A (very) brief introduction into how to learn hyperparameters

So far in our coverage of the Bayesian approach to neural networks, the
hyperparameters o and [ were assumed to be known and fixed.
e But this is not a good assumption because...
e ...x corresponds to the width of the prior and 3 to the noise variance.
e So we really want to learn these from the data as well.

e How can this be done?

We now take a look at one of several ways of addressing this problem.



The Bayesian approach to neural networks

BEarlier we looked at the Bayesian approach to neural networks using the
following notation. We have:

e A neural network computing a function f(w;x).

e A training sequence s = ((x1,Y1),..., (Xm,Ym)), split into

y=(Yr Y2 --- Um)

and
X=(x; X2 -+ X )

The prior distribution p(w) is now on the weight vectors and Bayes’ the-
orem tells us that

) PIwIp(w)

p(y)
In addition we have a Gaussian prior and a likelihood assuming Gaussian
noise.

p(w



The Bayesian approach to neural networks

The prior and likelihood depend on « and [3 respectively so we now make
this clear and write
plylw, B)p(wlx)

pyle, )

(Don’t worry about recalling the actual ezpressions for the prior and like-
lihood just yet, they appear in a few slides time.)

p(wly, o, B) =

In the earlier slides we found that the Bayes classifier should in fact compute
pViy,x, o B) = | | plulw,x, Bp(wly, o B) dw
R

and we found an approximation to this integral. (Again, the necessary
parts of the result are repeated later.)



Hierarchical Bayes and the evidence

Let’s write down directly something that might be useful to know:

p(yle, B)p(e, B)
p(y)

If we know p(«, 3|y) then a straightforward approach is to use the values
for o and 3 that mazximise it.

plo, Bly) =

Here is a standard trick: assume that the prior p(«, 3) s flat, so that we
can just maximise
pyle, )

This 1s called type I mazimum likelthood and 1s one common way of doing
the job.

As usual there are other ways of handling « and [3, some of which are
regarded as more “correct”.



Hierarchical Bayes and the evidence

The quantity
p(yle, B)
1s called the ewvidence.

When we re-wrote our earlier equation for the posterior density of the
weights, making o and [3 explicit, we found

plylw, o, B)p(wlx, 3)
p(yle, )
So the evidence 1s the denomainator in this equation.

p(wly, o, B) =

This 1s the common pattern and leads to the idea of hierarchical Bayes:
the evidence for the hyperparameters at one level is the denominator in
the relevant application of Bayes theorem.



An expression for the evidence

We have already derived everything necessary to write an explicit equa-
tron for the evidence for the case of regression that we've been following.

First, as we know about a lot of expressions involving w we can introduce
1t by the standard trick of marginalising:

plyl, B) = | ply, wlx, p)dw
= | plylw, o, B)p(wlex, B)dw

= | plylw, B)p(wle)dw

J

where we've made the obvious independence simplifications.

The two densities in this integral are just the likelthood and prior we’ve
already studied.

We've just conditioned on o and (3, which previously were constants but
are now being treated as random variables.



An expression for the evidence

Here are the actual expression for the prior and likelihood.

The prior is

p(wla) = exp (—axEw(w))

where

and the likelihood 1is
plylw,B) =

where
. _ (2n m/2 dEy( 2
y(B) = (F) an =5 E h(w;xi))

Both of these equations have been copied d1rect1y from earlier slides: there
18 nothing to add.



An expression for the evidence

That gives us

—W/2 —m/2
sl = () (F)  [exel-stwaw

where
S(w) = oEw(w) + BEy(w)

This 1s exactly the integral we first derived an approximation for.

Specifically
J exp (—S(w)) dw ~ (27)V?|A|7"? exp(—S(wuap))

where
A =ual + ﬁVVEy(WMAP)

and wyap 1s the mazimum a posterior: solution.



An expression for the evidence

Putting all that together we get an expression for the logarithm of the
evidence:

\%%
logp(ylx, p) ~¥—log o — n—110g27t+ n—110g B
2 ] 2 2

- Elog Al

— aEw(wwmap) — BEy(Wwmap)

Again, we're using the fact that we want to mazimise the evidence and
this 1s equivalent to mazimising 1ts logarithm which turns a product into
a more friendly sum.



Maximising the evidence

We want to maximise this, so let’s differentiate it with respect to o« and 3.

For «
ologp(yle, ) W 10 log|A|

" _E L
el 7o EwlWaap) =3

How do we handle the final term? This is straightforward if we can compute
the eigenvalues of A.

Recall that the n eigenvalues A; and n eigenvectors v; of an n X n matrix
M are defined such that

MVi:)\iVi fOI'i:],...,TL
and the eigenvectors are orthonormal
T, _ 1 1f1=)
v 0 otherwise.

One standard result is that the determinant of a matrixz 1s the product
of its eigenvalues.
M| = H Ai
i=1
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Maximising the evidence

We have
A =«l + BVVEy(WMAp)

Say the eigenvalues of BVVE,(wpmap) are Ai. (These can be computed
using standard numerical algorithms.)

Then the eigenvalues of A are « + A; and

dlog|A| 0

W
Yo ™ <10g il_][(OCJr?\i))
5 [
=3 <Z log (o + 7\1))

=

_i 1 oo+ Aj)
N x+A Odx

=

This remains tricky because the eigenvalues might be functions of «.
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Maximising the evidence

To make further progress, assume (sometimes correct, sometimes not!)
that the A\; do not depend on «.

In that case
w

dlog|A| ]
0 _ZOC—|—7\1

=

— Trace(A ™)

because M ' has eigenvalues 1/)\; and the trace of a matrix is equal to the
sum of its eigenvalues.

Finally, equating the derivative to zero gives:

1% ]
— — Ew(wwnap) — 5 Trace(A™') =0
2 2

W
] o
- w3
* 2Ew(Wpap) ( : oc—|—7\i>

i=1

or

which can be used to update the value for o.
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Maximising the evidence

We can now repeat the process to obtain an update for [3:

dlogp(yle,p)  m 10log|A]
= — — Ey(wWmap) — 5

op 2p 2 0P
dlog|A|l  d (&
36 9B <;log(oc—|—7\i)>

\%%
19
— As
Z;a+haﬂ“+ |

In this case

and again we have a potentially tricky derivative.
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Maximising the evidence

As the A; are the eigenvalues of BV VEy(wyap) we have

(can you see why?) so

Eiquating the derivative to zero gives

g | . i Ai
2B, (wuap) o+ A

1=1

which can be used to update the value for 3.
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Maximising the evidence

Here’s why the derivative works.
Say
\Y = VVEy(WMAp)
so we're interested in 0A;/0[> when the A; are the eigenvalues of 3IVI. Thus
(BM)vi = Ajvy
and using the fact that the eigenvectors are orthonormal
BViTMVi = }\iViTVi =%
SO \
ViT Mv; = —

&

and
OA;

o

Ai
5

T
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Maximising the evidence

Summary:

Define
W

Ai
0, —
where the subscript denotes the fact that we're using the following equa-
tions to periodically update our estimates of « and f3.

Collecting the two update equations together we have

K] = Ot
1 2Ew(Waap)
and
B N m — Gt
tH 2By (Wap)
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Maximising the evidence

This suggests a method for the overall learning process:

1. Choose the initial values oy and [3p at random.

2. Choose an initial weight vector w according to the prior.

3. Use a standard optimisation algorithm to iteratively estimate wyap.

4. While the optimisation progresses, periodically use the equations above

to re-estimate o« and f3.

Step 4 requires that we compute an eigendecomposition, which might well
be time-consuming. If necessary we can make a simplification.

When m >> W it is reasonable to expect that 0, ~ W an so we can use

. W
H] 2Ew(Wap)
and
m
P = 2By (Wmap)
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An alternative: integrate the hyperparameters out

While choosing o« and 3 by maximising the evidence leads to an effective
algorithm, 1t might be argued that a more correct way to deal with these
parameters would be to integrate them out.

sl = J J p(w, o, Bly)dadp.

(Recall the general equation for probabilistic inference where we inte-
grate out unobserved random variables.)

Re-arranging this we have

C

”p(w, o Bl ot = e N (oo B (v i B el

1 P

= plylw, o, B)p(wle, B)plex, B)daxdf

1 o

p(ylw, B)p(wlx)p(a)p(B)dadf

where we're assuming « and B are mdependent
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An alternative: integrate the hyperparameters out

In order to continue we need to specify priors on o and 3.

On this occasion we have a good reason to choose particular priors, as «
and [3 are scale parameters.

In general, a scale parameter o i1s one that appears in a density of the form

plxlo) = - (%)

o \o
The standard deviation of a Gaussian density is an example.

What happens to this density if we scale x such that x" = cx?
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Standard result number 1

We need to recall how to deal with transformations of continuous random
variables.

Say we have a random variable x with probability density p.(x).
We then transform x to y = f(x) where f is strictly increasing.

What 1s the probability density function of y¢ There i1s a standard
method for computing this. (See NST maths, or the 1A Probability course.)

o () = P W)
’ f/(f~1(y))
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An alternative: integrate the hyperparameters out

Applying this when x’ = cx we have

f(x) = cx
f(x') = X
C

f'(x) =c

and so

1 x' 1, /x
()= —f[ ) = ¢ (X
P co (ccr) o’ (O")

Thus the transformation leaves the density essentially unchanged, and in
particular we want the densities p(o) and p(o’) to be identical.

[t turns out that this forces the choice

This is an tmproper prior and it is conventional to take ¢/ = 1.

21



Standard result number 2

Returning to the integral of interest

1

1Ty)“P(y\W, B)p(wlo)p(a)p(B)dxdp

Taking the integral for « first we have

1

J sl = | S A
J OCZW(OC)

"] o\ W/2 X )
== (ZT) exp (—zHWH ) do

and to evaluate this we use the following standard result:
J > Mn+1)

(S

n _
o x"exp(—ax)dx = s

where 1 > —1 and a > 0. So the integral becomes

“w F'(W/2)
(27[) W/ZEW(W)W/Z
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An alternative: integrate the hyperparameters out

Repeating the process for 3 and using the same standard result we have

1 B m/2
[prw.prppia =5 (1) el-BE (Wi
= (2m) Ey(w)m/z

Combining the two expression we obtain

1 “wr T(W/2) _my2 F(m/2)
—logp(wly) = —log (]Ty)(ZTt) W/ZEW(W)W/Z(ZTC) /ZEy(w)m/2>
= Vivlog Ew(w) + %1

and we want to minimaise this so we need

log Ey(W) + constant

w1 aEW(W)_l_m 1 OE,(w)

2 Ew(w) Ow 2 Ey(w) ow =0
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An alternative: integrate the hyperparameters out

The actual value for the evidence is

] ]
—logplwiy) = —log (p(y) Z, (o p) S (aBw(w) + BEy(Wm)

= aEw(w) + BEy (W) + constant

and we want to minimaise this so we need

(XaEw(W) i BaEy(W) _5

ow ow

This should make us VERY VERY HAPPY because if we equate the two
boxed equations we get

W
© T 2En(w)

and m
i 2B, (w)

and so the result for integrating out the hyperparameters agrees with the
result for optimising the evidence.
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