Complexity Theory

Complexity Theory Lecture 9

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2011

http://www.cl.cam.ac.uk/teaching/1011/Complexity/

Complexity Theory

Anuj Dawar

Anuj Dawar

 $\mathbf{May}\ \mathbf{20},\ \mathbf{2011}$

3

1

Primality

In 2002, Agrawal, Kayal and Saxena showed that PRIME is in P.

If a is co-prime to p,

$$(x-a)^p \equiv (x^p - a) \pmod{p}$$

if, and only if, p is a prime.

Checking this equivalence would take to long. Instead, the equivalence is checked modulo a polynomial $x^r - 1$, for "suitable" r.

The existence of suitable small r relies on deep results in number theory.

Complexity Theory

Prime Numbers

Consider the decision problem PRIME:

Given a number x, is it prime?

This problem is in co-NP.

$$\forall y (y < x \rightarrow (y = 1 \lor \neg(\operatorname{div}(y, x))))$$

Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n, is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is $\log n$.

Anuj Dawar

Anuj Dawai

May 20, 2011

Complexity Theory

Factors

Consider the language Factor

$$\{(x,k) \mid x \text{ has a factor } y \text{ with } 1 < y < k\}$$

Factor $\in \mathsf{NP} \cap \mathsf{co}\text{-}\mathsf{NP}$

Certificate of membership—a factor of x less than k.

Certificate of disqualification—the prime factorisation of x.

May 20, 2011

May 20, 2011

Complexity Theory

Optimisation

The Travelling Salesman Problem was originally conceived of as an optimisation problem

to find a minimum cost tour.

We forced it into the mould of a decision problem – TSP – in order to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND

Anuj Dawar

May 20, 2011

7

Complexity Theory

Anuj Dawar

Anuj Dawar

Complexity Theory

FNP and **FP**

A function which, for any given Boolean expression ϕ , gives a satisfying truth assignment if ϕ is satisfiable, and returns "no" otherwise, is a witness function for SAT.

If any witness function for SAT is computable in polynomial time, then P = NP.

If P = NP, then for every language in NP, some witness function is computable in polynomial time, by a binary search algorithm.

P = NP if, and only if, FNP = FP

Under a suitable definition of reduction, the witness functions for **SAT** are **FNP**-complete.

Complexity Theory

Function Problems

Still, there is something interesting to be said for *function problems* arising from NP problems.

Suppose

Anuj Dawar

$$L = \{x \mid \exists y R(x, y)\}\$$

where R is a polynomially-balanced, polynomial time decidable relation.

A witness function for L is any function f such that:

- if $x \in L$, then f(x) = y for some y such that R(x, y);
- f(x) = "no" otherwise.

The class **FNP** is the collection of all witness functions for languages in NP.

May 20, 2011

This is still reasonable, as we are establishing the *difficulty* of the problems.

A polynomial time solution to the optimisation version would give a polynomial time solution to the decision problem.

Also, a polynomial time solution to the decision problem would allow a polynomial time algorithm for finding the optimal value, using binary search, if necessary.

May 20, 2011

May 20, 2011

Factorisation

The factorisation function maps a number n to its prime factorisation:

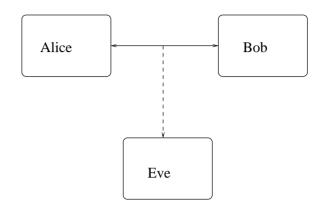
$$2^{k_1}3^{k_2}\cdots p_m^{k_m}.$$

This function is in **FNP**.

The corresponding decision problem (for which it is a witness function) is trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in polynomial time.

Anuj Dawar


May 20, 2011

11

9

Complexity Theory

Cryptography

Alice wishes to communicate with Bob without Eve eavesdropping.

Anuj Dawar

Anuj Dawar

May 20, 2011

12

10

Complexity Theory

Private Key

In a private key system, there are two secret keys

e – the encryption key

d – the decryption key

and two functions D and E such that:

for any x,

$$D(E(x,e),d) = x$$

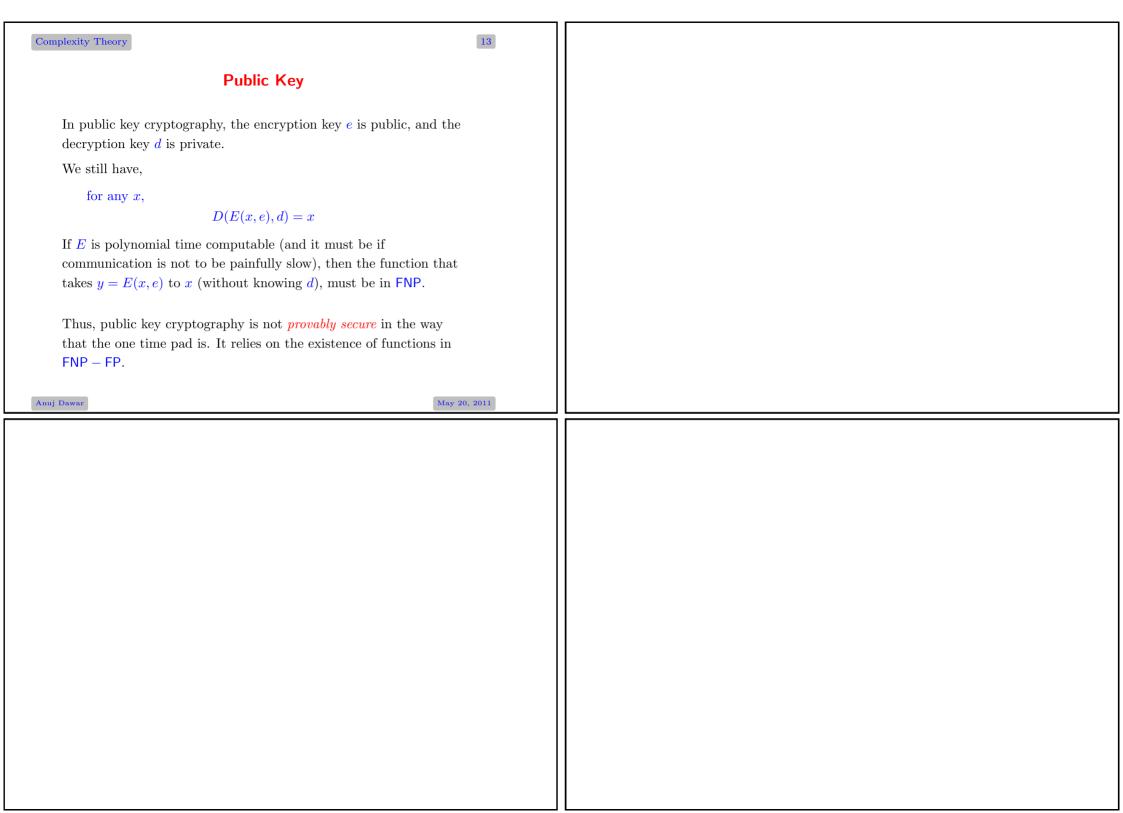
For instance, taking d = e and both D and E as exclusive or, we have the one time pad:

$$(x \oplus e) \oplus e = x$$

Complexity Theory

One Time Pad

The one time pad is provably secure, in that the only way Eve can decode a message is by knowing the key.


If the original message x and the encrypted message y are known, then so is the key:

$$e = x \oplus y$$

Anuj Dawar

May 20, 2011

May 20, 2011

