$\underline{\text { Review of constraint satisfaction problems (CSPs) }}$

We have:

- A set of n variables $V_{1}, V_{2}, \ldots, V_{n}$.
- For each V_{i} a domain D_{i} specifying the values that V_{i} can take.
- A set of m constraints $C_{1}, C_{2}, \ldots, C_{m}$.

Each constraint C_{i} involves a set of variables and specifies an allowable collection of values.

- A state is an assignment of specific values to some or all of the variables.
- An assignment is consistent if it violates no constraints.
- An assignment is complete if it gives a value to every variable.

A solution is a consistent and complete assignment.

Example

We will use the problem of colouring the nodes of a graph as a running example.

Each node corresponds to a variable. We have three colours and directly connected nodes should have different colours.

Caution required: later on, edges will have a different meaning.

Example

This translates easily to a CSP formulation:

- The variables are the nodes

$$
V_{i}=\text { node } i
$$

- The domain for each variable contains the values black, red and cyan

$$
D_{i}=\{B, R, C\}
$$

- The constraints enforce the idea that directly connected nodes must have different colours. For example, for variables V_{1} and V_{2} the constraints specify

$$
(B, R),(B, C),(R, B),(R, C),(C, B),(C, R)
$$

- Variable V_{8} is unconstrained.

Different kinds of CSP

This is an example of the simplest kind of CSP: it is discrete with finite domains. We will concentrate on these.

We will also concentrate on binary constraints; that is, constraints between pairs of variables.

- Constraints on single variables-unary constraints-can be handled by adjusting the variable's domain. For example, if we don't want V_{i} to be red, then we just remove that possibility from D_{i}.
- Higher-order constraints applying to three or more variables can certainly be considered, but...
- ...when dealing with finite domains they can always be converted to sets of binary constraints by introducing extra auxiliary variables.

How does that work?

Another planning language: the state-variable representation.
Things of interest such as people, places, objects etc are divided into domains:

```
\(\mathrm{D}_{1}=\{\mathrm{climber} 1, \mathrm{climber} 2\}\)
\(\mathrm{D}_{2}=\{\) home, jokeShop, hardwareStore, pavement, spire, hospital \(\}\)
\(\mathrm{D}_{3}=\{r o p e\), inflatableGorilla \(\}\)
```

Part of the specification of a planning problem involves stating which domain a particular item is in. For example

$$
\mathrm{D}_{1}(\text { climber1) }
$$

and so on.
Relations and functions have arguments chosen from unions of these domains.

$$
\operatorname{above}(x, y) \subseteq \mathcal{D}_{1}^{\text {above }} \times \mathcal{D}_{2}^{\text {above }}
$$

is a relation. The $\mathcal{D}_{i}^{\text {above }}$ are unions of one or more D_{i}.

The relation above is in fact a rigid relation ($R R$), as it is unchanging: it does not depend upon state. (Remember fluents in situation calculus?)
Similarly, we have functions

$$
\operatorname{at}\left(x_{1}, s\right): \mathcal{D}_{1}^{\text {at }} \times S \rightarrow \mathcal{D}^{\text {at }}
$$

Here, at (x, s) is a state-variable. The domain $\mathcal{D}_{1}^{\text {at }}$ and range $\mathcal{D}^{\text {at }}$ are unions of one or more D_{i}. In general these can have multiple parameters

$$
\operatorname{sv}\left(x_{1}, \ldots, x_{n}, s\right): \mathcal{D}_{1}^{\mathrm{sv}} \times \cdots \times \mathcal{D}_{n}^{\mathrm{sv}} \times \mathrm{S} \rightarrow \mathcal{D}^{\mathrm{sv}}
$$

A state-variable denotes assertions such as
at(gorilla, s) = jokeShop
where s denotes a state and the set S of all states will be defined later.
The state variable allows things such as locations to change-again, much like fluents in the situation calculus.

Variables appearing in relations and functions are considered to be typed.

Note:

- For properties such as a location a function might be considerably more suitable than a relation.
- For locations, everything has to be somewhere and it can only be in one place at a time.

So a function is perfect and immediately solves some of the problems seen earlier.

Actions as usual, have a name, a set of preconditions and a set of effects.

- Names are unique, and followed by a list of variables involved in the action.
- Preconditions are expressions involving state variables and relations.
- Effects are assignments to state variables.

For example:

$\operatorname{buy}(x, y, l)$	
Preconditions	at $(x, s)=l$ $\operatorname{sells}(l, y)$ $\operatorname{has}(y, s)=l$
Effects	$\operatorname{has}(y, s)=x$

The state-variable representation
Goals are sets of expressions involving state variables.
For example:

Goal:
at(climber, s) = home
has(rope, s) = climber
at(gorilla, s) = spire

From now on we will generally suppress the state s when writing state variables.

We can essentially regard a state as just a statement of what values the state variables take at a given time.

Formally:

- For each state variable sv we can consider all ground instances such as-sv(climber, rope)—with arguments that are consistent with the rigid relations.
Define X to be the set of all such ground instances.
- A state s is then just a set

$$
s=\{(\nu=c) \mid v \in X\}
$$

where c is in the range of v.
This allows us to define the effect of an action.
A planning problem also needs a start state s_{0}, which can be defined in this way.

The state-variable representation
Considering all the ground actions consistent with the rigid relations:

- An action is applicable in s if all expressions $\mathrm{v}=\mathrm{c}$ appearing in the set of preconditions also appear in s .

Finally, there is a function γ that maps a state and an action to a new state

$$
\gamma(s, a)=s^{\prime}
$$

Specifically, we have

$$
\gamma(s, a)=\{(v=c) \mid v \in X\}
$$

where either c is specified in an effect of a, or otherwise $v=c$ is a member of s.

Note: the definition of γ implicitly solves the frame problem.

A solution to a planning problem is a sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ of actions such that...

- a_{0} is applicable in s_{0} and for each i, a_{i} is applicable in $s_{i}=\gamma\left(s_{i-1}, a_{i-1}\right)$.
- For each goal g we have

$$
g \in \gamma\left(s_{n}, a_{n}\right)
$$

What we need now is a method for transforming a problem described in this language into a CSP.

We'll once again do this for a fixed upper limit T on the number of steps in the plan.

Converting to a CSP

Step 1: encode actions as CSP variables.
For each time step t where $0 \leq t \leq T-1$, the CSP has a variable

$$
\text { action }^{t}
$$

with domain

$$
D^{\text {action }^{t}}=\{\mathrm{a} \mid \mathrm{a} \text { is the ground instance of an action }\} \cup\{\text { none }\}
$$

Example: at some point in searching for a plan we might attempt to find the solution to the corresponding CSP involving

$$
\operatorname{action}^{5}=\operatorname{attach}(i n f l a t a b l e G o r i l l a, \text { spire })
$$

WARNING: be careful in what follows to distinguish between state variables, actions etc in the planning problem and variables in the CSP.

Converting to a CSP

Step 2: encode ground state variables as CSP variables, with a complete copy of all the state variables for each time step.

So, for each t where $0 \leq t \leq T$ we have a CSP variable

$$
\operatorname{sv}_{i}^{t}\left(c_{1}, \ldots, c_{n}\right)
$$

with domain $\mathcal{D}^{\mathrm{sv}_{\mathrm{i}}}$. (That is, the domain of the CSP variable is the range of the state variable.)

Example: at some point in searching for a plan we might attempt to find the solution to the corresponding CSP involving

$$
\text { location }^{9}(\text { climber } 1)=\text { hospital } .
$$

Converting to a CSP

Step 3: encode the preconditions for actions in the planning problem as constraints in the CSP problem.

For each time step t and for each ground action $a\left(c_{1}, \ldots, c_{n}\right)$ with arguments consistent with the rigid relations in its preconditions:

For a precondition of the form $\mathrm{sv}_{\mathrm{i}}=\nu$ include constraint pairs

$$
\begin{gathered}
\left(\text { action }^{t}=\mathrm{a}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right)\right. \\
\left.\operatorname{sv}_{\mathrm{i}}^{\mathrm{t}}=v\right)
\end{gathered}
$$

Example: consider the action buy (x, y, l) introduced above, and having the preconditions at $(x)=l$, sells (l, y) and has $(y)=l$.

Assume sells(y, l) is only true for

$$
l=\text { jokeShop }
$$

and

$$
y=\text { inflatableGorilla }
$$

(it's a very strange town) so we only consider these values for l and y. Then for each time step t we have the constraints...

Converting to a CSP

Converting to a CSP

Step 4: encode the effects of actions in the planning problem as constraints in the CSP problem.

For each time step t and for each ground action $a\left(c_{1}, \ldots, c_{n}\right)$ with arguments consistent with the rigid relations in its preconditions:

For an effect of the form $\mathrm{sv}_{\mathrm{i}}=v$ include constraint pairs

$$
\begin{gathered}
\left(\operatorname{action}^{t}=a\left(c_{1}, \ldots, c_{n}\right)\right. \\
\left.\operatorname{sv}_{i}^{t+1}=v\right)
\end{gathered}
$$

Example: continuing with the previous example, we will include constraints

action $^{\mathrm{t}}=$ buy(climber1, inflatableGorilla, jokeShop)
paired with
has $^{\text {t+1 }}($ inflatableGorilla $)=$ climber1
action $^{\text {t }}=$ buy (climber2, inflatableGorilla, jokeShop)
paired with
has $^{\text {t+1 }}($ inflatableGorilla $)=$ climber2
and so on...

Converting to a CSP

Step 5: encode the frame axioms as constraints in the CSP problem. An action must not change things not appearing in its effects. So: For:

1. Fach time step t.
2. Each ground action $a\left(c_{1}, \ldots, c_{n}\right)$ with arguments consistent with the rigid relations in its preconditions.
3. Each sv_{i} that does not appear in the effects of a, and each $v \in \mathcal{D}^{\operatorname{sv_{i}}}$ include in the CSP the ternary constraint

$$
\begin{gathered}
\text { action }^{t}=a\left(c_{1}, \ldots, c_{n}\right) \\
\operatorname{sv}_{i}^{t}=v \\
\left.\operatorname{sv}_{i}^{t+1}=v\right)
\end{gathered}
$$

Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.
The scheme has the following property:
A solution to the planning problem with at most T steps exists if and only if there is a a solution to the corresponding CSP.

Assume the CSP has a solution.
Then we can extract a plan simply by looking at the values assigned to the action ${ }^{t}$ variables in the solution of the CSP.

It is also the case that:
There is a solution to the planning problem with at most T steps if and only if there is a solution to the corresponding CSP from which the solution can be extracted in this way.

For a proof see:
Automated Planning: Theory and Practice
Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.

