
Complexity Theory 1

Complexity Theory

Lecture 7

Anuj Dawar

University of Cambridge Computer Laboratory

Easter Term 2011

http://www.cl.cam.ac.uk/teaching/1011/Complexity/

Anuj Dawar May 16, 2011

Complexity Theory 2

Hamiltonian Graphs

Recall the definition of HAM—the language of Hamiltonian graphs.

Given a graph G = (V, E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.
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Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM

Essentially, this involves coding up a Boolean expression as a

graph, so that every satisfying truth assignment to the expression

corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.
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Travelling Salesman

Recall the travelling salesman problem

Given

• V — a set of nodes.

• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1
∑

i=1

c(vi, vi+1)

is the smallest possible.
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Travelling Salesman

As with other optimisation problems, we can make a decision

problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

(V, c : V × V → IN, t)

such that there is a tour of the set of vertices V , which under the

cost matrix c, has cost t or less.
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Reduction

There is a simple reduction from HAM to TSP, mapping a graph

(V, E) to the triple (V, c : V × V → IN, n), where

c(u, v) =







1 if (u, v) ∈ E

2 otherwise

and n is the size of V .
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Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to

be NP-complete.

Literally hundreds of naturally arising problems have been proved

NP-complete, in areas involving network design, scheduling,

optimisation, data storage and retrieval, artificial intelligence and

many others.

Such problems arise naturally whenever we have to construct a

solution within constraints, and the most effective way appears to

be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose

significance lies in that they have been used to prove a large

number of other problems NP-complete, through reductions.
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3D Matching

The decision problem of 3D Matching is defined as:

Given three disjoint sets X , Y and Z, and a set of triples

M ⊆ X × Y × Z, does M contain a matching?

I.e. is there a subset M ′ ⊆ M , such that each element of

X , Y and Z appears in exactly one triple of M ′?

We can show that 3DM is NP-complete by a reduction from 3SAT.
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Reduction

If a Boolean expression φ in 3CNF has n variables, and m clauses,

we construct for each variable v the following gadget.

zv1

zv2

zv3

zv4

xv1 yv1

z̄v1

z̄v2

yv2

xv2

yv3 xv3

yv4

xv4

z̄v3

z̄v4
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In addition, for every clause c, we have two elements xc and yc.

If the literal v occurs in c, we include the triple

(xc, yc, zvc)

in M .

Similarly, if ¬v occurs in c, we include the triple

(xc, yc, z̄vc)

in M .

Finally, we include extra dummy elements in X and Y to make the

numbers match up.
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Exact Set Covering

Two other well known problems are proved NP-complete by

immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection

S = {S1, . . . , Sm} of three-element subsets of U , is there a

sub collection containing exactly n of these sets whose

union is all of U?

The reduction from 3DM simply takes U = X ∪ Y ∪ Z, and S to be

the collection of three-element subsets resulting from M .
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Set Covering

More generally, we have the Set Covering problem:

Given a set U , a collection of S = {S1, . . . , Sm} subsets of

U and an integer budget B, is there a collection of B sets

in S whose union is U?
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Knapsack

KNAPSACK is a problem which generalises many natural

scheduling and optimisation problems, and through reductions has

been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer

value vi and weight wi.

We are also given a maximum total weight W , and a minimum

total value V .

Can we select a subset of the items whose total weight does

not exceed W , and whose total value exceeds V ?
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Reduction

The proof that KNAPSACK is NP-complete is by a reduction from

the problem of Exact Cover by 3-Sets.

Given a set U = {1, . . . , 3n} and a collection of 3-element subsets of

U , S = {S1, . . . , Sm}.

We map this to an instance of KNAPSACK with m elements each

corresponding to one of the Si, and having weight and value

Σj∈Si
(m + 1)j−1

and set the target weight and value both to

Σ3n−1
j=0 (m + 1)j
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