Complexity Theory

Complexity Theory
Lecture 11

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2011

http://www.cl.cam.ac.uk/teaching/1011/Complexity/

Anuj Dawar

Anuj Dawar

May 25, 2011

3

1

Complexity Theory

Inclusions

We have the following inclusions:

$$\mathsf{L}\subseteq\mathsf{NL}\subseteq\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXP}$$

where
$$\mathsf{EXP} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(2^{n^k})$$

Moreover,

 $L \subseteq NL \cap co-NL$

 $P \subseteq NP \cap co-NP$

 $PSPACE \subset NPSPACE \cap co-NPSPACE$

Anuj Dawar

Anuj Dawar

May 25, 2011

Complexity Theory

Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following.

- $SPACE(f(n)) \subseteq NSPACE(f(n));$
- TIME $(f(n)) \subseteq NTIME(f(n));$
- $\mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n));$
- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)});$

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.

Complexity Theory

Reachability

Recall the Reachability problem: given a *directed* graph G = (V, E) and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

- 1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
- 2. while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if b is marked, accept else reject.

May 25, 2011

May 25, 2011

Complexity Theory

NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if i is the index currently written on the work space:
 - (a) if i = b then accept, else guess an index j (log n bits) and write it on the work space.
 - (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

Anuj Dawar

 $\mathbf{May}\ \mathbf{25},\ \mathbf{2011}$

7

., ., .

5

Complexity Theory

We can use the $O(n^2)$ algorithm for Reachability to show that:

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{TIME}(k^{\log n + f(n)})$$

for some constant k.

Let M be a nondeterministic machine working in space bounds f(n).

For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds f(n) is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

Anuj Dawar

Complexity Theory

Configuration Graph

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x.

Complexity Theory

Anuj Dawa

Using the $O(n^2)$ algorithm for Reachability, we get that M can be simulated by a deterministic machine operating in time

$$c'(nc^{f(n)})^2 \sim c'c^{2(\log n + f(n))} \sim k^{(\log n + f(n))}$$

In particular, this establishes that $NL \subseteq P$ and $NPSPACE \subseteq EXP$.

Anuj Dawai

May 25, 2011

May 25, 2011

Complexity Theory

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most n (for n a power of 2):

Anuj Dawar

Complexity Theory

May 25, 2011

11

Savitch's Theorem - 2

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

$$\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f(n)^2)$$

for $f(n) > \log n$.

This yields

Anuj Dawar

PSPACE = NPSPACE = co-NPSPACE.

Complexity Theory

 $O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)

if i = 1 and $a \neq b$ and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

- 1. is there a path a-x of length i/2; and
- 2. is there a path x b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Anuj Dawar

May 25, 2011

12

Complexity Theory

Complementation

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \ge \log n$, then

 $\mathsf{NSPACE}(f(n)) = \mathsf{co-NSPACE}(f(n))$

In particular

Anuj Dawai

NL = co-NL.

May 25, 2011

May 25, 2011

