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Classical concurrency control: topic overview 1
In these lectures we consider shared writeable data in main memory

Controlling access by concurrent processes to shared writeable data has been studied
as part of OS designsince the earliest OSs (1960s onwards).

Concurrent programming languages brought the same problems 
to application programming.
For example, web servers have to handle large numbers of concurrent requests.

Our starting point:
critical regions: regions of code in parallel processes 

that read or write shared writeable data
implementing critical regions 

- without blocking processes (they “spin-lock” or “busy-wait”)
- blocking processes that must wait, on semaphores

Classical shared memory concurrency control
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We then look at how semaphores can be used:
1. a single semaphore used to achieve mutual exclusion
2. a single semaphore used to achieve condition synchronisation
3. a single semaphore used for N-resource allocation

Then, how semaphores are implemented. 
This may be within the OS, or at application level, in the runtime system 

of a concurrent programming language

Programming with semaphores, using several semaphores to achieve both
mutual exclusion and condition synchronisation

1. single producer, single consumer processes communicating via a shared buffer 
2. many producers and consumers
3. readers and writers: multiple readers, single writer concurrency control

Classical shared memory concurrency control
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• Discussion of semaphore programming – problems and difficulties

• Concurrency control constructs in programming languages 
Can concurrent programming languages make concurrent programming easier than 
semaphore programming?
Can the problems be solved, ameliorated (improved upon), 

or alleviated (made easier to bear)?
We look at a number of different approaches in programming languages.

• Concurrent composite operationsin main memory, introducing the notion that a single,
meaningful, high-level, operation may involve several separate low-level operations.

• Lock-free programming – is it possible/easier/more-efficient to program without locks?

Classical shared memory concurrency control
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Critical regions

shared
data

CR CR

A B
Processes A and B contain critical regions (CRs)
(code that reads or writes this shared data)

CRs are needed only if the data is writeable

A CR is associated with some specific shared data

How can CRs be implemented? – first attempt:

shared
data

CR

A B

flag: free/busy

entry protocol:
test flag

If busy then test again
(called “busy-wait”)

If free then set to busy
enter CR

exit protocol:
set flag to free

CR

entry protocol:
test flag

If busy then test again
(called “busy-wait”)

If free then set to busy
enter CR

exit protocol:
set flag to free

Classical shared memory concurrency control
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Indivisible test-and-set
The entry protocol is correct only if test and set of flag are atomic/indivisible – HOW?

• forbid interrupts? – NO – this would only work on a uniprocessor, and even then would be 
inappropriate for general use.

• machine instruction? - YES 

• program only – no hardware exclusion - ?

CISC machines had many read-memory, test result, store-to-memory types of instruction

RISC (load/store) architectures may only use a single memory access per instruction 

read-and-clearwill work:

flag=0 //shared data is busy

flag=1 //shared data is free (initial value)

entry protocol:
read-and-clear,  register  flag

// if value in register is 0, shared data was busy so retry

// if value in register is 1, shared data was free and you claimed it

// can also be used for condition synchronisation –see later 

Multicore machines have atomic instructions e.g. x86 LOCK instruction prefix

Classical shared memory concurrency control
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Mutual exclusion without hardware support

This was a hot topic in the 1970s and 80s. 
Examples for N-process mutual exclusion are:

Eisenberg M. A. and McGuire M. R., 
Further comments on Dijkstra’s concurrent programming control problem
CACM 15(11), 1972

Lamport L
A new solution to Dijkstra’s concurrent programming problem
CACM, 17(8), 1974
(his N-process bakery algorithm)

For uniprocessors and multiprocessors these algorithms impose large overhead.
In practice, OSs built mutual exclusion on atomic instructions.

With multi-core instruction reordering it is not proven that such programs are correct.

Classical shared memory concurrency control
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Dijkstra THE 1968
The entry protocols above involve busy-waiting (retry if flag is busy), wasting CPU time

It is better to block a waiting process

Define a new type of variable – semaphore

Operations for the type are:

wait (aSem)

if aSem > 0 then aSem = aSem – 1

else suspend the executing process waiting on aSem

signal (aSem)

if there are no processes waiting on aSem

then aSem = aSem + 1

else free one waiting process – continues after its wait instruction

Implementation: an integer and a queue

Classical shared memory concurrency control
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Mutual exclusion using a semaphore

aSem

CR

A B

concurrent processes: serialisation of critical regions

wait (aSem)

wait (aSem)

CR

1

0

1

0 B

C

wait (aSem)0 B, C

0 C

0 signal (aSem)

signal (aSem)

B  blocked

C  blocked
CR

signal (aSem)
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Two-process synchronisation

aSem A B

wait before signal                              signal before wait

0

wait (aSem)

1
0 A

0

0 signal (aSem)
0

A B

wait (aSem)

signal (aSem)

A blocked “wake-up waiting”

Classical shared memory concurrency control
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N-resource allocation using a semaphore

Suppose there are N instances of a resource. 

Control its allocation using a semaphore resSeminitialised to N. 

Each time a process executes wait (resSem)the semaphore’s value is decremented.

When the value is 0, after N waits, all subsequent processes executing wait (resSem) 

are queued on it until freed by a current user of the resource executing signal (resSem).

Classical shared memory concurrency control
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Implementation of semaphores - 1

A B N

user threads

address space of a process

runtime system – user thread implementation

per thread stack 
and control block

wait  (aSem) may callOS_block_thread (tID)
signal (aSem) may callOS_unblock_thread (tID)

shared
data

wait (aSem)signal (aSem) wait (aSem)

implementation of wait and signal on semaphores

0 B, N
wait (aSem)

signal (aSem)

aSem

protected by
aSem

Classical shared memory concurrency control

flagaSem 0/
1

12

Implementation of semaphores -2
For user-threads only (OS sees a single-threaded process) the runtime system does all 

semaphore and user thread management

When user threads are mapped to kernel threads, wait and signalmust themselves be 

atomic operations.This is clearly the case for a multiprocessor, and also for 

a uniprocessor with preemptive scheduling. 

Associate a flag with each semaphore, and use an atomic instruction such asread-and-clear.

The flag must be claimed before a wait or signal can be executed for that semaphore.

This also applies to kernel threads executing the OS and using OS- managed semaphores 

for mutual exclusion and condition synchronisation. 

The need for concurrency control first came from OS design. We now have concurrent 

programming languages and OSs support multi-threaded processes.

Classical shared memory concurrency control
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Semaphore programming

We now develop some concurrent programs that use a number of semaphores for 
mutual exclusionand condition synchronisation.

1. One producer, one consumer: Two processes communicate through an N-slot cyclic buffer. 
One process inserts, the other removes, records of fixed size.
Condition synchronisation is needed for when the buffer is full and empty.

2. We now have any number of producer and consumer processes communicating
via the buffer. We now need to ensure mutually exclusive access to the buffer.

3. Readers and writers: We note that processes that only read shared data can read simultaneously, 
whereas a process that writes must have exclusive access to the data.
We develop a solution that gives priority to writers over readers, 
on the assumption that writers are keeping the data up-to-date.

Classical shared memory concurrency control
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N-slot cyclic buffer, single producer and consumer - 1 

producer

produce an item
• is there an empty slot in the buffer?
insert item

• is there an item in the buffer?
remove item
consume item

consumer

outptr

inptr• = potential delay • = potential delay

two semaphores are needed 
- one for the producer to block on (wait), when the buffer is full
- one for the consumer to block on (wait), when the buffer is empty
- note: blocked processes must be unblocked via signals on semaphores

Classical shared memory concurrency control
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N-slot cyclic buffer, single producer and consumer - 2

producer

produce an item
• wait (spaces)
insert item
signal (items)

• wait (items)
remove item
signal (spaces)
consume item

consumer

outptr

inptr
• = potential delay • = potential delay

two semaphores are needed:     
spaces = N // initially N spaces in buffer, - for the producer to      block on, when the buffer is full.   
items = 0 // initially no items in buffer - for the consumer to       block on, when the buffer is empty.

programming note:  insert item must increment inptr to point to the next empty slot 
remove item must increment outptr to point to the next item (full slot)
when inptr = outptr the buffer is either full or empty. You may therefore also keep 
an integer count of the number of items in the buffer: count = 0 (empty) count = N (full).

programming details are not shown – we focus on condition synchronisation

“wake-up” synchronising signals

Classical shared memory concurrency control
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N-slot cyclic buffer, many producers and consumers

a producer

produce an item
• wait (spaces)
• wait (guard)
insert item
signal (guard)
signal (items)

• wait (items)
• wait (guard)
remove item
signal (guard)
signal (spaces)
consume item

a consumer

outptr

inptr

• = potential delay • = potential delay

three semaphores are used:
spaces = N// initially N spaces in buffer - for the producer to     block on when the buffer is full
items = 0 // initially no items in buffer - for the consumer to    block on when the buffer is empty
guard = 1 // initially the buffer is free - to ensure     mutually exclusiveaccess to the buffer
programming notes – as in previous slide

“wake-up” synchronising signals – condition synchronisation

variation: – allow one producer and one consumer to access the buffer in parallel – left as an exercise

Classical shared memory concurrency control
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Multiple readers, single writer concurrency control -1

Many readers may read simultaneously, a writer must have exclusive access
Assume writers have priority – to keep the data up-to-date.

counts:
ar = active readers
rr = reading readers (active readers who have proceeded to read)
aw = active writers
ww = writing writers (active writers who have proceeded to write)

but they must wait to write one-at-a-time

Semaphores are needed:
for mutual exclusion
1. to test and update the above counts under exclusion
2. to ensure writers write under exclusion
for condition synchronisation 
1. readers must wait for aw = 0 and must be woken up after blocking
2. writers must wait for rr = 0 and must be woken up after blocking 

Classical shared memory concurrency control
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Multiple readers, single writer concurrency control -2

Classical shared memory concurrency control

become active reader
(ar = ar+1)

if no active writers
then proceed to read

(rr = rr+1)
else defer to writers

(wait for aw = 0)

become active writer
(aw = aw+1)

if no active  readers
then proceed to write

(ww = ww+1)
else wait for no readers

(rr = 0)

READ
wait for turn to write       
WRITE
release claim 

ar = ar-1
rr = rr-1
if rr = 0 

then signal waiting writers
exit

aw = aw-1
ww = ww-1
if aw = 0 

then signal waiting readers
exit

mutual exclusion  - to access shared counts
- for write access 

condition synchronisation
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Multiple readers, single writer concurrency control - 3

Complete the program as an exercise. Solutions are in textbooks.

Note that a signal unblocks only one blocked process. The values of the counts indicate
how many signals to send. The last writing writer must unblock all blocked readers.
The last reading reader must unblock all waiting writers.

Take care not to wait while holding the semaphore that protects the shared counts
- see next slide.

That would cause deadlock; no other process could ever access the counts, so could not
make the awaited condition true and wake any waiting processes. The deadlocked system
would exhibit queues of processes waiting on the various semaphores. 

Classical shared memory concurrency control

Classical shared memory concurrency control 20

become active reader
(ar = ar+1)

if no active writers
then proceed to read

(rr = rr+1)
else defer to writers

(wait for aw = 0)

wait (CountGuard-sem)
ar = ar+1
if  aw=0 then rr = rr+1

else wait (R-sem)           deadlock! blocking while holding a semaphore
signal (CountGuard-sem)

So the programmer has to program to avoid deadlock.
A process that must delay must exit the region before blocking on the condition.
In this case, wait (R-sem) must be executed after signal (CountGuard-sem)

wait (CountGuard-sem)

signal (CountGuard-sem)

the critical regions that
control access to the counts
are implemented using 
a semaphore CountGuard-sem
initialised to 1 

within a critical region the counts
may indicate that the process must block
until some condition becomes true 
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Semaphores - discussion

Semaphores are a widely used mechanism underlying concurrency control in operating systems 
and concurrent programs

Difficult for programmers to use correctly – programs are complex
- can forget to wait and corrupt data
- can forget to signal and cause deadlock 

Unconditional commitment to block
- but can fork new threads for concurrent activity.

Unbounded delay on wait.
Priority inversion and convoy effect  (see 30 for further discussion)

- low priority process with lock can hold up higher priority processes (note scheduling)
- a long lock-hold can hold up a lot of potentially short ones. 

Classical shared memory concurrency control
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Concurrency control – support for the programmer, 1
We now follow some developments for concurrency control in shared memory.

1.  Programming language support for concurrency control
Concurrent programming languages provide higher level constructs, implemented 
using semaphores. We follow the historical evolution: 
passive objects: critical regions and conditional critical regions, 

monitors (Modula 1, Modula 3, Mesa, ….)
(mutexes and condition variables (pthreads package) not covered)
synchronized methods and wait/notify (Java)

active objects: guarded commands, Ada select/accept and rendezvous 

22Classical shared memory concurrency control
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Concurrent programming paradigms and models
1. shared data is a passive object accessed via concurrency-controlled operations

concurrent process 

call operation (arguments)

• = potential delay

operation1

…….. 
wait ( )
………

operationN

shared data 

…….. 
signal ( )
………

concurrent process 

call operation (arguments)

- we use a programming-language-independent, diagrammatic representation
- shared data is encapsulated with operations in a passive object, called by concurrent processes
- operations that read and/or write execute under mutual exclusion 

(implemented by a semaphore) are indicated by 
- Condition synchronisation is provided in different ways and will be indicated by  

single threaded execution 
of the operations is enforced 

23Classical shared memory concurrency control
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shared data object
encapsulated with 

operations 
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Critical regions  .......

Critical regions were proposed as a means of hiding the complexity of semaphore programming.

var v: shared <data-structure> \\ compiler assigns a semaphore to protect v, initially 1
region v do begin ……end \\ compiler inserts semaphore operations

But this is only mutual exclusion.  

Conditional critical regions (CCRs) add condition synchronisation

Classical shared memory concurrency control
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........ and conditional critical regions

Condition synchronisation was added to CCRs
by including (note that this is NOT implemented by a semaphore):  

await < some condition on shared data >  

If the condition is true, the process continues. 
If the condition is false the implementation ensures that the region is unlocked 

and the process executing await is blocked until the condition becomes true.
When it is selected to continue in the region the implementation again acquires the lock for it.

Note that the programmer must leave the data structure in a consistent state 
before executing await, as well as before exiting the region.

CCRs are difficult to implement. 
Programmers may invent any condition on the shared data. 
All conditions have to be tested when any process leaves the region. 

We now introduce an illustration of CCRs and the subsequent evolution of concurrency control

Classical shared memory concurrency control
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Illustration of CCRs

1. shared data is a passive object accessed via concurrency-controlled operations

concurrent process 

call operation (arguments)

• = potential delay

operation1

•

…….. 
await ( )
………

operationN

shared data 

•

…….. 
await ( )
………

concurrent process 

call operation (arguments)

- shared data is encapsulated with operations in a passive object, called by concurrent processes
- operations execute under mutual exclusion

- conditional critical regions (CCRs) are illustrated above.
- note that processes do not have to signal explicitly(unlike semaphores)

conditional critical region implementation

26Classical shared memory concurrency control
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Illustration of monitors

concurrent process 

call operation (arguments)

• = potential delay “wake-up” synchronising signals

operation1

•

…….. 
wait ( )
………

operationN

shared data 

…….. 
signal ( )

concurrentprocess 

call operation (arguments)

- operations execute under mutual exclusion (semaphore implementation)
- in monitors, condition synchronisation is provided, by wait and signaloperations on 
condition variables, named by programmers e.g. not-full,  not-empty,  free-to-read

Note that conditional variables are not implemented as semaphores: wait and signal have different semantics:
- processes must test the data and decide whether they need to block until a condition becomes true
- a process that waits on a condition variable always blocks, first releasing the monitor lock

(the implementation manages this)
- signalhas no effect if there are no processes blocked on the condition variable being signalled
- after signal the monitor lock must be re-acquired for an unblocked process after the signalling 
process has left the region (the implementation manages this)

a monitor

27Classical shared memory concurrency control
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Passive object example: monitors and condition variables -1

producer process 
produce item
call insert (item)

operation: insert (item)

outptr

inptr

• = potential delay

•

if buffer is full then 
wait (notfull)

insert item
signal (notempty)

if buffer empty then 
wait (notempty)

remove item
signal (notfull)

consumer process 
call remove (item)

consume item •

operation: remove (item)

data: cyclic, N-slot buffer

“wake-up” synchronising signals

monitor operations are executed under exclusion
condition variables (notfull, notempty) are defined for synchronisation, 

operations on them are wait and signal
data is tested in the monitor before a wait operation, semantics of wait: process is always queued
semantics of signal: if there is no blocked process – no effect

if there is a queue, wake up ONE process
note: only one process can ever be active inside a monitor (mutual exclusion property)

after signal, should it be the signaller or the signalled process? (implementation decision)

28Classical shared memory concurrency control
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Passive object example: monitors and condition variables - 2

operation: insert (item)

if buffer is full then 
wait (notfull)

insert item
signal (notempty)

if buffer empty 
then wait 
(notempty)

remove item
signal (notfull)

operation: remove (item)

29Classical shared memory concurrency control
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count = 0   \\ initialise count to zero items in buffer (maximum  = N)

insert (item)
if count = N then wait (notfull)  \\ if count < N process continues without delay
insert item
increment inptr to point to next empty slot in buffer
count = count + 1
signal (notempty)

remove (item)
if count = 0 then wait (notempty)  \\ if count > 0 process continues without delay
remove item
increment outptr to point to next item in buffer
count = count - 1
signal (notfull)

30

Java synchronised methods

concurrent process 

call operation (arguments)

• = potential delay

operation1

•

…….. 
wait ( )
………

operationN

shared data 

…….. 
notifyAll( ) 
………

concurrent process 

call operation (arguments)

- condition synchronisation is similar to the pthreads package
- wait blocks the process/thread and releases the exclusion on the object
- notify: the implementation frees an arbitrary process – take care!
- notifyAll : the implementation frees all blocked processes. The first to be scheduled 

may resume its execution (under exclusion) but must retest the wait condition. 
The implementation must manage reclaiming the exclusion to achieve retest, 
i.e. via the PC of the resuming processes. 
Note that processes could resume and block repeatedly, e.g. on a multiprocessor.

30Classical shared memory concurrency control
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Java example, buffer for a single integer, Bacon and Harris section 12.2.4, p369
public class Buffer {

private intvalue = 0;
private booleanfull = false;

public synchronized void put (int a)
throwsInterruptedException{

while (full)
wait ( );

value = a:
full = true;
notifyAll( );

}
public synchronized intget ( ) 

throwsInterruptedException{
int result
while (!full)

wait( ); 
result = value;
full = false;
notifyAll( );
return result;
}

}

Classical shared memory concurrency control
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Concurrent programming paradigms and models - 2
1. shared data is an active objectmanaged by a process

- shared data is encapsulated with operations in an active object, called by concurrent processes
- the managing process performs condition testing, and ..
- .. only accepts calls to operations with guards that evaluate to true 
- mutual exclusion and condition synchronisation are ensured by the managing process
- note that synchronisation is at the granularity of whole operations(note that path expressions

also have this feature)
- which process (caller or manager)? executes the accepted operation is implementation-dependent

concurrent process 

call operation (arguments)

managing
process

operation1

guard1
………

operationN

shared
data 

concurrent process 

call operation (arguments)
guardN
………

32Classical shared memory concurrency control
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Active object example: Ada select/accept

producer process 
produce item
call insert (item)

operation: insert (item)

outptr

inptr

guard: buffer not full

insert item

consumer process 
call remove (item)

consume item

operation: remove (item)

data: cyclic, N-slot buffer

- managing process selects from operations whose guard evaluates to true (as the select list)
- and accepts a call from the select list
- a “rendezvous” occurs between the managing process and the calling process
- one of them (not defined, implementation-specific) carries out the call and return
- note that the operation programming is simplified because the active managing process carries out 
both mutual exclusion and condition synchronisation

guard: buffer not empty

remove item

managing
process

select (list)
accept call

33Classical shared memory concurrency control
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Recall problems with semaphores (18) – solved? 
Difficult for programmers to use correctly – programs are complex

waiting and signalling have been made easier for the programmer than with semaphore programming.

Unconditional commitment to block 
- as before - can sometimes use fork for parallel operation
- pthreads offers test lock as well as wait - but there can still be race conditions between them   

Unbounded delay on wait 
- pthreads offers time-limited waits – for mutual exclusion, not for condition synchronisation

Priority inversion  ( these points also apply to semaphore implementations )
- queues of blocked processes need not be FCFS
- suppose process/thread priority can be known to the implementation of semaphores etc.
- implementations can re-order the queues of blocked processes according to priority
- raise the priority of the lock-holder to the highest priority waiting process

Convoy effect  - a long lock-hold can hold up a lot of potentially short ones. 
- try to program with fine-grained locking (components rather than whole structures)

Library calls - a universal problem!  Static analysis of code executed under mutual exclusion  
becomes impossible when these operations make extensive use of library calls.
( motivation for Java+Kilim – see later )

34Classical shared memory concurrency control
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Concurrency control – support for the programmer, 2
1.  See slides 22-34

2.   Concurrent composite operations in main memory. 
We started from ensuring exclusive access to a single item of shared data.
In general, programmers need to create operations that involve related 
operations on multiple data items. 
e.g. we saw semaphore programs where several semaphores were needed:
- producers/consumers involved multiple buffer slots 
- readers/writers protected the resource and various integer counts. 

3.   We then introduce briefly an alternative approach to achieving concurrency control:
lock-free programming.   

35Classical shared memory concurrency control

Composite operations in main memory - 1 

We have studied how to make one operation on shared data atomic in the presence of
concurrency and crashes.
Now suppose a meaningful operation comprises several such operations:

e.g. transfer: subtract a value from one data item and add the same value to another.
e.g. test some integer counts to decide whether you can write some shared data;

proceed to write if there are no existing readers or writers 

invoke_operation ( args )

36Classical shared memory concurrency control



Composite operations in main memory - 2 - example 

At this point we have deadlock.  Process P holds  semAand is blocked, queued on semB
Process Q holds semBand is blocked, queued on semA

Neither process can proceed to use the resources and signal the respective semaphores.
A cycle of processes exists, where each holds one resource and is blocked waiting for 

another, held by another process in the cycle.

Deadlock:systems that allocate resources dynamically are subject to deadlock.
We later study the policies and conditions necessary and sufficient for deadlock to exist.

The sequence below may work correctly over a long period then unfortunate timing
may cause deadlock. We illustrate this using semaphores – easily generalisable to
higher level constructs (that are probably implemented using semaphores).

wait ( semB )

wait ( semA )

wait ( semA )

wait ( semB )

process P process Q

A

semA

B

semB

37Classical shared memory concurrency control

Composite operations in main memory – 3 – solutions? 

invoke_operation ( args )

Concurrency control: why not lock all data – do all operations – unlock?
But contention may be rare, and “locking all” may impose overhead and slow response (e.g. Python)

Crashes?:in main memory everything is lost on a crash – no problem! unless any externally
visible effects have occurred. These could be output, or changes to persistent state. 
We’ll consider persistent store later. Assume that output generated by concurrent 
composite operations should be deferred until the operation completes successfully.

Atomicity: we first solved how to make a single operation on an object atomic/indivisible.
DEFINITION: a composite operation is atomic if either all of its component operations
complete successfully, or no operation has any effect, i.e. all data values are unaffected by the
composite operation and have the values they had before it started and failed.
Note that it must be ensured that no concurrent process can see any intermediate state of the data.

38Classical shared memory concurrency control
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Concurrency control – support for the programmer, 3

1. Programming language support, see slides 22-34

2. Composite operations, see slides 35 – 39

3.     Lock-free programming 

Concurrent programs are difficult to develop correctly, particularly for large-scale systems.
Problems such as priority inversion, deadlock and convoying have been highlighted.

Lock-free programming became established as a research area from the late 1990s
We’ll introduce it this year and develop it in next year’s courses.
We’ll use a setimplemented as a non-blocking linked list as an example,  from Tim Harris’s 

paper: 
“A Pragmatic Implementation of Non-Blocking Linked Lists”
DISC 2001, pp. 300-314, LNCS 2180, Springer 2001

39Classical shared memory concurrency control
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Lock-free programming - 1 

Example: a set of integers represented as a sorted linked list

set operations:   find (int)    ->  bool
insert (int)  ->  bool
delete (int) ->  bool

40

H 10 30 T

key
*next 

node.key contains integer value key
node.next contains pointer to successor node

head tail

Classical shared memory concurrency control

list operations: read  (node.key )  ->  int
write (node.key, int) 
CAS (node.key,  old-int,  new-int)  ->  bool“Compare and Swap”
CASatomically compares the contents of addressnode.keywith the old-int value
and, if they match, writes the new-int value into node.key
CASreturns a boolean to indicate success/failure.



41

Lock-free programming - 2 

Example: a set of integers represented as a sorted linked list

set operations:  find (int)    ->  bool

find (20)    ->  false

41

H 10 30 T

head tail

Classical shared memory concurrency control

exercise: 
write a program to traverse a list, 
comparing the integer key in each node with search-key = 20  

42

Lock-free programming 3 

42

Insertion is straightforward. First, the list is traversed until the correct position is found.
Then a new cell is created, and inserted atomically using CAS(compare and swap)

H 10 30 T

20

H 10 30 T
20

Note that if the CAS fails, this means that the list has been updated concurrently by other
thread(s) and the traversal must start again to find the correct place to insert.
See next slide for more detail.

Classical shared memory concurrency control
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Lock-free programming 4 

43

boolean = CAS (address, old-value, new-value )

Traverse the list to find where to insert 20, arriving at:      currentNode nextNode

Classical shared memory concurrency control

10 30

20

insertNode

Create insertNodewith  .next  pointing to the node with key 30
insertNode.next = * nextNode

done = CAS (currentNode.next, insertNode.next, *insert Node)

If a concurrent insert has been done these will not be equal anddonewill be returned false
Restart the traversal .

Consider the correctness of concurrent insert and find.                                               

44
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boolean = CAS (address-in-memory, old-value, new-value )

e.g.  claimed : boolean = false
claimed = CAS (flag, 1, 0 ) with flag = 0 (busy/claimed)

flag = 1 (free/unclaimed) 
If the flag indicates the resource is free, atomically set it to busy and return true,
otherwise return false, in which case, repeat the CAS until it succeeds

Recall slide 5, with a simpler atomic compare and swap RISC instruction :

Classical shared memory concurrency control

read-and-clear,  register  flag
if register = 0 repeat read-and-clearinstruction 

(spin-lock or busy-wait)
if register = 1 (flag was 1, now = 0) continue into critical region 

Here, the read-and-clearis repeated until it succeeds.

How would you program this ordered list using semaphores? Lock the whole list?

Compare CASwith the similar “spin lock” approach for claiming a semaphore (locking a mutex).
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lost update

H 10 30 T

H 10 30 T
20

CAS (address, old, new) could be used to change node.nextin the head to point to 30, 
after checking the old value points to 10 (so there were no concurrent inserts between H and 10)

But concurrent threads could have inserted values between 10 and 30, after 30 was selected 
for the new pointer from H. 

Those inserts would be lost:

deleted

Correct deletion is more difficult, consider:

Classical shared memory concurrency control
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Correct deletion:

46

H 10 30 TX

atomically mark node for deletion (X)
The node is “logically deleted” and this can be detected by concurrent threads

that must cooperate to avoid concurrent insertions/deletions at this point
A marked node can still be traversed.

H 10 30 TX

The node is “physically deleted”

The algorithms are given in C++ - like pseudo-code in the paper, as is a proof of correctness 

Classical shared memory concurrency control
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Exercise:
Consider concurrent executions of any combinations of find, insert and delete.

Selected further reading:

Keir Fraser,  
Practical Lock Freedom, 2004. 
PhD thesis (UK-DD winner), UCAM-CL-TR-579

Keir Fraser and Tim Harris
Concurrent programming without locks
ACM Transactions on Computer Systems (TOCS) 25 (2), 146-196, May  2007
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