Databases 2011 Lectures 08 — 12

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK

Databases, Easter 2011

DB 2011 1 / 58

• (10) • (10)

Lectures 08 and 09 : Top-Down vs Bottom-up Modeling

Outline

- Weak entities
- Using FDs and MVDs to refine ER models
- Another look at ternary relationships

Recall : a small change of scope ...

... changed this entity

into two entities and a relationship :

But is there something odd about the MovieRelease entity?

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 - 12

DB 2011 3 / 58

MovieRelease represents a Weak entity set

Definition

- Weak entity sets do no have a primary key.
- The existence of a weak entity depends on an identifying entity set through an identifying relationship.
- The primary key of the identifying entity together with the weak entities discriminators (dashed underline in diagram) identify each weak entity element.

Can FDs help us think about implementation?

$$R(I, T, D, C)$$

$$I \rightarrow T$$

$$I = MovieID$$

$$T = Title$$

$$D = Date$$

$$C = Country$$

Turn the decomposition crank to obtain

$$\begin{array}{ll} R_1(I,T) & R_2(I,D,C) \\ \pi_I(R_2) \subseteq \pi_I(R_1) \end{array}$$

DB 2011 5 / 58

A (1) > A (2) > A

Movie Ratings example

Scope = UK

Title	Year	Rating
Austin Powers: International Man of Mystery	1997	15
Austin Powers: The Spy Who Shagged Me	1999	12
Dude, Where's My Car?	2000	15

Scope = Earth

Title	Year	Country	Rating
Austin Powers: International Man of Mystery	1997	UK	15
Austin Powers: International Man of Mystery	1997	Malaysia	18SX
Austin Powers: International Man of Mystery	1997	Portugal	M/12
Austin Powers: International Man of Mystery	1997	USA	PG-13
Austin Powers: The Spy Who Shagged Me	1999	UK	12
Austin Powers: The Spy Who Shagged Me	1999	Portugal	M/12
Austin Powers: The Spy Who Shagged Me	1999	USA	PG-13
Dude, Where's My Car?	2000	UK	15
Dude, Where's My Car?	2000	USA	PG-13
Dude, Where's My Car?	2000	Malaysia	18PL

T. Griffin (cl.cam.ac.uk)

Example of attribute migrating to strong entity set

From single-country scope,

to multi-country scope:

Databases 2011 Lectures 08 - 12

DB 2011 7 / 58

Beware of FFDs = Faux Functional Dependencies

(US ratings)			
Title	Year	Rating	RatingReason
Stoned	2005	R	drug use
Wasted	2006	R	drug use
High Life	2009	R	drug use
Poppies: Odyssey of an opium eater	2009	R	drug use

But

$\textbf{Title} \rightarrow \{\textbf{Rating}, \ \textbf{RatingReason}\}$

is not a functional dependency.

This is a mildly amusing illustration of a real and pervasive problem — deriving a functional dependency after the examination a limited set of data (or after talking to only a few domain experts).

A D N A B N A B N A

Oh, but the real world is such a bother!

from IMDb raw data file certificates.list

2	Fast 2	Furiou	ıs (2003)	Switzerland:14	(canton	of	Vaud)
2	Fast 2	Furiou	ıs (2003)	Switzerland:16	(canton	of	Zurich)
28	Days	(2000)	Canada:13	+ (Quebec)			
28	Days	(2000)	Canada:14	(Nova Scotia)			
28	Days	(2000)	Canada:14	A (Alberta)			
28	Days	(2000)	Canada:AA	(Ontario)			
28	Days	(2000)	Canada:PA	(Manitoba)			
28	Days	(2000)	Canada:PG	(British Colum	ıbia)		

Ternary or multiple binary relationships?

◆ ■ → ■ → Q < ○</p>
DB 2011 11/58

Ternary or multiple binary relationships?

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 — 12

▲ ■ ● ■ • ○ Q C DB 2011 12/58

Look again at ER Demo Diagram¹

How might this be refined using FDs or MVDs?

¹By Pável Calado,

http://www.texample.net/tikz/examples/entity-relationship-diagram

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 - 12

DB 2011 13 / 58

Lecture 10 : Missing data and derived data in SQL

Outline

- NULL in SQL
- three-valued logic
- Multisets and aggregation in SQL
- Views
- General integrity constraints

- E - N

What is NULL in SQL?

What if you don't know Kim's age?

mysql>	seled	ct * from	stude	nts;
+	+-	+		+
si	id	name	age	
+	+-	+		+
e1	777	Eva	18	
fr	n21	Fatima	20	
j	j25	James	19	
ks	s87	Kim	NULL	
+	+-	+		+

What is NULL?

- NULL is a place-holder, not a value!
- NULL is not a member of any domain (type),
- For records with NULL for age, an expression like age > 20 must unknown!
- This means we need (at least) three-valued logic.
- Let \perp represent We don't know!

NULL can lead to unexpected results

mysql>	select *	from st	udents;
+	-+	+	+
sid	name	age	
+	-+	+	+
ev77	Eva	18	
fm21	Fatima	20	
jj25	James	19	
ks87	Kim	NULL	
+	-+	+	-+

 mysql> select * from students where age <> 19;

 +----+

 | sid | name | age |

 +----+

 | ev77 | Eva | 18 |

 | fm21 | Fatima | 20 |

 +----+

 I.Griffin (cl.cam.ac.uk)

 Databases 2011 Lectures 08 - 12

 DB 2011

 19;

The ambiguity of NULL

Possible interpretations of NULL

- There is a value, but we don't know what it is.
- No value is applicable.
- The value is known, but you are not allowed to see it.

o ...

A great deal of semantic muddle is created by conflating all of these interpretations into one non-value.

On the other hand, introducing distinct NULLs for each possible interpretation leads to very complex logics ...

DB 2011 20 / 58

Not everyone approves of NULL

C. J. Date [D2004], Chapter 19

"Before we go any further, we should make it very clear that in our opinion (and in that of many other writers too, we hasten to add), NULLs and 3VL are and always were a serious mistake and have no place in the relational model."

age is not a good attribute ...

The **age** column is guaranteed to go out of date! Let's record dates of birth instead!

```
create table Students
  ( sid varchar(10) not NULL,
    name varchar(50) not NULL,
    birth_date date,
    cid varchar(3) not NULL,
    primary key (sid),
    constraint student_college foreign key (cid)
    references Colleges(cid) )
```

周 ト イ ヨ ト イ ヨ ト

age is not a good attribute ...

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 - 12

DB 2011 25 / 58

Use a view to recover original table

(Note : the age calculation here is not correct!)

```
create view StudentsWithAge as
  select sid, name,
  (year(current_date()) - year(birth_date)) as age,
  cid
  from Students;
```

mysql> select * from StudentsWithAge;

-+---+

+----+

| sid | name | age | cid |

+----+---+---+----+----+----+ | ev77 | Eva | 19 | k |

| fm21 | Fatima | 21 | cl |

| jj25 | James | 20 | cl |

Views are simply identifiers that represent a query. The view's name

T. Griffin (cl.cam.ac.uk)

But that calculation is not correct ...

Clearly the calculation of age does not take into account the day and month of year.

```
From 2010 Database Contest (winner : Sebastian Probst Eide)
  SELECT year(CURRENT_DATE()) - year(birth_date) -
    CASE WHEN month (CURRENT_DATE()) < month (birth_date)
    THEN 1
    ELSE
        CASE WHEN month (CURRENT_DATE()) = month (birth_date)
        THEN
            CASE WHEN day (CURRENT_DATE()) < day (birth_date)
            THEN 1
            ELSE 0
            END
        ELSE 0
        END
    END
  AS age FROM Students
                                        ヘロン 人間 とくほ とくほ とうほ
```

An Example ...

mysql> select * from marks;					
++		-++			
sid	course	mark			
++		-++			
ev77	databases	92			
ev77	spelling	99			
tgg22	spelling	3			
tgg22	databases	100			
fm21	databases	92			
fm21	spelling	100			
jj25	databases	88			
jj25	spelling	92			
++		-++			

イロト イポト イヨト イヨト 三連

... of duplicates

mysql> select mark from marks; +---+ mark +---+ 92 99 3 100 92 100 88 92 ____+

Why Multisets?

Duplicates are important for aggregate functions.

The group by clause

```
mysql> select course,
        min(mark),
        max(mark),
        avg(mark)
    from marks
    group by course;
course | min(mark) | max(mark) | avg(mark) |
    ____+
databases | 88 | 100 | 93.0000 |
 spelling | 3 |
                  100 | 73.5000 |
_____
```

DB 2011 37 / 58

Visualizing group by

sid	course	mark
ev77	databases	92
ev77	spelling	99
tgg22	spelling	3
tgg22	databases	100
fm21	databases	92
fm21	spelling	100
jj25	databases	88
jj25	spelling	92

course	mark
spelling	99
spelling	3
spelling	100
spelling	92
course	mark
databases	s 92
databases	s 100
databases	s 92

group by

< E

Visualizing group by

◆ ■ ▶ ■ • ○ Q ○ DB 2011 39 / 58

The having clause

How can we select on the aggregated columns?

```
mysql> select course,
        min(mark),
        max(mark),
        avg(mark)
    from marks
    group by course
    having min(mark) > 60;
 _____+
 course | min(mark) | max(mark) | avg(mark) |
_____+
 databases | 88 | 100 | 93.0000 |
```

DB 2011 41 / 58

Use renaming to make things nicer ...

```
mysql> select course,
         min(mark) as minimum,
         max(mark) as maximum,
         avg(mark) as average
    from marks
    group by course
    having minimum > 60;
  ----+
 course | minimum | maximum | average |
-----+
| databases | 88 | 100 | 93.0000 |
```

DB 2011 43 / 58

Materialized Views

- Suppose Q is a very expensive, and very frequent query.
- Why not de-normalize some data to speed up the evaluation of Q?
 - This might be a reasonable thing to do, or ...
 - ... it might be the first step to destroying the integrity of your data design.
- Why not store the value of Q in a table?
 - This is called a materialized view.
 - But now there is a problem: How often should this view be refreshed?

General integrity constraints

- Suppose that C is some constraint we would like to enforce on our database.
- Let $Q_{\neg C}$ be a query that captures all violations of *C*.
- Enforce (somehow) that the assertion that is always $Q_{\neg C}$ empty.

Example

- $C = \mathbf{Z} \rightarrow \mathbf{W}$, and FD that was not preserved for relation $R(\mathbf{X})$,
- Let Q_R be a join that reconstructs R,
- Let Q'_R be this query with $\mathbf{X} \mapsto \mathbf{X}'$ and

•
$$Q_{\neg C} = \sigma_{\mathbf{W}\neq\mathbf{W}'}(\sigma_{\mathbf{Z}=\mathbf{Z}'}(Q_R \times Q_R'))$$

Assertions in SQL

create view C_violations as

DB 2011 47 / 58

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Lecture 11 and 12 : Relational Limitations and Alternatives

Outline

- Limits of SQL aggregation
- OLAP : Online Analytic Processing
- Data cubes
- Star schema

Limits of SQL aggregation

sale	prodid	storeld	amt					
	p1	c1	12			c1	c2	c 3
	p2	c1	11	\leftrightarrow	p1	12		50
	n1	63	50		p2	11	8	
	p1	00	0					

- Flat tables are great for processing, but hard for people to read and understand.
- Pivot tables and cross tabulations (spreadsheet terminology) are very useful for presenting data in ways that people can understand.
- SQL does not handle pivot tables and cross tabulations well.

OLAP vs. OLTP

- OLTP : Online Transaction Processing (traditional databases)
 Data is normalized for the sake of updates.
- OLAP : Online Analytic Processing
 - These are (almost) read-only databases.
 - Data is de-normalized for the sake of queries!
 - Multi-dimensional data cube emerging as common data model.
 - This can be seen as a generalization of SQL's group by

OLAP Databases : Data Models and Design

The big question

Is the relational model and its associated query language (SQL) well suited for OLAP databases?

- Aggregation (sums, averages, totals, ...) are very common in OLAP queries
 - Problem : SQL aggregation quickly runs out of steam.
 - Solution : Data Cube and associated operations (spreadsheets on steroids)
- Relational design is obsessed with normalization
 - Problem : Need to organize data well since all analysis queries cannot be anticipated in advance.
 - Solution : Multi-dimensional fact tables, with hierarchy in dimensions, star-schema design.

DB 2011 51 / 58

A (10) A (10)

A very influential paper [G+1997]

Data Mining and Knowledge Discovery 1, 29–53 (1997) © 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals*

JIM GRAY	Gray@Microsoft.com
SURAJIT CHAUDHURI	SurajitC@Microsoft.com
ADAM BOSWORTH	AdamB@Microsoft.com
ANDREW LAYMAN	AndrewL@Microsoft.com
DON REICHART	DonRei@Microsoft.com
MURALI VENKATRAO	MuraliV@Microsoft.com
Microsoft Research, Advanced Technology Division, Microsoft Corporation,	One Microsoft Way, Redmond,
WA 98052	

FRANK PELLOW HAMID PIRAHESH IBM Research, 500 Harry Road, San Jose, CA 95120 Pellow@vnet.IBM.com Pirahesh@Almaden.IBM.com

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 - 12

DB 2011 52 / 58

From aggregates to data cubes

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 - 12

イロト イポト イヨト イヨト

The Data Cube

Dimensions: Product, Location, Time

- Data modeled as an *n*-dimensional (hyper-) cube
- Each dimension is associated with a hierarchy
- Each "point" records facts
- Aggregation and cross-tabulation possible along all dimensions

Hierarchy for Location Dimension

Databases 2011 Lectures 08 - 12

DB 2011 55 / 58

Cube Operations

< ■ > ■ つへの DB 2011 56 / 58

The Star Schema as a design tool

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 08 - 12

DB 2011 57 / 58

The End

(http://xkcd.com/327)