
Databases 2011
Lectures 01 – 03

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Databases, Lent 2011

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 1 / 70

Lecture 01 : What is a DBMS?

DB vs. IR
Relational Databases
ACID properties
Two fundamental trade-offs
OLTP vs OLAP
Course outline

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 2 / 70

Example Database Management Systems (DBMSs)

A few database examples
Banking : supporting customer accounts, deposits and
withdrawals
University : students, past and present, marks, academic status
Business : products, sales, suppliers
Real Estate : properties, leases, owners, renters
Aviation : flights, seat reservations, passenger info, prices,
payments
Aviation : Aircraft, maintenance history, parts suppliers, parts
orders

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 3 / 70

Some observations about these DBMSs ...

They contains highly structured data that has been engineered to
model some restricted aspect of the real world
They support the activity of an organization in an essential way
They support concurrent access, both read and write
They often outlive their designers
Users need to know very little about the DBMS technology used
Well designed database systems are nearly transparent, just part
of our infrastructure

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 4 / 70

Databases vs Information Retrieval

Always ask What problem am I solving?

DBMS IR system
exact query results fuzzy query results
optimized for concurrent updates optimized for concurrent reads
data models a narrow domain domain often open-ended
generates documents (reports) search existing documents
increase control over information reduce information overload

And of course there are many systems that combine elements of DB
and IR.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 5 / 70

Still the dominant approach : Relational DBMSs

The problem : in 1970 you could not
write a database application without
knowing a great deal about the the
low-level physical implementation of
the data.
Codd’s radical idea [C1970]: give
users a model of data and a
language for manipulating that data
which is completely independent of
the details of its physical
representation/implementation.
This decouples development of
Database Management Systems
(DBMSs) from the development of
database applications (at least in a
idealized world).

This is the kind of abstraction at the heart of Computer Science!
T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 6 / 70

What “services” do applications expect from a DBMS?

Transactions — ACID properties
Atomicity Either all actions are carried out, or none are

logs needed to undo operations, if needed
Consistency If each transaction is consistent, and the database is

initially consistent, then it is left consistent
Applications designers must exploit the DBMS’s
capabilities.

Isolation Transactions are isolated, or protected, from the effects of
other scheduled transactions

Serializability, 2-phase commit protocol
Durability If a transactions completes successfully, then its effects

persist
Logging and crash recovery

These concepts should be familiar from Concurrent Systems and
Applications.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 7 / 70

What constitutes a good DBMS application design?

Domain of Interest Domain of Interest

Database Database

real-world change

database update(s)

represent represent

At the very least, this diagram should commute!
Does your database design support all required changes?
Can an update corrupt the database?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 8 / 70

Relational Database Design

Our tools
Entity-Relationship (ER) modeling high-level, diagram-based design
Relational modeling formal model normal forms based

on Functional Dependencies (FDs)
SQL implementation Where the rubber meets the road

The ER and FD approaches are complementary
ER facilitates design by allowing communication with domain
experts who may know little about database technology.
FD allows us formally explore general design trade-offs. Such as
— A Fundamental Trade-off of Database Design: the more we
reduce data redundancy, the harder it is to enforce some types of
data integrity. (An example of this is made precise when we look
at 3NF vs. BCNF.)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 9 / 70

ER Demo Diagram (Notation follows SKS book)1

Employee

Name
Number

ISA

Mechanic SalesmanDoes

RepairJobNumber

Description

CostParts

Work

Repairs Car

License

Model
Year

Manufacturer

Buys

Price

Date

Value

Sells

Date

Value

Comission

Client ID

Name Phone
Address

buyerseller

1By Pável Calado,
http://www.texample.net/tikz/examples/entity-relationship-diagram

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 10 / 70

A Fundamental Trade-off of Database
Implementation — Query response vs. update
throughput

Redundancy is a Bad Thing.
One of the main goals of ER and FD modeling is to reduce data
redundancy. The seek normalized designs.
A normalized database can support high update throughput and
greatly facilitates the task of ensuring semantic consistency and
data integrity.
Update throughput is increased because in a normalized
database a typical transaction need only lock a few data items —
perhaps just one field of one row in a very large table.

Redundancy is a Good Thing.
A de-normalized database most can greatly improve the response
time of read-only queries.
Selective and controlled de-normalization is often required in
operational systems.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 11 / 70

OLAP vs. OLTP

OLTP Online Transaction Processing
OLAP Online Analytical Processing

Commonly associated with terms like Decision
Support, Data Warehousing, etc.

OLAP OLTP
Supports analysis day-to-day operations

Data is historical current
Transactions mostly reads updates

optimized for query processing updates
Normal Forms not important important

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 12 / 70

Example : Data Warehouse (Decision support)

business analysis queries

Extract

fast updates

Operational Database Data Warehouse

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 13 / 70

Example : Embedded databases

FIDO = Fetch Intensive Data Organization

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 14 / 70

Example : Hinxton Bio-informatics

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 15 / 70

NoSQL Movement

Technologies
Key-value store
Directed Graph Databases
Main memory stores
Distributed hash tables

Applications
Facebook
Google
iMDB
...

Always remember to ask : What problem am I solving?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 16 / 70

Term Outline

Lecture 01 What is a DBMS? Course overview. DB vs IR. ACID
properties of DBMSs. Schema design. Fundamental
trade-offs.

Lecture 02 Mathematical relations and SQL tables. Relations,
attributes, tuples, and relational schema. Implementing
these in SQL.

Lecture 03 Relational Query Languages. Relational algebra,
relational calculi (tuple and domain). Examples of SQL
constructs that mix and match these models.

Lecture 04 Entity-Relationship (ER) Modeling Entities, Attributes,
and Relationships. Their “implementation” using
mathematical relations and integrity constrains. Their
implementation using SQL, Foreign Keys, Referential
Integrity.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 17 / 70

Term Outline

Lecture 05 More on ER Modeling N-ary relations.
Lecture 06 Making the diagram commute. Update anomalies. Evils

of data redundancy. More on integrity constraints.
Lecture 07 Functional Dependencies (FDs). Implied functional

dependencies, logical closure. Reasoning about
functional dependencies.

Lecture 08 Normal Forms. 3rd normal form. Boyce-Codd normal
form. Decomposition examples. Multi-valued
dependencies and Fourth normal form.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 18 / 70

Term Outline

Lecture 09 Schema Decomposition. Schema decomposition.
Lossless join decomposition. Dependency preservation.

Lecture 10 Schema Evolution. Scope and goals of database
applications change over time. Integration of distinct
databases. XML as a data exchange language. Schema
integration.

Lecture 11 Missing data and derived data in SQL Null values (and
three-valued logic). Inner and Outer Joins. Locking vs.
update throughput. Indices are derived data! Aggregaton
queries. Multi-set (bag) semantics. Database Views.
Materialized views. Using views to implement complex
integrity constraints. Selective de-normalization.

Lecture 12 OLAP The extreme case: “read only” databases, data
warehousing, data-cubes, and OLAP vs OLTP.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 19 / 70

Recommended Reading

Textbooks
SKS Silberschatz, A., Korth, H.F. and Sudarshan, S. (2002).

Database system concepts. McGraw-Hill (4th edition).
(Adjust accordingly for other editions)
Chapters 1 (DBMSs)
2 (Entity-Relationship Model)
3 (Relational Model)
4.1 – 4.7 (basic SQL)
6.1 – 6.4 (integrity constraints)
7 (functional dependencies and normal
forms)
22 (OLAP)

UW Ullman, J. and Widom, J. (1997). A first course in
database systems. Prentice Hall.

CJD Date, C.J. (2004). An introduction to database systems.
Addison-Wesley (8th ed.).

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 20 / 70

Reading for the fun of it ...

Research Papers (Google for them)
C1970 E.F. Codd, (1970). "A Relational Model of Data for Large

Shared Data Banks". Communications of the ACM.
F1977 Ronald Fagin (1977) Multivalued dependencies and a

new normal form for relational databases. TODS 2 (3).
L2003 L. Libkin. Expressive power of SQL. TCS, 296 (2003).

C+1996 L. Colby et al. Algorithms for deferred view maintenance.
SIGMOD 199.

G+1997 J. Gray et al. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals
(1997) Data Mining and Knowledge Discovery.

H2001 A. Halevy. Answering queries using views: A survey.
VLDB Journal. December 2001.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 21 / 70

Lecture 02 : Relations, SQL Tables, Simple Queries

Mathematical relations and relational schema
Using SQL to implement a relational schema
Keys
Database query languages
The Relational Algebra
The Relational Calculi (tuple and domain)
a bit of SQL

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 22 / 70

Let’s start with mathematical relations

Suppose that S1 and S2 are sets. The Cartesian product, S1 × S2, is
the set

S1 × S2 = {(s1, s2) | s1 ∈ S1, s2 ∈ S2}

A (binary) relation over S1 × S2 is any set r with

r ⊆ S1 × S2.

In a similar way, if we have n sets,

S1, S2, . . . , Sn,

then an n-ary relation r is a set

r ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 23 / 70

Relational Schema

Let X be a set of k attribute names.

We will often ignore domains (types) and say that R(X) denotes a
relational schema.
When we write R(Z, Y) we mean R(Z ∪ Y) and Z ∩ Y = φ.
u.[X] = v .[X] abbreviates u.A1 = v .A1 ∧ · · · ∧ u.Ak = v .Ak .
~X represents some (unspecified) ordering of the attribute names,
A1, A2, . . . , Ak

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 24 / 70

Mathematical vs. database relations

Suppose we have an n-tuple t ∈ S1 × S2 × · · · × Sn. Extracting the i-th
component of t , say as πi(t), feels a bit low-level.

Solution: (1) Associate a name, Ai (called an attribute name) with
each domain Si . (2) Instead of tuples, use records — sets of pairs
each associating an attribute name Ai with a value in domain Si .

A database relation R over the schema
A1 : S1 × A2 : S2 × · · · × An : Sn is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 25 / 70

Example

A relational schema
Students(name: string, sid: string, age : integer)

A relational instance of this schema
Students = {

{(name, Fatima), (sid, fm21), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(name, James), (sid, jj25), (age, 19)}
}

A tabular presentation

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 26 / 70

Key Concepts

Relational Key
Suppose R(X) is a relational schema with Z ⊆ X. If for any records u
and v in any instance of R we have

u.[Z] = v .[Z] =⇒ u.[X] = v .[X],

then Z is a superkey for R. If no proper subset of Z is a superkey, then
Z is a key for R. We write R(Z, Y) to indicate that Z is a key for
R(Z ∪ Y).

Note that this is a semantic assertion, and that a relation can have
multiple keys.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 27 / 70

Creating Tables in SQL

create table Students
(sid varchar(10),
name varchar(50),
age int);

-- insert record with attribute names
insert into Students set

name = ’Fatima’, age = 20, sid = ’fm21’;

-- or insert records with values in same order
-- as in create table
insert into Students values

(’jj25’ , ’James’ , 19),
(’ev77’ , ’Eva’ , 18);

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 29 / 70

Listing a Table in SQL

-- list by attribute order of create table
mysql> select * from Students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
ev77	Eva	18
fm21	Fatima	20
jj25	James	19
+------+--------+------+
3 rows in set (0.00 sec)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 31 / 70

Listing a Table in SQL

-- list by specified attribute order
mysql> select name, age, sid from Students;
+--------+------+------+
| name | age | sid |
+--------+------+------+
Eva	18	ev77
Fatima	20	fm21
James	19	jj25
+--------+------+------+
3 rows in set (0.00 sec)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 33 / 70

Keys in SQL
A key is a set of attributes that will uniquely identify any record (row) in
a table.

-- with this create table
create table Students

(sid varchar(10),
name varchar(50),
age int,
primary key (sid));

-- if we try to insert this (fourth) student ...
mysql> insert into Students set

name = ’Flavia’, age = 23, sid = ’fm21’;

ERROR 1062 (23000): Duplicate
entry ’fm21’ for key ’PRIMARY’

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 35 / 70

What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk)

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 36 / 70

The Relational Algebra (RA)

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a simple boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 37 / 70

Relational Calculi

The Tuple Relational Calculus (TRC)

Q = {t | P(t)}

The Domain Relational Calculus (DRC)

Q = {(A1 = v1, A2 = v2, . . . , Ak = vk) | P(v1, v2, · · · , vk)}

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 38 / 70

The SQL standard

Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, SQL:2008
SQL is made up of many sub-languages :

I Query Language
I Data Definition Language
I System Administration Language
I ...

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 39 / 70

Selection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

RA Q = σA>12(R)

TRC Q = {t | t ∈ R ∧ t .A > 12}
DRC Q = {{(A, a), (B, b), (C, c), (D, d)} |

{(A, a), (B, b), (C, c), (D, d)} ∈ R ∧ a > 12}
SQL select * from R where R.A > 12

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 41 / 70

Projection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

RA Q = πB,C(R)

TRC Q = {t | ∃u ∈ R ∧ t .[B, C] = u.[B, C]}
DRC Q = {{(B, b), (C, c)} |

∃{(A, a), (B, b), (C, c), (D, d)} ∈ R}
SQL select distinct B, C from R

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 43 / 70

Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets. We will look into this
more in Lecture 11.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 45 / 70

Lecture 03 : More on Relational Query languages

Outline
Constructing new tuples!
Joins
Limitations of Relational Algebra

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 46 / 70

Renaming

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

RA Q = ρ{B 7→E , D 7→F}(R)

TRC Q = {t | ∃u ∈ R ∧ t .A = u.A ∧ t .E = u.E ∧ t .C =
u.C ∧ t .F = u.D}

DRC Q = {{(A, a), (E , b), (C, c), (F , d)} |
∃{(A, a), (B, b), (C, c), (D, d)} ∈ R}

SQL select A, B as E, C, D as F from R

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 48 / 70

Union

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

RA Q = R ∪ S
TRC Q = {t | t ∈ R ∨ t ∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∨ {(A, a), (B, b)} ∈ S}
SQL (select * from R) union (select * from S)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 50 / 70

Intersection

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

RA Q = R ∩ S
TRC Q = {t | t ∈ R ∧ t ∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∧ {(A, a), (B, b)} ∈ S}
SQL

(select * from R) intersect (select * from S)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 52 / 70

Difference

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

RA Q = R − S
TRC Q = {t | t ∈ R ∧ t 6∈ S}
DRC Q = {{(A, a), (B, b)} | {(A, a), (B, b)} ∈

R ∧ {(A, a), (B, b)} 6∈ S}
SQL (select * from R) except (select * from S)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 54 / 70

Wait, are we missing something?

Suppose we want to add information about college membership to our
Student database. We could add an additional attribute for the college.

StudentsWithCollege :
+--------+------+------+--------+
| name | age | sid | college|
+--------+------+------+--------+
Eva	18	ev77	King’s
Fatima	20	fm21	Clare
James	19	jj25	Clare
+--------+------+------+--------+

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 56 / 70

Put logically independent data in distinct tables?

Students : +--------+------+------+-----+
| name | age | sid | cid |
+--------+------+------+-----+
Eva	18	ev77	k
Fatima	20	fm21	cl
James	19	jj25	cl
+--------+------+------+-----+

Colleges : +-----+---------------+
| cid | college_name |
+-----+---------------+
k	King’s
cl	Clare
sid	Sidney Sussex
q	Queens’
...

But how do we put them back together again?T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 58 / 70

Product

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Note the automatic flattening
RA Q = R × S

TRC Q = {t | ∃u ∈ R, v ∈ S, t .[A, B] = u.[A, B] ∧ t .[C, D] =
v .[C, D]}

DRC Q = {{(A, a), (B, b), (C, c), (D, d)} |
{(A, a), (B, b)} ∈ R ∧ {(C, c), (D, d)} ∈ S}

SQL select A, B, C, D from R, S
T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 60 / 70

Product is special!

R

A B
20 10
4 99

=⇒

R × ρA7→C, B 7→D(R)

A B C D
20 10 20 10
20 10 4 99
4 99 20 10
4 99 4 99

× is the only operation in the Relational Algebra that created new
records (ignoring renaming),
But × usually creates too many records!
Joins are the typical way of using products in a constrained
manner.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 61 / 70

Natural Join

Natural Join
Given R(X, Y) and S(Y, Z), we define the natural join, denoted
R on S, as a relation over attributes X, Y, Z defined as

R on S ≡ {t | ∃u ∈ R, v ∈ S, u.[Y] = v .[Y] ∧ t = u.[X] ∪ u.[Y] ∪ v .[Z]}

In the Relational Algebra:

R on S = πX,Y,Z(σY=Y′(R × ρ~Y7→~Y′(S)))

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 62 / 70

Join example

Students

name sid age cid
Fatima fm21 20 cl
Eva ev77 18 k
James jj25 19 cl

Colleges

cid cname
k King’s
cl Clare
q Queens’
...

...

=⇒

πname,cname(Students on Colleges)

name cname
Fatima Clare

Eva King’s
James Clare

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 64 / 70

The same in SQL

select name, cname
from Students, Colleges
where Students.cid = Colleges.cid

+--------+--------+
| name | cname |
+--------+--------+
Eva	King’s
Fatima	Clare
James	Clare
+--------+--------+

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 66 / 70

Division in the Relational Algebra?

Clearly, R ÷ S ⊆ πX(R). So R ÷ S = πX(R)− C, where C represents
counter examples to the division condition. That is, in the TRC,

C = {x | ∃s ∈ S, x ∪ s 6∈ R}.

U = πX(R)× S represents all possible x ∪ s for x ∈ X(R) and
s ∈ S,
so T = U − R represents all those x ∪ s that are not in R,
so C = πX(T) represents those records x that are counter
examples.

Division in RA

R ÷ S ≡ πX(R)− πX((πX(R)× S)− R)

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 67 / 70

Division

Given R(X, Y) and S(Y), the division of R by S, denoted R ÷ S, is the
relation over attributes X defined as (in the TRC)

R ÷ S ≡ {x | ∀s ∈ S, x ∪ s ∈ R}.

name award
Fatima writing
Fatima music
Eva music
Eva writing
Eva dance
James dance

÷

award
music
writing
dance

=
name
Eva

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 68 / 70

Query Safety

A query like Q = {t | t ∈ R ∧ t 6∈ S} raises some interesting questions.
Should we allow the following query?

Q = {t | t 6∈ S}

We want our relations to be finite!

Safety
A (TRC) query

Q = {t | P(t)}

is safe if it is always finite for any database instance.

Problem : query safety is not decidable!
Solution : define a restricted syntax that guarantees safety.

Safe queries can be represented in the Relational Algebra.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 69 / 70

Limitations of simple relational query languages

The expressive power of RA, TRC, and DRC are essentially the
same.

I None can express the transitive closure of a relation.

We could extend RA to a more powerful languages (like Datalog).
SQL has been extended with many features beyond the Relational
Algebra.

I stored procedures
I recursive queries
I ability to embed SQL in standard procedural languages

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 01 – 03 DB 2011 70 / 70

	Lecture 01 : What is a DBMS?
	Lecture 02 : Relations, SQL Tables, Simple Queries
	Lecture 03 : More on Relational Query languages

