
A (very) brief introdution into how to learn hyperparametersSo far in our overage of the Bayesian approah to neural networks, thehyperparameters α and β were assumed to be known and �xed.� But this is not a good assumption beause...� ...α orresponds to the width of the prior and β to the noise variane.� So we really want to learn these from the data as well.� How an this be done?We now take a look at one of several ways of addressing this problem.

1

The Bayesian approah to neural networksEarlier we looked at the Bayesian approah to neural networks using thefollowing notation. We have:� A neural network omputing a funtion f(w;x).� A training sequene s = ((x1, y1), . . . , (xm, ym)), split into
y = ( y1 y2 · · · ym )and
X = ( x1 x2 · · · xm )The prior distribution p(w) is now on the weight vetors and Bayes' the-orem tells us that

p(w|y) =
p(y|w)p(w)

p(y)In addition we have a Gaussian prior and a likelihood assuming Gaussiannoise .
2

The Bayesian approah to neural networksThe prior and likelihood depend on α and β respetively so we now makethis lear and write
p(w|y, α, β) =

p(y|w, β)p(w|α)

p(y|α,β)(Don't worry about realling the atual expressions for the prior and like-lihood just yet, they appear in a few slides time.)In the earlier slides we found that the Bayes lassi�er should in fat ompute
p(Y|y,x, α, β) =

∫
RW

p(y|w,x, β)p(w|y, α, β) dwand we found an approximation to this integral. (Again, the neessaryparts of the result are repeated later.)

3

Hierarhial Bayes and the evideneLet's write down diretly something that might be useful to know:
p(α, β|y) =

p(y|α,β)p(α,β)

p(y)If we know p(α,β|y) then a straightforward approah is to use the valuesfor α and β that maximise it .Here is a standard trik: assume that the prior p(α,β) is at , so that wean just maximise
p(y|α,β)This is alled type II maximum likelihood and is one ommon way of doingthe job.As usual there are other ways of handling α and β, some of whih areregarded as more \orret".
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Hierarhial Bayes and the evideneThe quantity
p(y|α,β)is alled the evidene .When we re-wrote our earlier equation for the posterior density of theweights, making α and β expliit, we found

p(w|y, α, β) =
p(y|w, α, β)p(w|α,β)

p(y|α,β)So the evidene is the denominator in this equation .This is the ommon pattern and leads to the idea of hierarhial Bayes :the evidene for the hyperparameters at one level is the denominator inthe relevant appliation of Bayes theorem .
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An expression for the evideneWe have already derived everything neessary to write an expliit equa-tion for the evidene for the ase of regression that we've been following.First, as we know about a lot of expressions involving w we an introdueit by the standard trik of marginalising :
p(y|α,β) =

∫
p(y,w|α,β)dw

=

∫
p(y|w, α, β)p(w|α,β)dw

=

∫
p(y|w, β)p(w|α)dwwhere we've made the obvious independene simpli�ations.The two densities in this integral are just the likelihood and prior we'vealready studied .We've just onditioned on α and β, whih previously were onstants butare now being treated as random variables.
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An expression for the evideneHere are the atual expression for the prior and likelihood.The prior is

p(w|α) =
1

ZW(α)
exp (−αEW(w))where

ZW(α) =

(
2π

α

)W/2 and EW(w) =
1

2
||w||2and the likelihood is

p(y|w, β) =
1

Zy(β)
exp (−βEy(w))where

Zy(β) =

(
2π

β

)m/2 and Ey(w) =
1

2

m∑
i=1

(yi − h(w;xi))
2Both of these equations have been opied diretly from earlier slides: thereis nothing to add .
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An expression for the evideneThat gives us
p(y|α,β) =

(
2π

α

)−W/2(
2π

β

)−m/2 ∫ exp (−S(w))dwwhere
S(w) = αEW(w) + βEy(w)This is exatly the integral we �rst derived an approximation for .Spei�ally ∫ exp (−S(w))dw ≃ (2π)W/2|A|−1/2 exp(−S(wMAP))where
A = αI + β∇∇Ey(wMAP)and wMAP is the maximum a posteriori solution .
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An expression for the evidenePutting all that together we get an expression for the logarithm of theevidene : log p(y|α,β) ≃W

2
logα −

m

2
log 2π +

m

2
logβ

−
1

2
log |A|

− αEW(wMAP) − βEy(wMAP)Again, we're using the fat that we want to maximise the evidene andthis is equivalent to maximising its logarithm whih turns a produt intoa more friendly sum.

9

Maximising the evideneWe want to maximise this, so let's di�erentiate it with respet to α and β.For α
∂ log p(y|α,β)

∂α
=

W

2α
− EW(wMAP) −

1

2

∂ log |A|

∂αHow do we handle the �nal term? This is straightforward if we an omputethe eigenvalues of A.Reall that the n eigenvalues λi and n eigenvetors vi of an n × n matrix
M are de�ned suh that

Mvi = λivi for i = 1, . . . , nand the eigenvetors are orthonormal
vT

i vj =

{
1 if i = j

0 otherwise.One standard result is that the determinant of a matrix is the produtof its eigenvalues .
|M| =

n∏
i=1

λi10
Maximising the evideneWe have
A = αI + β∇∇Ey(wMAP)Say the eigenvalues of β∇∇Ey(wMAP) are λi. (These an be omputedusing standard numerial algorithms.)Then the eigenvalues of A are α + λi and

∂ log |A|

∂α
=

∂

∂α

(log W∏
i=1

(α + λi)

)

=
∂

∂α

(
W∑
i=1

log(α + λi)

)

=

W∑
i=1

1

α + λi

∂(α + λi)

∂αThis remains triky beause the eigenvalues might be funtions of α.
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Maximising the evideneTo make further progress, assume (sometimes orret, sometimes not!)that the λi do not depend on α.In that ase
∂ log |A|

∂α
=

W∑
i=1

1

α + λi

= Trae(A−1)beause M−1 has eigenvalues 1/λi and the trae of a matrix is equal to thesum of its eigenvalues.Finally, equating the derivative to zero gives:
W

2α
− EW(wMAP) −

1

2
Trae(A−1) = 0or

α =
1

2EW(wMAP)(W −

W∑
i=1

α

α + λi

)
whih an be used to update the value for α.12



Maximising the evideneWe an now repeat the proess to obtain an update for β:
∂ log p(y|α,β)

∂β
=

m

2β
− Ey(wMAP) −

1

2

∂ log |A|

∂βIn this ase
∂ log |A|

∂β
=

∂

∂β

(
W∑
i=1

log(α + λi)

)

=

W∑
i=1

1

α + λi

∂

∂β
(α + λi)

=

W∑
i=1

1

α + λi

∂λi

∂βand again we have a potentially triky derivative .

13

Maximising the evideneAs the λi are the eigenvalues of β∇∇Ey(wMAP) we have
∂λi

∂β
=

λi

β(an you see why?) so
∂ log |A|

∂β
=

1

β

W∑
i=1

λi

α + λiEquating the derivative to zero gives
β =

1

2Ey(wMAP)(m −

W∑
i=1

λi

α + λi

)
whih an be used to update the value for β.

14
Maximising the evideneHere's why the derivative works.Say

M = ∇∇Ey(wMAP)so we're interested in ∂λi/∂β when the λi are the eigenvalues of βM. Thus
(βM)vi = λiviand using the fat that the eigenvetors are orthonormal

βvT
i Mvi = λiv

T
i vi = λi.So

vT
i Mvi =

λi

βand
∂λi

∂β
= vT

i Mvi =
λi

β
.
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Maximising the evideneSummary :De�ne
θt =

W∑
i=1

λi

αt + λiwhere the subsript denotes the fat that we're using the following equa-tions to periodially update our estimates of α and β.Colleting the two update equations together we have
αt+1 =

θt

2EW(wMAP)and
βt+1 =

m − θt

2Ey(wMAP)
16



Maximising the evideneThis suggests a method for the overall learning proess :1. Choose the initial values α0 and β0 at random.2. Choose an initial weight vetor w aording to the prior.3. Use a standard optimisation algorithm to iteratively estimate wMAP.4. While the optimisation progresses, periodially use the equations aboveto re-estimate α and β.Step 4 requires that we ompute an eigendeomposition, whih might wellbe time-onsuming. If neessary we an make a simpli�ation.When m >> W it is reasonable to expet that θt ≃ W an so we an use
αt+1 =

W

2EW(wMAP)and
βt+1 =

m

2Ey(wMAP)17

An alternative: integrate the hyperparameters outWhile hoosing α and β by maximising the evidene leads to an e�etivealgorithm, it might be argued that a more orret way to deal with theseparameters would be to integrate them out .
p(w|y) =

∫ ∫
p(w, α, β|y)dαdβ.(Reall the general equation for probabilisti inferene where we inte-grate out unobserved random variables.)Re-arranging this we have∫ ∫

p(w, α, β|y)dαdβ =
1

p(y)

∫ ∫
p(y|w, α, β)p(w, α, β)dαdβ

=
1

p(y)

∫ ∫
p(y|w, α, β)p(w|α,β)p(α,β)dαdβ

=
1

p(y)

∫ ∫
p(y|w, β)p(w|α)p(α)p(β)dαdβwhere we're assuming α and β are independent.
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An alternative: integrate the hyperparameters outIn order to ontinue we need to speify priors on α and β.On this oasion we have a good reason to hoose partiular priors, as αand β are sale parameters .In general, a sale parameter σ is one that appears in a density of the form
p(x|σ) =

1

σ
f
(x

σ

)
The standard deviation of a Gaussian density is an example.What happens to this density if we sale x suh that x ′ = cx?
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Standard result number 1We need to reall how to deal with transformations of ontinuous randomvariables .Say we have a random variable x with probability density px(x).We then transform x to y = f(x) where f is stritly inreasing.What is the probability density funtion of y? There is a standardmethod for omputing this. (See NST maths, or the 1A Probability ourse.)
py(y) =

px(f
−1(y))

f ′(f−1(y))
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An alternative: integrate the hyperparameters outApplying this when x ′ = cx we have
f(x) = cx

f−1(x ′) =
x ′

c

f ′(x) = cand so
px ′(x

′) =
1

cσ
f

(
x ′

cσ

)
=

1

σ ′f
(

x ′

σ ′

)
Thus the transformation leaves the density essentially unhanged, and inpartiular we want the densities p(σ) and p(σ ′) to be idential.It turns out that this fores the hoie

p(σ) =
c ′

σ
.This is an improper prior and it is onventional to take c ′ = 1.
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Standard result number 2Returning to the integral of interest
1

p(y)

∫ ∫
p(y|w, β)p(w|α)p(α)p(β)dαdβTaking the integral for α �rst we have∫

p(w|α)p(α)dα =

∫
1

αZW(α)
exp(−αEW(w))dα

=

∫
1

α

( α

2π

)W/2 exp(−α

2
||w||2

)
dαand to evaluate this we use the following standard result :∫∞

0

xn exp(−ax)dx =
Γ(n + 1)

an+1where n > −1 and a > 0. So the integral beomes
(2π)−W/2 Γ(W/2)

EW(w)W/2
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An alternative: integrate the hyperparameters outRepeating the proess for β and using the same standard result we have∫
p(y|w, β)p(β)dβ =

∫
1

β

(
β

2π

)m/2 exp(−βEy(w))dβ

= (2π)−m/2 Γ(m/2)

Ey(w)m/2Combining the two expression we obtain
− log p(w|y) = − log( 1

p(y)
(2π)−W/2 Γ(W/2)

EW(w)W/2
(2π)−m/2 Γ(m/2)

Ey(w)m/2

)
=

W

2
log EW(w) +

m

2
log Ey(w) + onstantand we want to minimise this so we need

W

2

1

EW(w)

∂EW(w)

∂w
+

m

2

1

Ey(w)

∂Ey(w)

∂w
= 0
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An alternative: integrate the hyperparameters outThe atual value for the evidene is
− log p(w|y) = − log( 1

p(y)

1

Zy(α,β)
exp(−(αEW(w) + βEy(w)))

)
= αEW(w) + βEy(w) + onstantand we want to minimise this so we need

α
∂EW(w)

∂w
+ β

∂Ey(w)

∂w
= 0This should make us VERY VERY HAPPY beause if we equate the twoboxed equations we get

α =
W

2EW(w)and
β =

m

2Ey(w)and so the result for integrating out the hyperparameters agrees with theresult for optimising the evidene . 24


