Sid Chi-Kin Chau

sidckchau@gmail.com

Sid C-K Chau

Randomized Algorithms are algorithms that make
“random choices” during the execution

We also make lots of random choices everyday, because
* Lack of information
* Convenience and simplicity
* To diversify risk and try luck!

These reasons apply to algorithmic design

But unscrupulous random choices may end with useless
results

Question: How do we make smart random choices?

In practice:
Simple random choices often work amazingly well

In theory:
Simple maths can justify these simple random choices

Sid C-K Chau

Applications of Randomlzed Algorlthm _

 Randomized algorithms are especially useful for
applications with

* Large data set and insufficient memory
* Limited computational power
* Uninformed knowledge
* Minor fault tolerability
* Along list of applications include

* Information retrieval, databases,
bioinformatics (e.g. Google, DNA matching)

* Networking, telecommunications (e.g. AT&T)
* Optimization, data prediction, financial trading
= =l KL _,” * Artificial intelligence, machine learning

NASOAG

NASOAQ Listed NORQ

o0 <o e Graphics, multi-media, computer games

15000% ITI8 magy 2015 .

* Information security, and a lot more ...

Sid C-K Chau

A Key Example™Hashing

 Hashing enables large-scale, fast data processing

* Expedite the performance of large data/file systems
in search engines (Google, Bing)

* Enable fast response time in small low-power
devices (iPhone, iPad)

* Hashing is a random sampling/projection of
some more complicated data objects (e.g. strings,
graphs, functions, sets, data structures)

e E.g. String-based hashing maps a input string to a
shorter hash (string) by a hash function

(without a priori knowledge) from a large class of
hash functions

* Hence, when we do not specify the detailed
implementation of a particular hash function, the

string-based hashing for] _ o
address book behaviour of hashing appears probabilistic

Sid C-K Chau

Sl
Balls and Bins'Model ,

* A generic model for hashing is balls-and-bins

 Throw m balls into n bins, such that each ball is
uniformly randomly distributed among the bins

model

* |nterpretations of the model
2+ Balls = data objects, Bins = hashes

* (Coupon Collector Problem) Balls = coupons, Bins =
types of coupons

e (Birthday Attack Prob.) Balls = people, Bins = birthdates

O

0g0 0, * Key questions
O

o %o Om balli * Efficiency: How many non-empty bins?

JLILJdL JdF * Performance: What is the maximum number of balls

in all the bins?
“——~— + Balls-and-bins model is a random model

O

n bins
* |ts behaviour is naturally analysed by probability

theory

Sid C-K Chau

 The probability that bin 2 has rballs follows binominal distribution

« P{X;=71}= (T) (%)7" (1 . l)m—r _ 1m(m-1)..(m-r+1) (1 B l)m—r

n ! n’ n

e But the expression can be too unwieldy
* When mand n are very large, we can approximate by

m(m—1)7;.£m—r+1) ~ (%)7” and (1 B %)m—’r o e%

* This is known as Poisson distribution Po(r) =

* The mean of Poisson distribution is u = %

* The probability of a non-empty bin is
P{X; #0} =1 —Po(0) =1—e7H

Sid C-K Chau

o)"- - .\“
Maximum Load

* Recall a well-known technique called Union Bound
« P{X;=ror..orX,=2r}<P{X;=>r}+ -+ P{X,=>1}
 The probability that one bin has more than M balls is

. IP{ max X; =M j=n P{X; > M}
1=1,...n 7 I
_m e He)M -
+ If M >p =" then P(X; > M} < — e
* (Shown by Chernoff Bound) .
. Ifm=n(hence,u=1)andM=1 1 , then
(eln In n)ﬁn (ln In n)lBl# (Inlnl In1)31nn
31nn e_leM cnlan ninn ninn e nininn —1n nnlnlnn
° . < — \3lnn < llnn —
P{Xlzlnlnn}_ MM e - e e
3lnn Inlnlnn
(Inlnlnn —Inln nN)v— —3<1— Inl)
3lnn e Inlnn nn nlnn 1
J S < < <
[P{iil}’a")”(nXl _lnlnn}_n e - e —en
3lnn

* Therefore, the maximum load is larger than —— has a vanishing probability

. 3lnn
(i.e., P} max X; = > 0,as n— o0)
i=1,..,n Inlnn

3ln

* Or we say that the maximum load is less than 7; with high probability

In In

Sid C-K Chau

Bloom filter

G J

n-bit string

1/0/0/1]1/0/11

. Morrison
(Not a member)

11/0/0/1/1/0/1]

A. Clawrke
(False positive)

Bloom Filter :

Instead of hashing from a string, we also consider more
complicated objects

A Bloom filter maps a “set” of strings to a n-bit string

There are k hash functions, each hash function 2, maps a
string to a value in {1,..,n}

We initially set the Bloom filter to be an n-bit zero string

If we include a string sin the Bloom filter, we set the
h.(s)-th bit in the Bloom filter to be one for every i < k

To validate whether a string s is a member of a Bloom
filter, we check if the h,(s)-th bit in the Bloom filter is one
for every ¢

A string belonging to a Bloom filter will be confirmed as a
member by the validation (i.e., there is no false negative)

However, it is possible that a string not belonging to a
Bloom filter will also be confirmed as a member by the
validation (i.e., there can be false positive)

Sid C-K Chau

Applications of Bloom Filter

 Bloom filter is a compact representation of a set of strings
* Useful to applications with minor fault tolerance to false positives:
1) Spell and password checkers with a set unsuitable words
2) Distributed database query
3) Content distribution and web cache
4) Peer-to-peer networks
5) Packet filtering and measurement of pre-defined flows

6) Information security, computer graphics, etc.
Distributed database query Peer-to-peer networks
A. Williaums

D. Johwmsown
K. G. Smitiv

Do we have any
common items?

Sid C-K Chau

Optimization of Bloom Filter

We want to minimize the number of false positives
* There are m strings to be included in an n-bit string Bloom filter
* There are k hash functions, each hash function i; maps a string to a value in {1,..,n}

The probability that a particular bit in the Bloom filter becomes one after
including m strings is

1\ km —km
e 1-— (1 — 5) ~1— e n ,assuming that nand m are very large

Consider validating if a random string is included in the Bloom filter or not

The probability that the validation succeeds is
k

. (1 ~(1- l)km)k ~(—ew) 2k

n

fmn (k) is also the probability of a false positive. Hence, we want to
minimize fp, » (k) with respect to &

din fmn(k) _ _ _—km/n km e km/n
dk =In(l-e)+ N l_e—km/n
d In fim n(k) n 1
* Hence, I =0=>k=1In2 — and fin(k) = = (0.612)V/m

* Forinstance, if m=100 and f;,, ,(k) = 0.01, then n=938 and k=7

Sid C-K Chau ~

Heavy Hitter Problem

Astreamofitems with ~ ® Find the most frequent items in a stream

multiple occurrences * |n a network, find the users who consume the most

bandwidth by observing a stream of packets

b * |In asearch engine, find the most queried phrases

i ﬁ * From the transactions of a supermarket, find the most
© JI(ep)) C2rY) R purchased items

 Heavy hitter problem
* Thereis a stream of items with multiple occurrences

* We want to find the items with the most occurrences,
when observing the stream continuously

rihanna

@ jon and kate

® Kanye west * We do not know the number of distinct items in a prior
manner

* We are only allowed to use storage space much less
than the number of items in the stream

A\J\l « Algorithms that process a stream of data with tight
o - space consumption are called streaming algorithms

Sid C-K Chau

AN

k rows of counters (hash funcs.)

m/k columns of counters

Count-min Sketch
We use an approach similar to the Bloom filter c-aIIed
count-min sketch

A sketch is an array of kxm/k counters, {(; ; }

There are k hash functions, each hash function A; maps
an item to a value in {1,..,m/k}

Initially set all counters to be zero (C; ; = 0)

When we observe an item sin the stream, increase the
hi(s)-th counter (C; p.(s) < Cin,s)+1) for every ¢

At the end, we obtain the number of occurrences of an
item s by the minimum of all the counters that are
mapped by sas N(s) = min{C; p,(s):{ = 1, ..., k}

N(s) is of course an overestimate of the true number

of occurrences, because multiple items can be mapped
to the same counter by a hash function

However, N(s) is not far from the true value

Sid C-K Chau

Principle of Count=min Sketch

* Let the true number of occurrences of item sbe T(s)

e Let the total number of occurrences of all items be T

k
* The probability that N(s) > T(s)+&T'is at most (%) , Where e <1
* Let X, betherandom item at time t=1,...,T

* Then the counter C;p, (s) = Y _11[h;(X,) = h;(s)] and is a random variable,
where 1[-] is an indicator function
* We obtain the expected deviation of C; 5,5 from T(s) by

* E[Cins) — T()] = E[Xfo1.x,25 1M (Xe) = hi(s)]]
= Y 1x,2s E|1[h;(Xe) = Ry (s) | = Xlo1x,2s P{Ri(X) = hi(s)}
< T P{h;(X,) = hi(s)} ==

* Recall Markov inequality: IP{X > }< Elx]

« 0 IP’{X<x}+xIP>{X2x}SznyP{Xzy}zlE[X]

, for positive z

E\Cin.c)—T —
. Hence,]P){Cl,hl(S) —_ T(S) > ST} < [hi(s) (S)] k. Contnue'lne>

eT Em the next slid

Sid C-K Chau

Principle of Count“min Sketch

Follow from
the last slide

k
+ Since P{Cyp(s) — T(S) 2 €T} < .o, P{min {Cyp()} 2 T(s) + €T} < ()

If we minimize (%)k with respect to &, then
e k=me/e, (%)k = e ™¢/¢ and P{N(s) = T(s) + T} < e~™é/¢

If we let k = ln% and m = ln%-g, then P{N(s) = T(s) +eT} <6

Therefore, ¢ is a tolerance threshold that bounds the deviation of N(s) from
count-min sketch, and ¢ is an error probability that bounds the probability of
N(s) deviating for the at most €T

For example, if we set £ = 0.1 and 6 = 0.01, then the number of counters we
need is m = 125 and the number of hash functions is £ = 5 (note that both
m and £ are independent of the number of items in the stream)

Streaming algorithms can do much more powerful tasks than finding the most
frequent items, such as the distributions, correlations and other statistics in a
stream of items in a continuous fashion

B Summg'

 Randomized algorithms are algorithms that make smart random
choices during execution

* Hashing is a key example that enables large-scale and fast data
processing

* Simple balls-and-bins model can characterize the probabilistic
properties of hashing (e.g. maximum load)

 Bloom filter is an example that generates a hash to determine
the membership of a set of strings

* Streaming algorithms use a random compact data structure
(sketches) to determine the statistics of a stream of items in
continuous fashions

 Hashing can be regarded as a random projection from a high
dimensional space of data to a low dimensional space of hashes

e
References

 Main reference: Mitzenmacher and Upfal book, “Probability and
Computing: Randomized Algorithms and Probabilistic Analysis”

* Chapter 5.2-5.3: Balls-and-Bins model, Poisson distribution
* Chapter 5.5.4: Bloom filter
* Chapter 13.4: Count-min sketch

e Additional references

* Broder and Mitzenmacher, “Network Applications of Bloom
Filters: A Survey”, Internet Mathematics 1 (4), pp485-509

 Cormode and Hadjieleftheriou, “Finding the frequent items in
streams of data”, Communications of the ACM, Oct 2009,

pPp9/7-105

