
MCMC methodsA simple tehnique is to introdue a random walk, so
wi+1 = wi + ǫwhere ǫ is zero mean spherial Gaussian and has small variane. Obviouslythe sequene wi does not have the required distribution. However, we anuse the Metropolis algorithm , whih does not aept all the steps in therandom walk:1. If p(wi+1|y) > p(wi|y) then aept the step.2. Else aept the step with probability p(wi+1|y)

p(wi|y)

.In pratie, the Metropolis algorithm has several shortomings, and a greatdeal of researh exists on improved methods, see:R. Neal, \Probabilisti inferene using Markov hain Monte Carlomethods," University of Toronto, Department of Computer SieneTehnial Report CRG-TR-93-1, 1993.
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Approximate inferene for Bayesian networksMCMC methods also provide a method for performing approximate in-ferene in Bayesian networks .Say a system an be in a state s and moves from state to state in disretetime steps aording to a probabilisti transitionPr(s → s
′)Let πt(s) be the probability distribution for the state after t steps, so

πt+1(s
′) =

∑

s

Pr(s → s
′)πt(s)If at some point we obtain πt+1(s) = πt(s) for all s then we have reaheda stationary distribution π. In this ase

∀s
′π(s ′) =

∑

s

Pr(s → s
′)π(s)There is exatly one stationary distribution for a given Pr(s → s

′) providedthe latter obeys some simple onditions.
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Approximate inferene for Bayesian networksThe ondition of detailed balane

∀s, s ′π(s)Pr(s → s
′) = π(s ′)Pr(s ′ → s)is suÆient to provide a π that is a stationary distribution. To see thissimply sum:

∑

s

π(s)Pr(s → s
′) =

∑

s

π(s ′)Pr(s ′ → s)

= π(s ′)
∑

s

Pr(s ′ → s)

︸ ︷︷ ︸
=1

= π(s ′)If all this is looking a little familiar, it's beause we now have an exel-lent appliation for the material in Mathematial Methods for ComputerSiene . That ourse used the alternative term loal balane .
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Approximate inferene for Bayesian networksRealling one again the basi equation for performing probabilisti infer-ene Pr(Q|e) =
1

Z

Pr(Q ∧ e) =
1

Z

∑

u

Pr(Q,u, e)where� Q is the query variable.� e is the evidene.� u are the unobserved variables.� 1/Z normalises the distribution.We are going to onsider obtaining samples from the distribution Pr(Q,U|e).
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Approximate inferene for Bayesian networksThe evidene is �xed. Let the state of our system be a spei� set of valuesfor the query variable and the unobserved variables
s = (q, u1, u2, . . . , un) = (s1, s2, . . . , sn+1)and de�ne si to be the state vetor with si removed

si = (s1, . . . , si−1, si+1, . . . , sn+1)To move from s to s
′ we replae one of its elements, say si, with a newvalue s ′

i sampled aording to

s ′

i ∼ Pr(Si|si, e)This has detailed balane, and has Pr(Q,U|e) as its stationary distribution.
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Approximate inferene for Bayesian networksTo see that Pr(Q,U|e) is the stationary distribution

π(s)Pr(s → s
′) = Pr(s|e)Pr(s ′

i|si, e)

= Pr(si, si|e)Pr(s ′

i|si, e)

= Pr(si|si, e)Pr(si|e)Pr(s ′

i|si, e)

= Pr(si|si, e)Pr(s ′

i, si|e)

= Pr(s ′ → s)π(s ′)As a further simpli�ation, sampling from Pr(Si|si, e) is equivalent to sam-pling Si onditional on its parents, hildren and hildren's parents.
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Approximate inferene for Bayesian networksSo:� We suessively sample the query variable and the unobserved variables,onditional on their parents, hildren and hildren's parents.� This gives us a sequene s1, s2, . . . whih has been sampled aording toPr(Q,U|e).Finally, note that as Pr(Q|e) =
∑

u

Pr(Q,u|e)we an just ignore the values obtained for the unobserved variables. Thisgives us q1, q2, . . . with
qi ∼ Pr(Q|e)
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Approximate inferene for Bayesian networksTo see that the �nal step works, onsider what happens when we estimatethe expeted value of some funtion of Q.

E[f(Q)] =
∑

q

f(q)Pr(q|e)

=
∑

q

f(q)
∑

u

Pr(q, u|e)

=
∑

q

∑

u

f(q)Pr(q, u|e)so sampling using Pr(q, u|e) and ignoring the values for u obtained worksexatly as required.
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