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Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather

than a specific algorithm, we need to prove a statement about all

algorithms for solving it.

In order to prove facts about all algorithms, we need a

mathematically precise definition of algorithm.

We will use the Turing machine.

The simplicity of the Turing machine means it’s not useful

for actually expressing algorithms, but very well suited for

proofs about all algorithms.
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Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;

• Σ — a finite set of symbols, including ⊔.

• s ∈ Q — an initial state;

• δ : (Q × Σ) → (Q ∪ {a, r}) × Σ × {L, R, S}

A transition function that specifies, for each state and symbol a

next state (or accept acc or reject rej), a symbol to overwrite

the current symbol, and a direction for the tape head to move

(L – left, R – right, or S - stationary)
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Configurations

A complete description of the configuration of a machine can be

given if we know what state it is in, what are the contents of its

tape, and what is the position of its head. This can be summed up

in a simple triple:

Definition

A configuration is a triple (q, w, u), where q ∈ Q and w, u ∈ Σ⋆

The intuition is that (q, w, u) represents a machine in state q with

the string wu on its tape, and the head pointing at the last symbol

in w.

The configuration of a machine completely determines the future

behaviour of the machine.
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Computations

Given a machine M = (Q, Σ, s, δ) we say that a configuration

(q, w, u) yields in one step (q′, w′, u′), written

(q, w, u) →M (q′, w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b, D); and

• either D = L and w′ = v u′ = bu

or D = S and w′ = vb and u′ = u

or D = R and w′ = vbc and u′ = x, where u = cx. If u is

empty, then w′ = vb⊔ and u′ is empty.
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Computations

The relation →⋆

M
is the reflexive and transitive closure of →M .

A sequence of configurations c1, . . . , cn, where for each i,

ci →M ci+1, is called a computation of M .

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of

strings

{x | (s, ⊲, x) →⋆

M
(acc, w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either

(s, ⊲, x) →⋆

M
(acc, w, u) or (s, ⊲, x) →⋆

M
(rej, w, u)
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Decidability

A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some

M .

A language L is decidable if it is L(M) for some machine M which

halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M ,

such that for all x, (s, ⊲, x) →⋆

M
(acc, f(x), ε)
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Example

Consider the machine with δ given by:

⊲ 0 1 ⊔

s s, ⊲, R rej, 0, S rej, 1, S q,⊔, R

q rej, ⊲, R q, 1, R q, 1, R q′, 0, R

q′ rej, ⊲, R rej, 0, S q′, 1, L acc,⊔, S

This machine, when started in configuration (s, ⊲,⊔1n0) eventually

halts in configuration (acc, ⊲⊔, 1n+1, 0).
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Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to

multi-tape machines. For instance a machine with k tapes is

specified by:

• Q, Σ, s; and

• δ : (Q × Σk) → Q ∪ {a, r} × (Σ × {L, R, S})k

Similarly, a configuration is of the form:

(q, w1, u1, . . . , wk, uk)
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Running Time

With any Turing machine M , we associate a function rIN → IN

called the running time if M .

r(n) is defined to be the largest value R such that there is a string

x of length n so that the computation of M starting with

configuration (s, ⊲, x) is of length R (i.e. has R successive

configurations in it) and ends with an accepting configuration.

In short, r(n) is the length of the longest accepting computation of

M on an input of length n.
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Complexity

For any function f : IN → IN, we say that a language L is in

TIME(f(n)) if there is a machine M = (Q, Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f(n)).

Similarly, we define SPACE(f(n)) to be the languages accepted by a

machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M , which has a

read-only input tape, and a separate work tape. We only count

cells on the work tape towards the complexity.
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Nondeterminism

If, in the definition of a Turing machine, we relax the condition on

δ being a function and instead allow an arbitrary relation, we

obtain a nondeterministic Turing machine.

δ ⊆ (Q × Σ) × (Q ∪ {a, r} × Σ × {R, L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ⊲, x) →⋆

M (acc, w, u) for some w and u}

though, for some x, there may be computations leading to

accepting as well as rejecting states.
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Computation Trees

With a nondeterministic machine, each configuration gives rise to a

tree of successive configurations.

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)
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Decidability and Complexity

For every decidable language L, there is a computable function f

such that

L ∈ TIME(f(n))

If L is a semi-decidable (but not decidable) language accepted by

M , then there is no computable function f such that every

accepting computation of M , on input of length n is of length at

most f(n).
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