Lecture 3

Constructions on Domains

Discrete cpo's and flat domains

For any set X, the relation of equality

$$x \sqsubseteq x' \stackrel{\text{def}}{\Leftrightarrow} x = x' \qquad (x, x' \in X)$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.

Let $X_{\perp} \stackrel{\text{def}}{=} X \cup \{\perp\}$, where \perp is some element not in X. Then

$$d \sqsubseteq d' \stackrel{\text{def}}{\Leftrightarrow} (d = d') \lor (d = \bot) \qquad (d, d' \in X_\bot)$$

makes (X_{\perp}, \sqsubseteq) into a domain (with least element \perp), called the flat domain determined by X.

Binary product of cpo's and domains

The product of two cpo's (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \& d_2 \in D_2\}$$

and partial order <u>u</u> defined by

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \& d_2 \sqsubseteq_2 d'_2$$
.

$$\begin{array}{c}
(x_1, x_2) \sqsubseteq (y_1, y_2) \\
\hline
x_1 \sqsubseteq_1 y_1 & x_2 \sqsubseteq_2 y_2
\end{array}$$

Lubs of chains are calculated componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}) .$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) are domains so is $(D_1 \times D_2, \sqsubseteq)$ and $\bot_{D_1 \times D_2} = (\bot_{D_1}, \bot_{D_2})$.

Continuous functions of two arguments

Proposition. Let D, E, F be cpo's. A function $f:(D\times E)\to F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$f(\bigsqcup_{m\geq 0} d_m, e) = \bigsqcup_{m\geq 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n>0} e_n) = \bigsqcup_{n>0} f(d, e_n).$$

• A couple of derived rules:

$$\frac{x \sqsubseteq x' \qquad y \sqsubseteq y'}{f(x,y) \sqsubseteq f(x',y')} \quad (f \text{ monotone})$$

$$f(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}) = \bigsqcup_{k} f(x_{k}, y_{k})$$

Function cpo's and domains

Given cpo's (D,\sqsubseteq_D) and (E,\sqsubseteq_E) , the function cpo $(D\to E,\sqsubseteq)$ has underlying set

$$(D \to E) \stackrel{\mathrm{def}}{=} \{ f \mid f : D \to E \text{ is a } \textit{continuous} \text{ function} \}$$

and partial order: $f \sqsubseteq f' \overset{\mathrm{def}}{\Leftrightarrow} \forall d \in D \ . \ f(d) \sqsubseteq_E f'(d)$.

A derived rule:

$$\begin{array}{ccc}
f \sqsubseteq_{(D \to E)} g & x \sqsubseteq_D y \\
f(x) \sqsubseteq g(y)
\end{array}$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$\bigsqcup_{n\geq 0} f_n = \lambda d \in D. \bigsqcup_{n\geq 0} f_n(d) .$$

• A derived rule:

$$\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right) = \left(\bigsqcup_{k} f_{k}(x_{k})\right)$$

If E is a domain, then so is $D \to E$ and $\bot_{D \to E}(d) = \bot_E$, all $d \in D$.

Continuity of composition

For cpo's D, E, F, the composition function

$$\circ: \big((E \to F) \times (D \to E)\big) \longrightarrow (D \to F)$$

defined by setting, for all $f \in (D \to E)$ and $g \in (E \to F)$,

$$g \circ f = \lambda d \in D.g(f(d))$$

is continuous.

Continuity of the fixpoint operator

Let D be a domain.

By Tarski's Fixed Point Theorem we know that each continuous function $f \in (D \to D)$ possesses a least fixed point, $fix(f) \in D$.

Proposition. The function

$$fix:(D\to D)\to D$$

is continuous.