The Power of Random Bits

 Randomized Algorithms: Applications \& PrinciplesPart I: Hashing and Its Many Applications

Sid Chi-Kin Chau
sidckchau@gmai1.com

Why Randomized Algorithms?

- Randomized Algorithms are algorithms that make "random choices" during the execution
- We also make lots of random choices everyday, because
- Lack of information
- Convenience and simplicity
- To diversify risk and try luck!
- These reasons apply to algorithmic design
- But unscrupulous random choices may end with useless results
- Question: How do we make smart random choices?
- In practice:

Simple random choices often work amazingly well

- In theory:

Simple maths can justify these simple random choices

Applications of Randomized Algorithms

- Randomized algorithms are especially useful for applications with
- Large data set and insufficient memory
- Limited computational power
- Uninformed knowledge
- Minor fault tolerability
- A long list of applications include
- Information retrieval, databases, bioinformatics (e.g. Google, DNA matching)
- Networking, telecommunications (e.g. AT\&T)
- Optimization, data prediction, financial trading
- Artificial intelligence, machine learning
- Graphics, multi-media, computer games
- Information security, and a lot more ...

A Key Example:Hashing

- Hashing enables large-scale, fast data processing
- Expedite the performance of large data/file systems in search engines (Google, Bing)
- Enable fast response time in small low-power devices (iPhone, iPad)
- Hashing is a random sampling/projection of some more complicated data objects (e.g. strings, graphs, functions, sets, data structures)
- E.g. String-based hashing maps a input string to a shorter hash (string) by a hash function
- Assuming that a hash function is selected randomly (without a priori knowledge) from a large class of hash functions
- Hence, when we do not specify the detailed implementation of a particular hash function, the behaviour of hashing appears probabilistic

Balls and BinsModel

K. G. Smith

- Balls = data objects, Bins = hashes
- (Coupon Collector Problem) Balls = coupons, Bins = types of coupons
- (Birthday Attack Prob.) Balls = people, Bins = birthdates
- A generic model for hashing is balls-and-bins model
- Throw m balls into n bins, such that each ball is uniformly randomly distributed among the bins

- Interpretations of the model

- Key questions
- Efficiency: How many non-empty bins?
- Performance: What is the maximum number of balls in all the bins?
- Balls-and-bins model is a random model
- Its behaviour is naturally analysed by probability theory

Poisson Approximation

- The probability that bin i has r balls follows binominal distribution
- $\mathbb{P}\left\{X_{i}=r\right\}=\binom{m}{r}\left(\frac{1}{n}\right)^{r}\left(1-\frac{1}{n}\right)^{m-r}=\frac{1}{r!} \frac{m(m-1) \ldots(m-r+1)}{n^{r}}\left(1-\frac{1}{n}\right)^{m-r}$
- But the expression can be too unwieldy
- When m and n are very large, we can approximate by
- $\frac{m(m-1) \ldots(m-r+1)}{n^{r}} \approx\left(\frac{m}{n}\right)^{r}$ and $\left(1-\frac{1}{n}\right)^{m-r} \approx e^{\frac{-m}{n}}$
- Hence, $\mathbb{P}\left\{X_{i}=r\right\} \approx \frac{e^{\frac{-m}{n}\left(\frac{m}{n}\right)^{r}}}{r!}$
- This is known as Poisson distribution $\operatorname{Po}(r)=\frac{e^{-\mu}(\mu)^{r}}{r!}$
- The mean of Poisson distribution is $\mu=\frac{m}{n}$
- The probability of a non-empty bin is

$$
\mathbb{P}\left\{X_{i} \neq 0\right\} \approx 1-\operatorname{Po}(0)=1-e^{-\mu}
$$

Maximum Load

- Recall a well-known technique called Union Bound
- $\mathbb{P}\left\{X_{1} \geq r\right.$ or \ldots or $\left.X_{n} \geq r\right\} \leq \mathbb{P}\left\{X_{1} \geq r\right\}+\cdots+\mathbb{P}\left\{X_{n} \geq r\right\}$
- The probability that one bin has more than M balls is
- $\mathbb{P}\left\{\max _{i=1, \ldots, n} X_{i} \geq M\right\} \leq n \mathbb{P}\left\{X_{i} \geq M\right\}$
- If $M>\mu=\frac{m}{n}$, then $\mathbb{P}\left\{X_{i} \geq M\right\} \leq \frac{e^{-\mu}(e \mu)^{M}}{M^{M}}$
- (Shown by Chernoff Bound)
- If $m=n$ (hence $\mu=1$) and $M=\frac{3 \ln n}{\ln \ln n}$, then
- $\mathbb{P}\left\{X_{i} \geq \frac{3 \ln n}{\ln \ln n}\right\} \leq \frac{e^{-1} e^{M}}{M^{M}}=\frac{\left(\frac{\mathrm{e} \ln \ln n}{3 \ln n}\right)^{\frac{\ln \ln n}{\ln \ln n}}}{e} \leq \frac{\left(\frac{\ln \ln n}{\ln n}\right)^{\frac{3 \ln n}{\ln \ln n}}}{e}=\frac{e^{(\ln \ln \ln n-\ln \ln n) \frac{3 \ln n}{\ln \ln n}}}{e}$
- $\mathbb{P}\left\{\max _{i=1, \ldots, n} X_{i} \geq \frac{3 \ln n}{\ln \ln n}\right\} \leq n \frac{e^{(\ln \ln \ln n-\ln \ln n) \frac{3 \ln n}{\ln \ln n}}}{e} \leq \frac{n \cdot n^{-3\left(1-\frac{\ln \ln \ln n}{\ln \ln n}\right)}}{e} \leq \frac{1}{e n}$
- Therefore , the maximum load is larger than $\frac{3 \ln n}{\ln \ln n}$ has a vanishing probability (i.e. , $\mathbb{P}\left\{\max _{i=1, \ldots, n} X_{i} \geq \frac{3 \ln n}{\ln \ln n}\right\} \rightarrow 0$, as $n \rightarrow \infty$)
- Or we say that the maximum load is less than $\frac{3 \ln n}{\ln \ln n}$ with high probability

Bloom Filter

- Instead of hashing from a string, we also consider more
K. G. Smith
- A Bloom filter maps a "set" of strings to a n-bit string
- There are k hash functions, each hash function h_{i} maps a string to a value in $\{1, . ., n\}$
- We initially set the Bloom filter to be an n-bit zero string
- If we include a string s in the Bloom filter, we set the $h_{i}(s)$-th bit in the Bloom filter to be one for every $i \leq k$
- To validate whether a string s is a member of a Bloom filter, we check if the $h_{i}(s)$-th bit in the Bloom filter is one for every i
- A string belonging to a Bloom filter will be confirmed as a complicated objects

1001101
Bloom filter
n-bit string

1	0	0	1	1	0

H. Morrison
(Not a member) member by the validation (i.e., there is no false negative)

- However, it is possible that a string not belonging to a Bloom filter will also be confirmed as a member by the validation (i.e., there can be false positive)

Applications of Bloom Filter

- Bloom filter is a compact representation of a set of strings
- Useful to applications with minor fault tolerance to false positives:

1) Spell and password checkers with a set unsuitable words
2) Distributed database query
3) Content distribution and web cache
4) Peer-to-peer networks
5) Packet filtering and measurement of pre-defined flows
6) Information security, computer graphics, etc.

Distributed database query

Peer-to-peer networks

Optimization of Bloom Filter

- We want to minimize the number of false positives
- There are m strings to be included in an n-bit string Bloom filter
- There are k hash functions, each hash function h_{i} maps a string to a value in $\{1, . ., n\}$
- The probability that a particular bit in the Bloom filter becomes one after including m strings is
- $1-\left(1-\frac{1}{n}\right)^{k m} \approx 1-e^{\frac{-k m}{n}}$, assuming that n and m are very large
- Consider validating if a random string is included in the Bloom filter or not
- The probability that the validation succeeds is
- $\left(1-\left(1-\frac{1}{n}\right)^{k m}\right)^{k} \approx\left(1-e^{\frac{-k m}{n}}\right)^{k} \triangleq f_{m, n}(k)$
- $f_{m, n}(k)$ is also the probability of a false positive. Hence, we want to minimize $f_{m, n}(k)$ with respect to k
- $\frac{d \ln f_{m, n}(k)}{d k}=\ln \left(1-e^{-k m / n}\right)+\frac{k m}{n} \frac{e^{-k m / n}}{1-e^{-k m / n}}$
- Hence, $\frac{d \ln f_{m, n}(k)}{d k}=0 \Rightarrow k=\ln 2 \frac{n}{m}$ and $f_{m, n}(k)=\frac{1}{2^{k}}=(0.612)^{n / m}$
- For instance, if $m=100$ and $f_{m, n}(k)=0.01$, then $n=938$ and $k=7$

Heavy Hitter Problem

A stream of items with multiple occurrences (d) (a) (a) (d) (c) (d) b)

- Find the most frequent items in a stream
- In a network, find the users who consume the most bandwidth by observing a stream of packets
- In a search engine, find the most queried phrases
- From the transactions of a supermarket, find the most purchased items
- Heavy hitter problem
rihanna
- There is a stream of items with multiple occurrences
- We want to find the items with the most occurrences, when observing the stream continuously
- We do not know the number of distinct items in a prior manner
- We are only allowed to use storage space much less than the number of items in the stream
- Algorithms that process a stream of data with tight space consumption are called streaming algorithms

Count-min Sketch

- We use an approach similar to the Bloom filter called count-min sketch
- A sketch is an array of $k \times m / k$ counters, $\left\{C_{i, j}\right\}$

- There are k hash functions, each hash function h_{i} maps an item to a value in $\{1, . ., m / k\}$
- Initially set all counters to be zero $\left(C_{i, j}=0\right)$
- When we observe an item s in the stream, increase the $h_{i}(s)$-th counter $\left(C_{i, h_{i}(s)} \leftarrow C_{i, h_{i}(s)}+1\right)$ for every i
- At the end, we obtain the number of occurrences of an item s by the minimum of all the counters that are mapped by s as $N(s)=\min \left\{C_{i, h_{i}(s)}: i=1, \ldots, k\right\}$
- $N(s)$ is of course an overestimate of the true number of occurrences, because multiple items can be mapped to the same counter by a hash function
- However, $N(s)$ is not far from the true value

Principle of Count-min Sketch

- Let the true number of occurrences of item s be $T(s)$
- Let the total number of occurrences of all items be T
- The probability that $N(s) \geq T(s)+\varepsilon T$ is at $\operatorname{most}\left(\frac{k}{m \varepsilon}\right)^{k}$, where $\varepsilon \leq 1$
- Let X_{t} be the random item at time $t=1, \ldots, T$
- Then the counter $C_{i, h_{i}(s)}=\sum_{t=1}^{T} \mathbf{1}\left[h_{i}\left(X_{t}\right)=h_{i}(s)\right]$ and is a random variable, where $\mathbf{1}[\cdot]$ is an indicator function
- We obtain the expected deviation of $C_{i, h_{i}(s)}$ from $T(s)$ by
- $\mathbb{E}\left[C_{i, h_{i}(s)}-T(s)\right]=\mathbb{E}\left[\sum_{t=1: X_{t} \neq s}^{T} \mathbf{1}\left[h_{i}\left(X_{t}\right)=h_{i}(s)\right]\right]$

$$
\begin{aligned}
& =\sum_{t=1: X_{t} \neq s}^{T} \mathbb{E}\left[\mathbf{1}\left[h_{i}\left(X_{t}\right)=h_{i}(s)\right]\right]=\sum_{t=1: X_{t} \neq s}^{T} \mathbb{P}\left\{h_{i}\left(X_{t}\right)=h_{i}(s)\right\} \\
& \leq T \mathbb{P}\left\{h_{i}\left(X_{t}\right)=h_{i}(s)\right\}=\frac{k T}{m}
\end{aligned}
$$

- Recall Markov inequality: $\mathbb{P}\{X \geq x\} \leq \frac{\mathbb{E}[X]}{x}$, for positive x
- $0 \cdot \mathbb{P}\{X<x\}+x \mathbb{P}\{X \geq x\} \leq \sum_{y} y \mathbb{P}\{X=y\}=\mathbb{E}[X]$
- Hence, $\mathbb{P}\left\{C_{i, h_{i}(s)}-T(s) \geq \varepsilon T\right\} \leq \frac{\mathbb{E}\left[c_{i, h_{i}(s)}-T(s)\right]}{\varepsilon T}=\frac{k}{\varepsilon m}$

Principle of Count-min Sketch

- Since $\mathbb{P}\left\{C_{i, h_{i}(s)}-T(s) \geq \varepsilon T\right\} \leq \frac{k}{\varepsilon m}, \mathbb{P}\left\{\min _{i=1, .,, k}\left\{C_{i, h_{i}(s)}\right\} \geq T(s)+\varepsilon T\right\} \leq\left(\frac{k}{\varepsilon m}\right)^{k}$
- If we minimize $\left(\frac{k}{\varepsilon m}\right)^{k}$ with respect to k, then
- $k=m \varepsilon / e,\left(\frac{k}{\varepsilon m}\right)^{k}=e^{-m \varepsilon / e}$, and $\mathbb{P}\{N(s) \geq T(s)+\varepsilon T\} \leq e^{-m \varepsilon / e}$
- If we let $k=\ln \frac{1}{\delta}$ and $m=\ln \frac{1}{\delta} \cdot \frac{e}{\varepsilon}$, then $\mathbb{P}\{N(s) \geq T(s)+\varepsilon T\} \leq \delta$
- Therefore, ε is a tolerance threshold that bounds the deviation of $N(s)$ from count-min sketch, and δ is an error probability that bounds the probability of $N(s)$ deviating for the at most εT
- For example, if we set $\varepsilon=0.1$ and $\delta=0.01$, then the number of counters we need is $m=125$ and the number of hash functions is $k=5$ (note that both m and k are independent of the number of items in the stream)
- Streaming algorithms can do much more powerful tasks than finding the most frequent items, such as the distributions, correlations and other statistics in a stream of items in a continuous fashion
- Randomized algorithms are algorithms that make smart random choices during execution
- Hashing is a key example that enables large-scale and fast data processing
- Simple balls-and-bins model can characterize the probabilistic properties of hashing (e.g. maximum load)
- Bloom filter is an example that generates a hash to determine the membership of a set of strings
- Streaming algorithms use a random compact data structure (sketches) to determine the statistics of a stream of items in continuous fashions
- Hashing can be regarded as a random projection from a high dimensional space of data to a low dimensional space of hashes

References

- Main reference: Mitzenmacher and Upfal book, "Probability and Computing: Randomized Algorithms and Probabilistic Analysis"
- Chapter 5.2-5.3: Balls-and-Bins model, Poisson distribution
- Chapter 5.5.4: Bloom filter
- Chapter 13.4: Count-min sketch
- Additional references
- Broder and Mitzenmacher, "Network Applications of Bloom Filters: A Survey", Internet Mathematics 1 (4), pp485-509
- Cormode and Hadjieleftheriou, "Finding the frequent items in streams of data", Communications of the ACM, Oct 2009, pp97-105

