Complexity Theory Lecture 8

Anui Dawar

University of Cambridge Computer Laboratory Easter Term 2011

http://www.cl.cam.ac.uk/teaching/1011/Complexity/

Anuj Dawar

May 20, 2011

3

1

Complexity Theory

Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i .

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

Anuj Dawar

May 20, 2011

Complexity Theory

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design

Given a set H of work periods, a set W of workers each with an associated subset of H (available periods), a set Tof *tasks* and an assignment $r: W \times T \to \mathbb{N}$ of *required* **work**, is there a mapping $f: W \times T \times H \rightarrow \{0,1\}$ which completes all tasks?

Complexity Theory

Scheduling

Sequencing with Deadlines

Given a set T of *tasks* and for each task a *length* $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Anuj Dawai

Given a set T of tasks, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

Anuj Dawar

May 20, 2011

May 20, 2011

5

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

Anuj Dawar

Complexity Theory

May 20, 2011

7

Validity

 $\overline{\mathsf{VAL}} = \{ \phi \mid \phi \not\in \mathsf{VAL} \}$ —the *complement* of VAL is in NP.

Guess a a *falsifying* truth assignment and verify it.

Such an algorithm does not work for VAL.

In this case, we have to determine whether *every* truth assignment results in **true**—a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.

Complexity Theory

Validity

We define VAL—the set of *valid* Boolean expressions—to be those Boolean expressions for which every assignment of truth values to variables yields an expression equivalent to **true**.

$$\phi \in \mathsf{VAL} \quad \Leftrightarrow \quad \neg \phi \not\in \mathsf{SAT}$$

By an exhaustive search algorithm similar to the one for SAT, VAL is in $\mathsf{TIME}(n^2 2^n)$.

Is $VAL \in NP$?

Anuj Dawar

May 20, 2011

Complexity Theory

Complementation

If we interchange accepting and rejecting states in a deterministic machine that accepts the language L, we get one that accepts \overline{L} .

If a language $L \in P$, then also $\overline{L} \in P$.

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,

Anuj Dawai

co-NP – the languages whose complements are in NP.

Anuj Dawar

May 20, 2011

May 20, 2011

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

$$L = \{x \mid \exists y R(x, y)\}\$$

Where R is a relation on strings satisfying two key conditions

- 1. R is decidable in polynomial time.
- 2. R is polynomially balanced. That is, there is a polynomial p such that if R(x, y) and the length of x is n, then the length of y is no more than p(n).

Anuj Dawar

May 20, 2011

11

Complexity Theory

co-NP

As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form:

$$L = \{x \mid \forall y \, |y| < p(|x|) \to R'(x, y)\}$$

NP – the collection of languages with succinct certificates of membership.

co-NP – the collection of languages with succinct certificates of disqualification.

Complexity Theory

Succinct Certificates

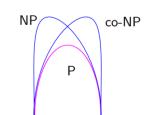
y is a *certificate* for the membership of x in L.

Example: If L is SAT, then for a satisfiable expression x, a certificate would be a satisfying truth assignment.

Anuj Dawar May 20, 2011

Complexity Theory

Anuj Dawar



Any of the situations is consistent with our present state of knowledge:

- P = NP = co-NP
- $P = NP \cap co-NP \neq NP \neq co-NP$
- $P \neq NP \cap co-NP = NP = co-NP$
- $P \neq NP \cap co-NP \neq NP \neq co-NP$

Anuj Dawar

May 20, 2011

May 20, 2011

10

12

13

co-NP-complete

VAL – the collection of Boolean expressions that are *valid* is co-NP-complete.

Any language L that is the complement of an NP-complete language is *co-NP-complete*.

Any reduction of a language L_1 to L_2 is also a reduction of \bar{L}_1 —the complement of L_1 -to $\bar{L_2}$ -the complement of L_2 .

There is an easy reduction from the complement of SAT to VAL, namely the map that takes an expression to its negation.

$$VAL \in P \Rightarrow P = NP = co-NP$$

$$VAL \in NP \Rightarrow NP = co-NP$$

Anuj Dawar

Anuj Dawar

May 20, 2011

May 20, 2011

Complexity Theory

Prime Numbers

14

Consider the decision problem PRIME:

Given a number x, is it prime?

This problem is in co-NP.

$$\forall y (y < x \rightarrow (y = 1 \lor \neg(\operatorname{div}(y, x))))$$

Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n, is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is $\log n$.

May 20, 2011 Anuj Dawar

Complexity Theory

15

Primality

Another way of putting this is that Composite is in NP.

Pratt (1976) showed that PRIME is in NP, by exhibiting succinct certificates of primality based on:

A number p > 2 is *prime* if, and only if, there is a number r, 1 < r < p, such that $r^{p-1} = 1 \mod p$ and $r^{\frac{p-1}{q}} \neq 1 \mod p$ for all *prime divisors* q of p-1.