
˜ Topic IV ˜

Block-structured procedural languages

Algol and Pascal

References:

� Chapters 5 and 7, of Concepts in programming
languages by J. C. Mitchell. CUP, 2003.

� Chapters 10(§2) and 11(§1) of Programming languages:
Design and implementation (3RD EDITION) by T. W. Pratt
and M. V. Zelkowitz. Prentice Hall, 1999.

1

� Chapter 5 of Programming languages: Concepts &
constructs by R. Sethi (2ND EDITION). Addison-Wesley,
1996.

� Chapter 7 of Understanding programming languages by
M Ben-Ari. Wiley, 1996.

2

/. -,
() *+Parameters

There are two concepts that must be clearly distinguished:

� A formal parameter is a declaration that appears in the
declaration of the subprogram. (The computation in the
body of the subprogram is written in terms of formal
parameters.)

� An actual parameter is a value that the calling program
sends to the subprogram.

Example: Named parameter associations.

Normally the actual parameters in a subprogram call are
just listed and the matching with the formal parameters is
done by

3

position:

procedure Proc(First: Integer; Second: Character);

Proc(24,’h’);

In Ada it is possible to use named association in the call:

Proc(Second => ’h’, First => 24);

? What about in ML? Can it be simulated?

This is commonly used together with default parameters:

procedure Proc(First: Integer := 0; Second: Character := ’*’);

Proc(Second => ’o’);

4

/. -,
() *+Parameter passing

The way that actual parameters are evaluated and passed
to procedures depends on the programming language and
the kind of parameter-passing mechanisms it uses.

The main distinction between different parameter-passing
mechanisms are:

� the time that the actual parameter is evaluated, and

� the location used to store the parameter value.

NB: The location of a variable (or expression) is called its
L-value, and the value stored in this location is called the
R-value of the variable (or expression).

5

/. -,
() *+Parameter passing

Pass/Call-by-value

� In pass-by-value, the actual parameter is evaluated. The
value of the actual parameter is then stored in a new
location allocated for the function parameter.

� Under call-by-value, a formal parameter corresponds to
the value of an actual parameter. That is, the formal x of a
procedure P takes on the value of the actual parameter.
The idea is to evaluate a call P(E) as follows:

x := E;
execute the body of procedure P;
if P is a function, return a result.

6

/. -,
() *+Parameter passing

Pass/Call-by-reference

� In pass-by-reference, the actual parameter must have
an L-value. The L-value of the actual parameter is then
bound to the formal parameter.

� Under call-by-reference, a formal parameter becomes
a synonym for the location of an actual parameter. An
actual reference parameter must have a location.

7

Example:

program main;

begin

function f(var x: integer; y: integer): integer;

begin

x := 2;

y := 1;

if x = 1 then f := 1 else f:= 2

end;

var z: integer;

z := 0;

writeln(f(z,z))

end

8

The difference between call-by-value and call-by-reference
is important to the programmer in several ways:

� Side effects. Assignments inside the function body
may have different effects under pass-by-value and
pass-by-reference.

� Aliasing. Aliasing occurs when two names refer to the
same object or location.

Aliasing may occur when two parameters are passed
by reference or one parameter passed by reference
has the same location as the global variable of the
procedure.

9

� Efficiency. Pass-by-value may be inefficient for large
structures if the value of the large structure must be
copied. Pass-by-reference maybe less efficient than
pass-by-value for small structures that would fit directly on
stack, because when parameters are passed by reference
we must dereference a pointer to get their value.

10

/. -,
() *+Parameter passing

Pass/Call-by-value/result

Call-by-value/result is also known as copy-in/copy-out
because the actuals are initially copied into the formals and
the formals are eventually copied back out to the actuals.

Actuals that do not have locations are passed by value.
Actuals with locations are treated as follows:

1. Copy-in phase. Both the values and the locations of
the actual parameters are computed. The values are
assigned to the corresponding formals, as in call-by-value,
and the locations are saved for the copy-out phase.

2. Copy-out phase. After the procedure body is executed,
the final values of the formals are copied back out to the
locations computed in the copy-in phase.

11

Examples:

� A parameter in Pascal is normally passed by value. It is
passed by reference, however, if the keyword var appears
before the declaration of the formal parameter.

procedure proc(in: Integer; var out: Real);

� The only parameter-passing method in C is call-by-value;
however, the effect of call-by-reference can be achieved
using pointers. In C++ true call-by-reference is available
using reference parameters.

12

� Ada supports three kinds of parameters:

1. in parameters, corresponding to value parameters;

2. out parameters, corresponding to just the copy-out
phase of call-by-value/result; and

3. in out parameters, corresponding to either
reference parameters or value/result parameters,
at the discretion of the implementation.

13

/. -,
() *+Parameter passing

Pass/Call-by-name

The Algol 60 report describes call-by-name as follows:

1. Actual parameters are textually substituted for the formals.
Possible conflicts between names in the actuals and local
names in the procedure body are avoided by renaming the
locals in the body.

2. The resulting procedure body is substituted for the call.
Possible conflicts between nonlocals in the procedure
body and locals at the point of call are avoided by
renaming the locals at the point of call.

14

Block structure

� In a block-structured language, each program or
subprogram is organised as a set of nested blocks.

A block is a region of program text, identified by begin
and end markers, that may contain declarations local
to this region.

� In-line (or unnamed) blocks are useful for restricting the
scope of variables by declaring them only when needed,
instead of at the beginning of a subprogram. The trend
in programming is to reduce the size of subprograms,
so the use of unnamed blocks is less useful than it
used to be.

15

Nested procedures can be used to group statements that
are executed at more than one location within a
subprogram, but refer to local variables and so cannot be
external to the subprogram. Before modules and
object-oriented programming were introduced, nested
procedures were used to structure large programs.

� Block structure was first defined in Algol. Pascal contains
nested procedures but not in-line blocks; C contains in-line
blocks but not nested procedures; Ada supports both.

� Block-structured languages are characterised by the
following properties:

� New variables may be declared at various points in a
program.

16

� Each declaration is visible within a certain region
of program text, called a block.

� When a program begins executing the instructions
contained in a block at run time, memory is
allocated for the variables declared in that block.

� When a program exits a block, some or all of the
memory allocated to variables declared in that
block will be deallocated.

� An identifier that is not declared in the current
block is considered global to the block and refers
to the entity with this name that is declared in the
closest enclosing block.

17

Algol

had a major effect on language design

� The Algol-like programming languages evolved in parallel
with the LISP family of languages, beginning with Algol 58
and Algol 60 in the late 1950s.

� The most prominent Algol-like programming languages
are Pascal and C, although C differs from most of the
Algol-like languages in some significant ways. Further
Algol-like languages are: Algol 58, Algol W, Euclid, etc.

18

� The main characteristics of the Algol family are:

� the familiar semicolon-separated sequence of
statements,

� block structure,

� functions and procedures, and

� static typing.

19

Algol 60

� Designed by a committee (including Backus, McCarthy,
Perlis) between 1958 and 1963.

� Intended to be a general purpose programming language,
with emphasis on scientific and numerical applications.

� Compared with FORTRAN, Algol 60 provided better ways
to represent data structures and, like LISP, allowed
functions to be called recursively.

Eclipsed by FORTRAN because of the lack of I/O
statements, separate compilation, and library; and
because it was not supported by IBM.

20

Algol 60
Features

� Simple statement-oriented syntax.

� Block structure.

� Recursive functions and stack storage allocation.

� Fewer ad hoc restrictions than previous languages
(e.g., general expressions inside array indices,
procedures that could be called with procedure
parameters).

� A primitive static type system, later improved in
Algol 68 and Pascal.

21

Algol 60
Some trouble spots

� The Algol 60 type discipline had some shortcomings.

For instance:

� Automatic type conversions were not fully specified
(e.g., x := x/y was not properly defined when x and y

were integers—is it allowed, and if so was the value
rounded or truncated?).

� The type of a procedure parameter to a procedure
does not include the types of parameters.

� An array parameter to a procedure is given type array,
without array bounds.

22

� Algol 60 was designed around two parameter-passing
mechanisms, call-by-name and call-by-value.

Call-by-name interacts badly with side effects;
call-by-value is expensive for arrays.

� There are some awkward issues related to control
flow, such as memory management, when a program
jumps out of a nested block.

23

Algol 60 procedure typesa

In Algol 60, the type of each formal parameter of a procedure must be
given. However, proc is considered a type (the type of procedures). This is
much simpler than the ML types of function arguments. However, this is
really a type loophole; because calls to procedure parameters are not fully
type checked, Algol 60 programs may produce run-time errors.
Write a procedure declaration for Q that causes the following program
fragment to produce a run-time type error:

proc P (proc Q)

begin Q(true) end;

P(Q);

where true is a Boolean value. Explain why the procedure is statically type
correct, but produces a run-time type error. (You may assume that adding
a Boolean to an integer is a run-time error.)

aExercise 5.1 of Concepts in programming languages by J. Mitchell, CUP,

2003.

24

Algol 60 pass-by-name

Copy rule

real procedure sum(E,i,low,high); value low, high;

real E; integer i, low, high;

begin

sum:=0.0;

for i := low step 1 until high do sum := sum+E;

end

integer j; real array A[1:10]; real result;

for j:= 1 step 1 until 10 do A[j] := j;

result := sum(A[j],j,1,10)

By the Algol 60 copy rule, the function call to sum above is equivalent to:

begin

sum:=0.0;

for j := 1 step 1 until 10 do sum := sum+A[j];

end

25

Algol 60 pass-by-namea

The following Algol 60 code declares a procedure P with one pass-by-name
integer parameter. Explain how the procedure call P(A[i]) changes the
values of i and A by substituting the actual parameters for the formal
parameters, according to the Algol 60 copy rule. What integer values are
printed by the program? And, by using pass-by-value parameter passing?

begin

integer i; i:=1;

integer array A[1:2]; A[1]:=2; A[2]:=3;

procedure P(x); integer x;

begin i:=x; x:=1 end

P(A[i]); print(i,A[1],A[2])

end

aExercise 5.2 of Concepts in programming languages by J. Mitchell, CUP,

2003.

26

Algol 68
� Intended to remove some of the difficulties found in

Algol 60 and to improve the expressiveness of the
language.

It did not entirely succeed however, with one main
problem being the difficulty of efficient compilation
(e.g., the implementation consequences of higher-order
procedures where not well understood at the time).

� One contribution of Algol 68 was its regular, systematic
type system.

The types (referred to as modes in Algol 68) are either
primitive (int, real, complex, bool, char, string, bits,
bytes, semaphore, format, file) or compound (array,
structure, procedure, set, pointer).

27

Type constructions could be combined without restriction.
This made the type system seem more systematic than
previous languages.

� Algol 68 memory management involves a stack for local
variables and heap storage. Algol 68 data on the heap are
explicitly allocated, and are reclaimed by garbage
collection.

� Algol 68 parameter passing is by value, with
pass-by-reference accomplished by pointer types. (This
is essentially the same design as that adopted in C.)

� The decision to allow independent constructs to be
combined without restriction also led to some complex
features, such as assignable pointers.

28

Algol innovations

� Use of BNF syntax description.

� Block structure.

� Scope rules for local variables.

� Dynamic lifetimes for variables.

� Nested if-then-else expressions and statements.

� Recursive subroutines.

� Call-by-value and call-by-name arguments.

� Explicit type declarations for variables.

� Static typing.

� Arrays with dynamic bounds.

29

Pascal

� Designed in the 1970s by Niklaus Wirth, after the design
and implementation of Algol W.

� Very successful programming language for teaching, in
part because it was designed explicitly for that purpose.

Also designed to be compiled in one pass. This hindered
language design; e.g., it forced the problematic forward

declaration.

� Pascal is a block-structured language in which static
scope rules are used to determine the meaning of
nonlocal references to names.

30

� A Pascal program is always formed from a single
main program block, which contains within it
definitions of the subprograms used.

Each block has a characteristic structure: a header
giving the specification of parameters and results,
followed by constant definitions, type definitions,
local variable declarations, other nested subprogram
definitions, and the statements that make up the
executable part.

31

� Pascal is a quasi-strong, statically typed programming
language.

An important contribution of the Pascal type system is the
rich set of data-structuring concepts: e.g. enumerations,
subranges, records, variant records, sets, sequential files.

� The Pascal type system is more expressive than the
Algol 60 one (repairing some of its loopholes), and simpler
and more limited than the Algol 68 one (eliminating some
of the compilation difficulties).

32

A restriction that made Pascal simpler than Algol 68:

procedure

Allowed(j,k: integer);

procedure

AlsoAllowed(procedure P(i:integer);

j,k: integer);

procedure

NotAllowed(procedure

MyProc(procedure

P(i:integer)));

33

� Pascal was the first language to propose index checking.

� Problematically, in Pascal, the index type of an array is
part of its type. The Pascal standard defines conformant
array parameters whose bounds are implicitly passed to a
procedure. The Ada programmig language uses so-called
unconstrained array types to solve this problem.

The subscript range must be fixed at compile time
permitting the compiler to perform all address calculations
during compilation.

procedure Allowed(a: array [1..10] of integer) ;

procedure

NotAllowed(n: integer;

a: array [1..n] of integer) ;

34

� Pascal uses a mixture of name and structural
equivalence for determining if two variables have the
same type.

Name equivalence is used in most cases for
determining if formal and actual parameters in
subprogram calls have the same type; structural
equivalence is used in most other situations.

� Parameters are passed by value or reference.

Complete static type checking is possible for
correspondence of actual and formal parameter
types in each subprogram call.

35

Pascal variant records
Variant records have a part common to all records of that type,
and a variable part, specific to some subset of the records.
type

kind = (unary, binary) ;

type { datatype }

UBtree = record { ’a UBtree = record of }

value: integer ; { ’a * ’a UBkind }

case k: kind of { and ’a UBkind = }

unary: ^UBtree ; { unary of ’a UBtree }

binary: record { | binary of }

left: ^UBtree ; { ’a UBtree * }

right: ^UBtree { ’a UBtree ; }

end

end ;

36

Variant records introduce weaknesses into the type
system for a language.

1. Compilers do not usually check that the value in the
tag field is consistent with the state of the record.

2. Tag fields are optional. If omitted, no checking is
possible at run time to determine which variant is
present when a selection is made of a field in a variant.

37

Summary

� The Algol family of languages established the
command-oriented syntax, with blocks, local declarations,
and recursive functions, that are used in most current
programming languages.

� The Algol family of languages is statically typed, as each
expression has a type that is determined by its syntactic
form and the compiler checks before running the program
to make sure that the types of operations and operands
agree.

38

