
Lecture 5

PCF
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PCF syntax

Types

τ ::= nat | bool | τ → τ

Expressions

M ::= 0 | succ(M) | pred(M)

| true | false | zero(M)

| x | if M then M else M

| fnx : τ . M | M M | fix(M)

where x ∈ V, an infinite set of variables.

Technicality : We identify expressions up to α-conversion of

bound variables (created by the fn expression-former): by

definition a PCF term is an α-equivalence class of expressions.
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PCF typing relation, Γ ⊢ M : τ

• Γ is a type environment, i.e. a finite partial function mapping

variables to types (whose domain of definition is denoted

dom(Γ))

• M is a term

• τ is a type.

Notation:

M : τ means M is closed and ∅ ⊢ M : τ holds.

PCFτ
def
= {M | M : τ}.
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PCF typing relation (sample rules)

(:fn)
Γ[x 7→ τ ] ⊢ M : τ ′

Γ ⊢ fnx : τ . M : τ → τ ′

if x /∈ dom(Γ)

(:app)
Γ ⊢ M1 : τ → τ ′ Γ ⊢ M2 : τ

Γ ⊢ M1 M2 : τ ′

(:fix)
Γ ⊢ M : τ → τ

Γ ⊢ fix(M) : τ
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Partial recursive functions in PCF

• Primitive recursion.
{

h(x, 0) = f(x)

h(x, y + 1) = g(x, y, h(x, y))

• Minimisation.

m(x) = the least y ≥ 0 such that k(x, y) = 0
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PCF evaluation relation

takes the form

M ⇓τ V

where

• τ is a PCF type

• M, V ∈ PCFτ are closed PCF terms of type τ

• V is a value,

V ::= 0 | succ(V ) | true | false | fnx : τ . M .
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PCF evaluation (sample rules)

(⇓val) V ⇓τ V (V a value of type τ )

(⇓cbn)
M1 ⇓τ→τ ′ fnx : τ . M ′

1 M ′

1[M2/x] ⇓τ ′ V

M1 M2 ⇓τ ′ V

(⇓fix)
M fix(M) ⇓τ V

fix(M) ⇓τ V

67



Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.
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Contextual equivalence of PCF terms

Given PCF terms M1, M2, PCF type τ , and a type

environment Γ, the relation Γ ⊢ M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.
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PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy.

For τ = bool or nat , [[M ]] = [[V ]] ∈ [[τ ]] =⇒ M ⇓τ V .
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Theorem. For all types τ and closed terms M1, M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then

M1
∼=ctx M2 : τ .

Proof.

C[M1] ⇓nat V ⇒ [[C[M1]]] = [[V ]] (soundness)

⇒ [[C[M2]]] = [[V ]] (compositionality

on [[M1]] = [[M2]])

⇒ C[M2] ⇓nat V (adequacy)

and symmetrically.
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Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]

? The proof principle is sound, but is it complete? That is,
is equality in the denotational model also a necessary
condition for contextual equivalence?
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