
A (very) brief introdu
tion into how to learn hyperparametersSo far in our 
overage of the Bayesian approa
h to neural networks, thehyperparameters α and β were assumed to be known and �xed.� But this is not a good assumption be
ause...� ...α 
orresponds to the width of the prior and β to the noise varian
e.� So we really want to learn these from the data as well.� How 
an this be done?We now take a look at one of several ways of addressing this problem.
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The Bayesian approa
h to neural networksEarlier we looked at the Bayesian approa
h to neural networks using thefollowing notation. We have:� A neural network 
omputing a fun
tion f(w;x).� A training sequen
e s = ((x1, y1), . . . , (xm, ym)), split into
y = ( y1 y2 · · · ym )and

X = ( x1 x2 · · · xm )The prior distribution p(w) is now on the weight ve
tors and Bayes' the-orem tells us that

p(w|y) =
p(y|w)p(w)

p(y)In addition we have a Gaussian prior and a likelihood assuming Gaussiannoise .
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The Bayesian approa
h to neural networksThe prior and likelihood depend on α and β respe
tively so we now makethis 
lear and write

p(w|y, α, β) =
p(y|w, β)p(w|α)

p(y|α,β)(Don't worry about re
alling the a
tual expressions for the prior and like-lihood just yet, they appear in a few slides time.)In the earlier slides we found that the Bayes 
lassi�er should in fa
t 
ompute

p(Y|y,x, α, β) =

∫

RW

p(y|w,x, β)p(w|y, α, β) dwand we found an approximation to this integral. (Again, the ne
essaryparts of the result are repeated later.)
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Hierar
hi
al Bayes and the eviden
eLet's write down dire
tly something that might be useful to know:
p(α, β|y) =

p(y|α,β)p(α,β)

p(y)If we know p(α,β|y) then a straightforward approa
h is to use the valuesfor α and β that maximise it .Here is a standard tri
k: assume that the prior p(α,β) is 
at , so that we
an just maximise

p(y|α,β)This is 
alled type II maximum likelihood and is one 
ommon way of doingthe job.As usual there are other ways of handling α and β, some of whi
h areregarded as more \
orre
t".
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Hierar
hi
al Bayes and the eviden
eThe quantity

p(y|α,β)is 
alled the eviden
e .When we re-wrote our earlier equation for the posterior density of theweights, making α and β expli
it, we found
p(w|y, α, β) =

p(y|w, α, β)p(w|α,β)

p(y|α,β)So the eviden
e is the denominator in this equation .This is the 
ommon pattern and leads to the idea of hierar
hi
al Bayes :the eviden
e for the hyperparameters at one level is the denominator inthe relevant appli
ation of Bayes theorem .
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An expression for the eviden
eWe have already derived everything ne
essary to write an expli
it equa-tion for the eviden
e for the 
ase of regression that we've been following.First, as we know about a lot of expressions involving w we 
an introdu
eit by the standard tri
k of marginalising :

p(y|α,β) =

∫

p(y,w|α,β)dw

=

∫

p(y|w, α, β)p(w|α,β)dw

=

∫

p(y|w, β)p(w|α)dwwhere we've made the obvious independen
e simpli�
ations.The two densities in this integral are just the likelihood and prior we'vealready studied .We've just 
onditioned on α and β, whi
h previously were 
onstants butare now being treated as random variables.
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An expression for the eviden
eHere are the a
tual expression for the prior and likelihood.The prior is

p(w|α) =
1

ZW(α)

exp (−αEW(w))where

ZW(α) =

(

2π

α

)W/2 and EW(w) =
1

2
||w||2and the likelihood is

p(y|w, β) =
1

Zy(β)

exp (−βEy(w))where

Zy(β) =

(

2π

β

)m/2 and Ey(w) =
1

2

m∑

i=1

(yi − h(w;xi))
2Both of these equations have been 
opied dire
tly from earlier slides: thereis nothing to add .
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An expression for the eviden
eThat gives us

p(y|α,β) =

(

2π

α

)−W/2(
2π

β

)−m/2 ∫ exp (−S(w))dwwhere

S(w) = αEW(w) + βEy(w)This is exa
tly the integral we �rst derived an approximation for .Spe
i�
ally

∫ exp (−S(w))dw ≃ (2π)W/2|A|−1/2 exp(−S(wMAP))where

A = αI + β∇∇Ey(wMAP)and wMAP is the maximum a posteriori solution .
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An expression for the eviden
ePutting all that together we get an expression for the logarithm of theeviden
e : log p(y|α,β) ≃
W

2

logα −
m

2

log 2π +
m

2

logβ

−
1

2

log |A|

− αEW(wMAP) − βEy(wMAP)Again, we're using the fa
t that we want to maximise the eviden
e andthis is equivalent to maximising its logarithm whi
h turns a produ
t intoa more friendly sum.
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Maximising the eviden
eWe want to maximise this, so let's di�erentiate it with respe
t to α and β.For α
∂ log p(y|α,β)

∂α
=

W

2α
− EW(wMAP) −

1

2

∂ log |A|

∂αHow do we handle the �nal term? This is straightforward if we 
an 
omputethe eigenvalues of A.Re
all that the n eigenvalues λi and n eigenve
tors vi of an n × n matrix

M are de�ned su
h that

Mvi = λivi for i = 1, . . . , nand the eigenve
tors are orthonormal
vT

i vj =

{
1 if i = j

0 otherwise.One standard result is that the determinant of a matrix is the produ
tof its eigenvalues .
|M| =

n∏

i=1

λi10



Maximising the eviden
eWe have

A = αI + β∇∇Ey(wMAP)Say the eigenvalues of β∇∇Ey(wMAP) are λi. (These 
an be 
omputedusing standard numeri
al algorithms.)Then the eigenvalues of A are α + λi and
∂ log |A|

∂α
=

∂

∂α

(log W∏

i=1

(α + λi)

)

=
∂

∂α

(

W∑

i=1

log(α + λi)

)

=

W∑

i=1

1

α + λi

∂(α + λi)

∂αThis remains tri
ky be
ause the eigenvalues might be fun
tions of α.
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Maximising the eviden
eTo make further progress, assume (sometimes 
orre
t, sometimes not!)that the λi do not depend on α.In that 
ase

∂ log |A|

∂α
=

W∑

i=1

1

α + λi

= Tra
e(A−1)be
ause M−1 has eigenvalues 1/λi and the tra
e of a matrix is equal to thesum of its eigenvalues.Finally, equating the derivative to zero gives:
W

2α
− EW(wMAP) −

1

2
Tra
e(A−1) = 0or

α =
1

2EW(wMAP)(W −

W∑

i=1

α

α + λi

)

whi
h 
an be used to update the value for α.12



Maximising the eviden
eWe 
an now repeat the pro
ess to obtain an update for β:
∂ log p(y|α,β)

∂β
=

m

2β
− Ey(wMAP) −

1

2

∂ log |A|

∂βIn this 
ase

∂ log |A|

∂β
=

∂

∂β

(

W∑

i=1

log(α + λi)

)

=

W∑

i=1

1

α + λi

∂

∂β
(α + λi)

=

W∑

i=1

1

α + λi

∂λi

∂βand again we have a potentially tri
ky derivative .
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Maximising the eviden
eAs the λi are the eigenvalues of β∇∇Ey(wMAP) we have
∂λi

∂β
=

λi

β(
an you see why?) so

∂ log |A|

∂β
=

1

β

W∑

i=1

λi

α + λiEquating the derivative to zero gives
β =

1

2Ey(wMAP)(m −

W∑

i=1

λi

α + λi

)

whi
h 
an be used to update the value for β.
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Maximising the eviden
eHere's why the derivative works.Say

M = ∇∇Ey(wMAP)so we're interested in ∂λi/∂β when the λi are the eigenvalues of βM. Thus
(βM)vi = λiviand using the fa
t that the eigenve
tors are orthonormal

βvT
i Mvi = λiv

T
i vi = λi.So

vT
i Mvi =

λi

βand

∂λi

∂β
= vT

i Mvi =
λi

β
.
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Maximising the eviden
eSummary :De�ne

θt =

W∑

i=1

λi

αt + λiwhere the subs
ript denotes the fa
t that we're using the following equa-tions to periodi
ally update our estimates of α and β.Colle
ting the two update equations together we have
αt+1 =

θt

2EW(wMAP)and

βt+1 =
m − θt

2Ey(wMAP)
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Maximising the eviden
eThis suggests a method for the overall learning pro
ess :1. Choose the initial values α0 and β0 at random.2. Choose an initial weight ve
tor w a

ording to the prior.3. Use a standard optimisation algorithm to iteratively estimate wMAP.4. While the optimisation progresses, periodi
ally use the equations aboveto re-estimate α and β.Step 4 requires that we 
ompute an eigende
omposition, whi
h might wellbe time-
onsuming. If ne
essary we 
an make a simpli�
ation.When m >> W it is reasonable to expe
t that θt ≃ W an so we 
an use

αt+1 =
W

2EW(wMAP)and

βt+1 =
m

2Ey(wMAP)17



An alternative: integrate the hyperparameters outWhile 
hoosing α and β by maximising the eviden
e leads to an e�e
tivealgorithm, it might be argued that a more 
orre
t way to deal with theseparameters would be to integrate them out .

p(w|y) =

∫ ∫

p(w, α, β|y)dαdβ.(Re
all the general equation for probabilisti
 inferen
e where we inte-grate out unobserved random variables.)Re-arranging this we have

∫ ∫

p(w, α, β|y)dαdβ =
1

p(y)

∫ ∫

p(y|w, α, β)p(w, α, β)dαdβ

=
1

p(y)

∫ ∫

p(y|w, α, β)p(w|α,β)p(α,β)dαdβ

=
1

p(y)

∫ ∫

p(y|w, β)p(w|α)p(α)p(β)dαdβwhere we're assuming α and β are independent.
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An alternative: integrate the hyperparameters outIn order to 
ontinue we need to spe
ify priors on α and β.On this o

asion we have a good reason to 
hoose parti
ular priors, as αand β are s
ale parameters .In general, a s
ale parameter σ is one that appears in a density of the form
p(x|σ) =

1

σ
f
(x

σ

)

The standard deviation of a Gaussian density is an example.What happens to this density if we s
ale x su
h that x ′ = cx?
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Standard result number 1We need to re
all how to deal with transformations of 
ontinuous randomvariables .Say we have a random variable x with probability density px(x).We then transform x to y = f(x) where f is stri
tly in
reasing.What is the probability density fun
tion of y? There is a standardmethod for 
omputing this. (See NST maths, or the 1A Probability 
ourse.)

py(y) =
px(f

−1(y))

f ′(f−1(y))
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An alternative: integrate the hyperparameters outApplying this when x ′ = cx we have

f(x) = cx

f−1(x ′) =
x ′

c

f ′(x) = cand so

px ′(x ′) =
1

cσ
f

(

x ′

cσ

)

=
1

σ ′
f

(

x ′

σ ′

)

Thus the transformation leaves the density essentially un
hanged, and inparti
ular we want the densities p(σ) and p(σ ′) to be identi
al.It turns out that this for
es the 
hoi
e
p(σ) =

c ′

σ
.This is an improper prior and it is 
onventional to take c ′ = 1.
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Standard result number 2Returning to the integral of interest

1

p(y)

∫ ∫

p(y|w, β)p(w|α)p(α)p(β)dαdβTaking the integral for α �rst we have

∫

p(w|α)p(α)dα =

∫
1

αZW(α)

exp(−αEW(w))dα

=

∫
1

α

( α

2π

)W/2 exp(−α

2
||w||2

)

dαand to evaluate this we use the following standard result :
∫∞

0

xn exp(−ax)dx =
Γ(n + 1)

an+1where n > −1 and a > 0. So the integral be
omes

(2π)−W/2 Γ(W/2)

EW(w)W/2
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An alternative: integrate the hyperparameters outRepeating the pro
ess for β and using the same standard result we have
∫

p(y|w, β)p(β)dβ =

∫
1

β

(

β

2π

)m/2 exp(−βEy(w))dβ

= (2π)−m/2 Γ(m/2)

Ey(w)m/2Combining the two expression we obtain
− log p(w|y) = − log( 1

p(y)
(2π)−W/2 Γ(W/2)

EW(w)W/2
(2π)−m/2 Γ(m/2)

Ey(w)m/2

)

=
W

2

log EW(w) +
m

2

log Ey(w) + 
onstantand we want to minimise this so we need
W

2

1

EW(w)

∂EW(w)

∂w
+

m

2

1

Ey(w)

∂Ey(w)

∂w
= 0
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An alternative: integrate the hyperparameters outThe a
tual value for the eviden
e is

− log p(w|y) = − log( 1

p(y)

1

Zy(α,β)

exp(−(αEW(w) + βEy(w)))

)

= αEW(w) + βEy(w) + 
onstantand we want to minimise this so we need
α

∂EW(w)

∂w
+ β

∂Ey(w)

∂w
= 0This should make us VERY VERY HAPPY be
ause if we equate the twoboxed equations we get

α =
W

2EW(w)and

β =
m

2Ey(w)and so the result for integrating out the hyperparameters agrees with theresult for optimising the eviden
e . 24


