Complexity Theory

Complexity Theory
Lecture 12

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2011

http://www.cl.cam.ac.uk/teaching/1011/Complexity/

Anuj Dawar

May 25, 2011

3

1

. . ..

Complexity Theory

Complexity Classes

We have established the following inclusions among complexity classes:

 $\mathsf{L}\subseteq\mathsf{NL}\subseteq\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXP}$

Showing that a problem is NP-complete or PSPACE-complete, we often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than NP-complete ones, even if the running time is not higher.

Anuj Dawar

Complexity Theory

Logarithmic Space Reductions

We write

 $A \leq_L B$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a read-only input tape and write-only output tape).

Note: We can compose \leq_L reductions. So,

if $A \leq_L B$ and $B \leq_L C$ then $A \leq_L C$

Complexity Theory

Anuj Dawai

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $SAT \leq_L A$ for some problem in L then not only P = NP but also L = NP.

Anuj Dawar

May 25, 2011

May 25, 2011

Complexity Theory

P-complete Problems

It makes little sense to talk of complete problems for the class P with respect to polynomial time reducibility \leq_P .

There are problems that are complete for P with respect to logarithmic space reductions \leq_L .

One example is CVP—the circuit value problem.

- If $CVP \in L$ then L = P.
- If $CVP \in NL$ then NL = P.

Anuj Dawar

May 25, 2011

7

11

Complexity Theory

Constructible Functions

A complexity class such as $\mathsf{TIME}(f(n))$ can be very unnatural, if f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is *constructible* if:

- f is non-decreasing, i.e. $f(n+1) \ge f(n)$ for all n; and
- there is a deterministic machine M which, on any input of length n, replaces the input with the string $0^{f(n)}$, and M runs in time O(n + f(n)) and uses O(f(n)) work space.

Complexity Theory

Provable Intractability

Our aim now is to show that there are languages (or, equivalently, decision problems) that we can prove are not in P.

This is done by showing that, for every *reasonable* function f, there is a language that is not in $\mathsf{TIME}(f(n))$.

The proof is based on the diagonal method, as in the proof of the undecidability of the halting problem.

Anuj Dawar

May 25, 2011

Complexity Theory

Examples

All of the following functions are constructible:

- $\lceil \log n \rceil$;
- n^2 ;
- \bullet n;
- \bullet 2^n .

Anuj Dawai

If f and g are constructible functions, then so are f+g, $f\cdot g$, 2^f and f(g) (this last, provided that f(n)>n).

Anuj Dawar

May 25, 2011

May 25, 2011

Complexity Theory

Using Constructible Functions

NTIME(f(n)) can be defined as the class of those languages L accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most O(f(n)).

If f is a constructible function then any language in $\mathsf{NTIME}(f(n))$ is accepted by a machine for which all computations are of length at most O(f(n)).

Also, given a Turing machine M and a constructible function f, we can define a machine that simulates M for f(n) steps.

Anuj Dawar

May 25, 2011

11

Complexity Theory

Inclusions

The inclusions we proved between complexity classes:

- $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n));$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)});$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)$

really only work for constructible functions f.

The inclusions are established by showing that a deterministic machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required bounds.

Anuj Dawar

Anuj Dawai

May 25, 2011

12

Complexity Theory

Time Hierarchy Theorem

For any constructible function f, with $f(n) \ge n$, define the f-bounded halting language to be:

$$H_f = \{ [M], x \mid M \text{ accepts } x \text{ in } f(|x|) \text{ steps} \}$$

where [M] is a description of M in some fixed encoding scheme.

Then, we can show

$$H_f \in \mathsf{TIME}(f(n)^3) \text{ and } H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$$

Time Hierarchy Theorem

For any constructible function $f(n) \ge n$, TIME(f(n)) is properly contained in TIME $(f(2n+1)^3)$.

Complexity Theory

Strong Hierarchy Theorems

For any constructible function $f(n) \ge n$, TIME(f(n)) is properly contained in TIME $(f(n)(\log f(n)))$.

Space Hierarchy Theorem

For any pair of constructible functions f and g, with f = O(g) and $g \neq O(f)$, there is a language in $\mathsf{SPACE}(g(n))$ that is not in $\mathsf{SPACE}(f(n))$.

Similar results can be established for nondeterministic time and space classes.

Anuj Dawar

May 25, 2011

May 25, 2011

