We know $(a, b) = (b, a) \Rightarrow a = b$ for pairs so why not lift the result to set product? Theorem ? $(A \times B = B \times A) \Rightarrow A = B$ slide 129 Proof? The first components of the pairs in $A \times B$ are from A. The first components of the pairs in $B \times A$ are from B. If $A \times B = B \times A$ then these must be the same, so A = B. **Theorem ?** $(A \times B = B \times A) \Rightarrow A = B$ Proof? 1. Assume $A \times B = B \times A$ We prove A = B, i.e. $\forall x.x \in A \Leftrightarrow x \in B$ 2. Consider an arbitrary x. We first prove the \Rightarrow implication. 3. Assume $x \in A$. slide 130 4. Consider an arbitrary $y \in B$. 5. $(x, y) \in A \times B$ by defn \times 6. $(x,y) \in B \times A$ by 1 7. $x\in B$ by defn imes8. $x \in A \Rightarrow x \in B$ from 3–7 by \Rightarrow -introduction 9. The proof of the \Leftarrow implication is symmetric 10. $\forall x.x \in A \Leftrightarrow x \in B$ from 2–9 by \forall -introduction Theorem $(A \times B = B \times A) \land (\exists x.x \in A) \land (\exists y.y \in B) \Rightarrow A = B$ Proof 1. Assume $A \times B = B \times A \land (\exists x.x \in A) \land (\exists y.y \in B)$ 1a. $A \times B = B \times A$ from 1 by \wedge -elimination 1b. $(\exists x.x \in A)$ from 1 by \land -elimination 1c. $(\exists y.y \in B)$ from 1 by \land -elimination We prove A = B, i.e. $\forall x.x \in A \Leftrightarrow x \in B$ 2. Consider an arbitrary x. slide 131 We first prove the \Rightarrow implication. 3. Assume $x \in A$. 4. We have actual $y \in B$ from 1c by \exists -elimination 5. $(x, y) \in A \times B$ by defn \times 6. $(x, y) \in B \times A$ by 1a 7. $x\in B$ by defn imes8. $x \in A \Rightarrow x \in B$ from 3–7 by \Rightarrow -introduction 9. The proof of the \Leftarrow implication is symmetric 10. $\forall x.x \in A \Leftrightarrow x \in B$ from 2–9 by \forall -introduction Theorem $(A \times B = B \times A) \land (\exists x.x \in A) \land (\exists y.y \in B) \Rightarrow A = B$ or equivalently slide 132 Theorem $(A \times B = B \times A) \Rightarrow A = B \lor A = \emptyset \lor B = \emptyset$ using $((P \land R) \Rightarrow Q)$ iff $(P \Rightarrow Q \lor \neg R)$ and De Morgan