
˜ Topic II ˜
FORTRAN : A simple procedural language

References:

� Chapter 10(§1) of Programming Languages: Design and
implementation (3RD EDITION) by T. W. Pratt and
M. V. Zelkowitz. Prentice Hall, 1999.

� The History of FORTRAN I, II, and III by J. Backus. In
History of Programming Languages by R. L. Wexelblat.
Academic Press, 1981.

1

FORTRAN = FORmula TRANslator
(1957)

� Developed in the 1950s by an IBM team led by John
Backus.

� The first high-level programming language to become
widely used.

� At the time the utility of any high-level language was
open to question!

The main complain was the efficiency of compiled code.

This heavily influenced the designed, orienting it towards

providing execution efficiency.

� Standards:
1966, 1977 (FORTRAN 77), 1990 (FORTRAN 90).

2

John Backus

As far as we were aware, we simply made up the
language as we went along. We did not regard
language design as a difficult problem, merely a
simple prelude to the real problem: designing a
compiler which could produce efficient programs.a

aIn R. L.Wexelblat, History of Programming Languages, Academic Press,

1981, page 30.

3

Overview
Execution model

� FORTRAN program = main program + subprograms

� Each is compiled separate from all others.

� Translated programs are linked into final executable
form during loading.

� All storage is allocated statically before program execution
begins; no run-time storage management is provided.

� Flat register machine. No stacks, no recursion. Memory
arranged as linear array.

4

Overview
Compilation

FORTRAN program

��

Compiler

��

Incomplete machine language

**UUUUUUUUUUUUU

Library routines

wwoo
o
o
o
o
o

Linker

��

Machine language program

5

Overview
Data types

� Numeric data: Integer, real, complex, double-precision
real.

� Boolean data. called logical

� Arrays. of fixed declared length

� Character strings. of fixed declared length

� Files.

6

Overview
Control structures

� FORTRAN 66
Relied heavily on statement labels and GOTO

statements.

� FORTRAN 77
Added some modern control structures
(e.g., conditionals).

7

Example

PROGRAM MAIN

PARAMETER (MaXsIz=99)

REAL A(mAxSiZ)

10 READ (5,100,END=999) K

100 FORMAT(I5)

IF (K.LE.0 .OR. K.GT.MAXSIZ) STOP

READ *,(A(I),I=1,K)

PRINT *,(A(I),I=1,K)

PRINT *,’SUM=’,SUM(A,K)

GO TO 10

999 PRINT *, "All Done"

STOP

END

8

C SUMMATION SUBPROGRAM

FUNCTION SUM(V,N)

REAL V(N)

SUM = 0.0

DO 20 I = 1,N

SUM = SUM + V(I)

20 CONTINUE

RETURN

END

9

Example
Commentary

� Columns and lines are relevant.

� Blanks are ignored (by early FORTRANs).

� Variable names are from 1 to 6 characters long,
begin with a letter, and contain letters and digits.

� Programmer-defined constants.

� Arrays: when sizes are given, lower bounds are
assumed to be 1; otherwise subscript ranges must
be explicitly declared.

� Variable types may not be declared: implicit naming
convention.

10

� Data formats.

� FORTRAN 77 has no while statement.

� Functions are compiled separately from the main program.
Information from the main program is not used to pass
information to the compiler. Failure may arise when the
loader tries to merge subprograms with main program.

� Function parameters are uniformly transmitted by
reference (or value-result).

Recall that allocation is done statically.

� DO loops by increment.

� A value is returned in a FORTRAN function by assigning a
value to the name of a function.

11

On syntax

A misspelling bug . . .

do 10 i = 1,100 vs. do 10 i = 1.100

. . . that is reported to have caused a rocket to explode
upon launch into space!

12

Types

� FORTRAN has no mechanism for creating user types.

� Static type checking is used in FORTRAN, but the
checking is incomplete.

Many language features, including arguments in
subprogram calls and the use of COMMON blocks,
cannot be statically checked (in part because
subprograms are compiled independently).

Constructs that cannot be statically checked are
ordinarily left unchecked at run time in FORTRAN
implementations.

13

Storage
Representation and Management

� Storage representation in FORTRAN is sequential.

� Only two levels of referencing environment are provided,
global and local.

The global environment may be partitioned into separate
common environments that are shared amongst sets of
subprograms, but only data objects may be shared in this
way.

14

The sequential storage representation is critical in the
definition of the EQUIVALENCE and COMMON declarations.

� EQUIVALENCE

This declaration allows more than one simple or
subscripted variable to refer to the same storage
location.

? Is this a good idea?

Consider the following:

REAL X

INTEGER Y

EQUIVALENCE (X,Y)

15

� COMMON

The global environment is set up in terms of sets of
variables and arrays, which are termed COMMON blocks.

A COMMON block is a named block of storage and may
contain the values of any number of simple variables
and arrays.

COMMON blocks may be used to isolate global data to
only a few subprograms needing that data.

? Is the COMMON block a good idea?

Consider the following:

COMMON/BLK/X,Y,K(25) in MAIN

COMMON/BLK/U,V,I(5),M(4,5) in SUB

16

/. -,
() *+Aliasing

Aliasing occurs when two names or expressions

refer to the same object or location.

� Aliasing raises serious problems for both the user
and implementor of a language.

� Because of the problems caused by aliasing, new
language designs sometimes attempt to restrict or
eliminate altogether features that allow aliases to
be constructed.

17

/. -,
() *+Parameters

There are two concepts that must be clearly distinguished.

� The parameter names used in a function declaration
are called formal parameters.

� When a function is called, expressions called actual
parameters are used to compute the parameter values
for that call.

18

FORTRAN subroutines and functions

� Actual parameters may be simple variables, literals,
array names, subscripted variables, subprogram
names, or arithmetic or logical expressions.

The interpretation of a formal parameter as an array
is done by the called subroutine.

� Each subroutine is compiled independently and no
checking is done for compatibility between the
subroutine declaration and its call.

19

� The language specifies that if a formal parameter is
assigned to, the actual parameter must be a variable,
but because of independent compilation this rule
cannot be checked by the compiler.

Example:

SUBROUTINE SUB(X,Y)

X = Y

END

CALL SUB(-1.0,1.0)

� Parameter passing is uniformly by reference.

20

