
 - 'I like this system' (and my friend who made it)
 - 'I found it intuitive' (and I like my friend)
- This kind of data can be of limited value
 - Can be biased, and self-report is often inaccurate anyway
 - It's hard to design questionnaires to avoid these problems

Questionnaire design

- Open questions ...
 - Capture richer qualitative information
 - But require a coding frame to structure & compare data
- Closed questions ...
 - Yes/No or Likert scale (opinion from 1 to 5)
 - Quantitative data easier to compare, but limited insight
- Collecting survey data via interviews gives more insight but questionnaires are faster
 - Can collect data from a larger sample
 - Remember to test questionnaires with a pilot study, as it's easier to get them wrong than with interviews

Product field testing

- Brings advantages of task analysis/ethnography to assessment and testing phases of product cycle.
- · Case study: Intuit Inc.'s Quicken product
 - originally based on interviews and observation
 - follow-me-home programme after product release:
 - random selection of shrink-wrap buyers;
 - · observation while reading manuals, installing, using.
 - Quicken success was attributed to the programme:
 - survived predatory competition from Microsoft Money
 - later valued at \$15 billion.

*Non-*Evaluation

Bad evaluation techniques

- Purely *affective* reports: 20 subjects answered the question "Do you like this nice new user interface more than that ugly old one?"
 - Apparently empirical/quantitative
- No testing at all: "It was decided that more colours should be used in order to increase usability."
 - Apparently formative/analytic
- Introspective reports made by a single subject (often the programmer or project manager): "I find it far more intuitive to do it this way, and the users will too."
 - Apparently analytic/qualitative

Evaluation in Part II projects

Summary of analytic options (analysing your design)

- · Cognitive Walkthrough
 - Normally used in formative contexts if you do have a working system, then why aren't you observing a real user (far more informative than simulating/imagining one)?
 - But Cognitive Walkthrough can be a valuable time-saving precaution before user studies start, to fix blatant usability bugs
- GOMS
 - unlikely you'll have alternative detailed UI designs in advance
 - If you have a working system, a controlled observation is superior
- · Cognitive Dimensions
 - better suited to less structured tasks than CW & GOMS, which rely on predefined user goal & task structure

Summary of empirical options (collecting data)

- · Interviews/ethnography
 - could be useful in formative/preparation phase
- Think-aloud / Wizard of Oz
 - valuable for both paper prototypes and working systems
 - can uncover usability bugs if analysed rigorously
- · Controlled experiments
 - appears more 'scientific', but only:
 - If you can measure the important attributes in a meaningful way
 - If you test significance and report confidence interval of observed means
- Questionnaires
 - be clear what you are measuring is self-report accurate?
- Field Testing
 - controlled release (and data collection?) may be possible
- · See human participants guidance for empirical methods

Evaluation options for non-interactive systems

- · Should your evaluation be analytic or empirical?
 - How consistent / well-structured is your analytic framework?
 - What are you measuring & why? Are the measurements compatible with your claims (validity)?
- Should your evaluation be formative or summative in nature?
 - If formative couldn't you finish your project?
 - If summative are the criteria internal or external?
- Is your data quantitative or qualitative?
 - Descriptive aspects of the system, or engineering performance data?
 - If qualitative, how will you establish objectivity (i.e. that this is not simply your own opinion)?