Summary of the rules of structured proof.

	Introduction rules	Elimination rules
^	$l. P \text{ from}$ $ \\ m. Q \text{ from}$ $ \\ n. P \land Q \text{ from } l \text{ and } m \text{ by } \land \text{-introduction}$ (it doesn't matter in what order l and m are in)	$m. P \wedge Q \text{ from}$ $ \\ n. P \text{ from } m \text{ by } \wedge \text{-elimination}$ or $ \\ m. P \wedge Q \text{ from}$ $ \\ n. Q \text{ from } m \text{ by } \wedge \text{-elimination}$
V	$m.$ P from $n.$ $P \lor Q$ from m by \lor -introduction or $m.$ Q from $n.$ $P \lor Q$ from m by \lor -introduction	$l.\ P\lor Q\ \text{from }\dots\text{by }\dots$ \vdots $m_1.\ \text{Assume }P$ \vdots $m_2.\ R$ \vdots $m_1.\ \text{Assume }Q$ \vdots $n_2.\ R$ \vdots $n_2.\ R$ \vdots $n_2.\ R$ \vdots $n_3.\ R\ \text{from }l,m_1-m_2,n_1-n_2\ \text{by }\vee\text{-elimination}$ (it doesn't matter what order $l,m_1-m_2,$ and n_1-n_2 are in)
⇒		$l.\ P\Rightarrow Q\ {\rm by}\$ $ \\ m.\ P\ {\rm by}\$ $ \\ n.\ Q\ {\rm from}\ l\ {\rm and}\ m\ {\rm by}\Rightarrow {\rm -elimination}$
Г	m . Assume P n . F from by $n+1$. $\neg P$ from $m-n$, by \neg -introduction	$l.\ P\ {\rm by}\$ $ \\ m.\ \neg P\ {\rm by}\$ $ \\ n.\ F\ {\rm from}\ l\ {\rm and}\ m\ {\rm by}\ \neg\text{-elimination}$
T	 n. T	No elimination rule for True.
F	No introduction rule for False.	$m.\ F \ \text{from by}$ $ \\ n.\ P \ \text{from } m, \ \text{by contradiction}$
A	$m. \ {\it Consider an arbitrary} \ x \ ({\it from domain} \)$ $n. \ P(x) \ {\it by} \$ $n+1. \ \forall \ x.P(x) \ {\it from} \ m-n \ {\it by} \ \forall {\it -introduction}$	$m. \forall \ x.P(x) \ {\sf from} \$ $n. P(v) \ {\sf from} \ m \ {\sf by} \ \forall {\sf -elimination}$
3	$m.\ P(v)$ $$ $n.\ \exists\ x.P(x)\ \text{from}\ m\ \text{by}\ \exists\text{-introduction with witness}\ x=v$	$l. \exists \ x.P(x)$ $m.$ For some actual $x_1, P(x_1)$ $n. \ Q$ (where x_1 not free in Q) $o. \ Q$ from l, m - n , by \exists -elimination