
Review of onstraint satisfation problems (CSPs)We have:� A set of n variables V1, V2, . . . , Vn.� For eah Vi a domain Di speifying the values that Vi an take.� A set of m onstraints C1, C2, . . . , Cm.Eah onstraint Ci involves a set of variables and spei�es an allowableolletion of values .� A state is an assignment of spei� values to some or all of the variables.� An assignment is onsistent if it violates no onstraints.� An assignment is omplete if it gives a value to every variable.A solution is a onsistent and omplete assignment.
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ExampleWe will use the problem of olouring the nodes of a graph as a runningexample.
1 2 8

653 4
7 7

5 643
1 2 8

Eah node orresponds to a variable . We have three olours and diretlyonneted nodes should have di�erent olours.Caution required: later on, edges will have a di�erent meaning.
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ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for eah variable ontains the values blak, red and yan
Di = {B, R, C}� The onstraints enfore the idea that diretly onneted nodes musthave di�erent olours. For example, for variables V1 and V2 the on-straints speify

(B, R), (B,C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is unonstrained.
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Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is disrete with �nitedomains . We will onentrate on these.We will also onentrate on binary onstraints ; that is, onstraints be-tween pairs of variables .� Constraints on single variables|unary onstraints|an be handled byadjusting the variable's domain. For example, if we don't want Vi to bered , then we just remove that possibility from Di.� Higher-order onstraints applying to three or more variables an er-tainly be onsidered, but...� ...when dealing with �nite domains they an always be onverted to setsof binary onstraints by introduing extra auxiliary variables .How does that work?
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The state-variable representationAnother planning language: the state-variable representation .Things of interest suh as people, plaes, objets et are divided into do-mains :

D1 = {climber1, climber2}

D2 = {home, jokeShop, hardwareStore, pavement, spire, hospital}

D3 = {rope, inflatableGorilla}Part of the spei�ation of a planning problem involves stating whihdomain a partiular item is in. For example
D1(climber1)and so on.Relations and funtions have arguments hosen from unions of these do-mains.

above(x, y) ⊆ D
above
1 ×D

above
2is a relation. The Dabove

i are unions of one or more Di.
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The state-variable representationThe relation above is in fat a rigid relation (RR), as it is unhanging: itdoes not depend upon state . (Remember uents in situation alulus?)Similarly, we have funtions

at(x1, s) : Dat
1 × S → D

at.Here, at(x, s) is a state-variable . The domain Dat
1 and range Dat areunions of one or more Di. In general these an have multiple parameters

sv(x1, . . . , xn, s) : Dsv
1 × · · · × D

sv
n × S → D

sv.A state-variable denotes assertions suh as
at(gorilla, s) = jokeShopwhere s denotes a state and the set S of all states will be de�ned later.The state variable allows things suh as loations to hange|again, muhlike uents in the situation alulus.Variables appearing in relations and funtions are onsidered to be typed .
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The state-variable representationNote:� For properties suh as a loation a funtion might be onsiderably moresuitable than a relation.� For loations, everything has to be somewhere and it an only be inone plae at a time .So a funtion is perfet and immediately solves some of the problems seenearlier.
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The state-variable representationAtions as usual, have a name , a set of preonditions and a set of e�ets .� Names are unique, and followed by a list of variables involved in theation.� Preonditions are expressions involving state variables and relations.� E�ets are assignments to state variables.For example:

buy(x, y, l)Preonditions at(x, s) = l

sells(l, y)

has(y, s) = lE�ets has(y, s) = x
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The state-variable representationGoals are sets of expressions involving state variables .For example: Goal:

at(climber, s) = home

has(rope, s) = climber

at(gorilla, s) = spireFrom now on we will generally suppress the state s when writing statevariables.
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The state-variable representationWe an essentially regard a state as just a statement of what values thestate variables take at a given time.Formally:� For eah state variable sv we an onsider all ground instanes suhas|sv(climber, rope)|with arguments that are onsistent with therigid relations .De�ne X to be the set of all suh ground instanes.� A state s is then just a set
s = {(v = c)|v ∈ X}where c is in the range of v.This allows us to de�ne the e�et of an ation .A planning problem also needs a start state s0, whih an be de�ned inthis way.
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The state-variable representationConsidering all the ground ations onsistent with the rigid relations :� An ation is appliable in s if all expressions v= appearing in the setof preonditions also appear in s.Finally, there is a funtion γ that maps a state and an ation to a new state

γ(s, a) = s ′Spei�ally, we have

γ(s, a) = {(v = c)|v ∈ X}where either c is spei�ed in an e�et of a, or otherwise v = c is a memberof s.Note: the de�nition of γ impliitly solves the frame problem.
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The state-variable representationA solution to a planning problem is a sequene (a0, a1, . . . , an) of ationssuh that...� a0 is appliable in s0 and for eah i, ai is appliable in si = γ(si−1, ai−1).� For eah goal g we have

g ∈ γ(sn, an).What we need now is a method for transforming a problem desribed inthis language into a CSP.We'll one again do this for a �xed upper limit T on the number of stepsin the plan.
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Converting to a CSPStep 1: enode ations as CSP variables .For eah time step t where 0 ≤ t ≤ T − 1, the CSP has a variable
actiontwith domain

Dactiont

= {a|a is the ground instane of an ation} ∪ {none}Example: at some point in searhing for a plan we might attempt to �ndthe solution to the orresponding CSP involving
action5 = attach(inflatableGorilla, spire)

WARNING: be areful in what follows to distinguish between state vari-ables, ations et in the planning problem and variables in the CSP.
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Converting to a CSPStep 2: enode ground state variables as CSP variables , with a ompleteopy of all the state variables for eah time step.So, for eah t where 0 ≤ t ≤ T we have a CSP variable
svt

i(c1, . . . , cn)with domain Dsvi. (That is, the domain of the CSP variable is the rangeof the state variable.)Example: at some point in searhing for a plan we might attempt to �ndthe solution to the orresponding CSP involving
location9(climber1) = hospital.
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Converting to a CSPStep 3: enode the preonditions for ations in the planning problemas onstraints in the CSP problem .For eah time step t and for eah ground ation a(c1, . . . , cn) with argumentsonsistent with the rigid relations in its preonditions :For a preondition of the form svi = v inlude onstraint pairs
(actiont = a(c1, . . . , cn),

svt
i = v)Example: onsider the ation buy(x, y, l) introdued above, and havingthe preonditions at(x) = l, sells(l, y) and has(y) = l.Assume sells(y, l) is only true for

l = jokeShopand

y = inflatableGorilla(it's a very strange town) so we only onsider these values for l and y.Then for eah time step t we have the onstraints...15



Converting to a CSP

actiont = buy(climber1, inflatableGorilla, jokeShop)paired with

att(climber1) = jokeShop

actiont = buy(climber1, inflatableGorilla, jokeShop)paired with

hast(inflatableGorilla) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)paired with
att(climber2) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)paired with
hast(inflatableGorilla) = jokeShopand so on...

16



Converting to a CSPStep 4: enode the e�ets of ations in the planning problem as on-straints in the CSP problem .For eah time step t and for eah ground ation a(c1, . . . , cn) with argumentsonsistent with the rigid relations in its preonditions :For an e�et of the form svi = v inlude onstraint pairs
(actiont = a(c1, . . . , cn),

svt+1
i = v)Example: ontinuing with the previous example, we will inlude on-straints

actiont = buy(climber1, inflatableGorilla, jokeShop)paired with
hast+1(inflatableGorilla) = climber1

actiont = buy(climber2, inflatableGorilla, jokeShop)paired with
hast+1(inflatableGorilla) = climber2and so on...17



Converting to a CSPStep 5: enode the frame axioms as onstraints in the CSP problem .An ation must not hange things not appearing in its e�ets. So:For:1. Eah time step t.2. Eah ground ation a(c1, . . . , cn) with arguments onsistent with therigid relations in its preonditions .3. Eah svi that does not appear in the e�ets of a, and eah v ∈ Dsviinlude in the CSP the ternary onstraint
(actiont = a(c1, . . . , cn),

svt
i = v,

svt+1
i = v)
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Finding a planFinally, having enoded a planning problem into a CSP, we solve the CSP.The sheme has the following property:A solution to the planning problem with at most T steps exists if andonly if there is a a solution to the orresponding CSP .Assume the CSP has a solution.Then we an extrat a plan simply by looking at the values assigned to the

actiont variables in the solution of the CSP.It is also the ase that:There is a solution to the planning problem with at most T steps ifand only if there is a solution to the orresponding CSP from whihthe solution an be extrated in this way .For a proof see:Automated Planning: Theory and PratieMalik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.19


