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Syllabus part I: advaned planningNew things to be looked at inlude some more advaned material on plan-ning algorithms:� Heuristis and GraphPlan: inorporating heuristis into partial-orderplanning, planning graphs, the GraphPlan algorithm. [1 leture℄� Planning using propositional logi: representing planning problemsusing propositional logi, and generating plans using satis�ability solvers.[1 leture℄� Planning using onstraint satisfation: representing and solving plan-ning problems as onstraint satisfation problems. [1 leture℄Note: there is no warranty attahed to the stated leture timings.
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Syllabus part II: probability in AIWe then delve into some more modern material whih takes aount ofunertainty:� Unertainty and Bayesian networks: review of probability as appliedto AI, Bayesian networks, inferene in Bayesian networks using both ex-at and approximate tehniques, other ways of dealing with unertainty.[4 letures℄� Utility and deision-making: maximising expeted utility, deisionnetworks, the value of information. [1 leture℄� Further supervised learning: Bayes theorem as applied to supervisedlearning, the maximum likelihood and maximum a posteriori hypothe-ses, applying the Bayesian approah to neural networks. [5 letures℄
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Syllabus part III: unertainty and timeFinally, we look at how unertain reasoning and learning an take plaewhen time is to be taken into aount:� Unertain reasoning over time: Markov proesses, transition and sen-sor models. Inferene in temporal models: �ltering, predition, smooth-ing and �nding the most likely explanation. Hidden Markov models.[2 letures℄� Reinforement learning: Learning from rewards and punishments.[1 leture℄
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BooksOne again, the main single text book for the ourse is:� Arti�ial Intelligene: A Modern Approah . Stuart Russell and PeterNorvig, Prentie Hall.There is an aompanying web site at

aima.cs.berkeley.eduEither the seond or third edition should be �ne, but avoid the �rst editionas it does not �t this ourse so well.Chapter numbers given in these notes refer to the seond edition.
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BooksFor some of the new material on neural networks you might also like totake a look at:� Pattern Reognition and Mahine Learning . Christopher M. Bishop,Springer, 2006.For some of the new material on reinforement learning you might like toonsult:� Mahine Learning . Tom Mithell. MGraw Hill, 1997.
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Dire Warning!!!DIRE WARNING!!!This ourse ontains quite a lot of:1. Probability2. Matrix algebra3. CalulusAs I am an evil and vinditive person I will assume that you know every-thing on these subjets that was overed in earlier ourses.If you don't it is essential that you re-visit your old notes and make surethat you're at home with that material.YOU HAVE BEEN WARNED
7



How's your maths?To see if you're up to speed on the maths, have a go at the following:Evaluate the integral ∫∞

−∞

exp(−x2)dx

Hint: this is a pretty standard result. Square the integral and hange topolar oordinates.
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How's your maths?Following on from that, here's something a bit more hallenging.Evaluate the integral

∫∞

−∞
· · ·
∫∞

−∞

exp(−
1

2

(

xTMx + xTv + c
)

)

dx1 · · ·dxnwhere M is a symmetri n × n matrix with real elements, v ∈ R
n, c ∈ Rand

xT =
[

x1 x2 · · · xn

]

∈ R
n

(This seond one is a bit triky. Don't worry, I'll show you the answerssomewhere around leture 10.)
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Planning IIWe now examine:� The way in whih basi heuristis might be de�ned for use in planningproblems.� The onstrution of planning graphs and their use in obtaining moresensible heuristis.� Planning graphs as the basis of the GraphPlan algorithm.� Planning using propositional logi.� Planning using onstraint satisfation .
Reading: Russell and Norvig, relevant setions of hapter 11.
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A quik reviewWe used the following simple example problem.The intrepid little samps in the Cambridge University Roof-ClimbingSoiety wish to attah an inatable gorilla to the spire of a famous College.To do this they need to leave home and obtain:� An inatable gorilla : these an be purhased from all good joke shops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly esapade?
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The STRIPS languageSTRIPS: \Stanford Researh Institute Problem Solver" (1970).States: are onjuntions of ground literals with no funtions .
At(Home) ∧ ¬Have(Gorilla)

∧ ¬Have(Rope)

∧ ¬Have(Kit)Goals: are onjuntions of literals where variables are assumed existen-tially quanti�ed.

At(x) ∧ Sells(x, Gorilla)A planner �nds a sequene of ations that makes the goal true whenperformed.
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An example of partial-order planningHere is the initial plan:

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

Finish

Start

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.
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An example of partial-order planningThere are two ations available:

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)
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An example of partial-order planning
Start

Buy(G)

At(JS), Sells(JS,G)

Go(JS)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)

At(Home)

The At(HS) preondition is easy to ahieve.But if we introdue a ausal link from Start to Go(HS) then we riskinvalidating the preondition for Go(JS).
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An example of partial-order planningThe planner ould baktrak and try to ahieve the At(x) preonditionusing the existing Go(JS) step.

Start

Buy(G)

At(JS), Sells(JS,G)

Go(JS)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R), At(HS)

At(Home)

This involves a threat, but one that an be �xed using promotion.
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Using heuristis in planningWe found in looking at searh problems that heuristis were a helpful thingto have.Note that now:� There is no simple representation of a state .� Consequently it is harder to measure the distane to a goal .De�ning heuristis for planning is therefore more diÆult than it was forsearh problems.
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Using heuristis in planningWe an quikly suggest some possibilities.For example

h = number of unsatis�ed preonditionsor

h =number of unsatis�ed preonditions
− number satis�ed by the start stateThese an lead to underestimates or overestimates:� Underestimates if ations an a�et one another in undesirable ways.� Overestimates if ations ahieve many preonditions.
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Using heuristis in planningWe an go a little further by learning from Constraint Satisfation Prob-lems and adopting the most onstrained variable heuristi:� Prefer the preondition satis�able in the smallest number of ways.This an be omputationally demanding but two speial ases are helpful:� Choose preonditions for whih no ation will satisfy them.� Choose preonditions that an only be satis�ed in one way.
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Planning graphsPlanning graphs an be used:� To ompute more sensible heuristis.� To generate entire plans.Also, planning graphs are easy to onstrut .They apply only when it is possible to work entirely using propositionalrepresentations of plans.Lukily, STRIPS an always be propositionalized...
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Planning graphsFor example : the triumphant return of the gorilla-purhasing roof-limbers...

At(y), ¬At(x)

Go(y)

At(x)

Prediate

Go(Home)

At(JS)

At(Home)

Go(JS)

and so on...
Propositional

At(Home)

Go(HS)

Go(HS)

At(HS), ¬At(Home)

At(Home), ¬At(JS)

At(JS)

At(JS), ¬At(Home) At(HS), ¬At(JS)
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Planning graphsA planning graph is onstruted in levels:� Level 0 orresponds to the start state .� At eah level we keep approximate trak of all things that ould betrue at the orresponding time.� At eah level we keep approximate trak of what ations ould beappliable at the orresponding time.The approximation is due to the fat that not all onits between ationsare traked. So:� The graph an underestimate how long it might take for a partiularproposition to appear, and therefore . . .� . . . a heuristi an be extrated.
22



Planning graphs: a simple exampleOur intrepid student adventurers will of ourse need to inate their gorillabefore attahing it to a distinguished roof . It has to be purhased beforeit an be inated.Start state : Empty.We assume that anything not mentioned in a state is false. So the state isatually

¬Have(Gorilla) and ¬Inflated(Gorilla)Ations :

Buy(Gorilla)

¬Have(Gorilla)

Have(Gorilla) Inflated(Gorilla)

Have(Gorilla)

Inflate(Gorilla)

Goal : Have(Gorilla) and Inflated(Gorilla).
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Planning graphs
Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

¬I(G)

Desribe startstate. All ations available instart state.

S1 S1

All possibilities forwhat might be thease at time 1. All ations that mightbe available at time

1. All possibilities forwhat might be thease at time 2.

= a persistene ation|what happens if no ation is taken.
H(G)

I(G)

An ation level Ai ontains all ations that ould happen given the propositions in Si.
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Mutex linksWe also reord, using mutual exlusion (mutex) links whih pairs of a-tions ould not our together.Mutex links 1 : E�ets are inonsistent.
Buy(G)

¬H(G) ¬H(G)

A0S0

H(G)

S1

The e�et of one ation negates the e�et of another.
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Mutex linksMutex links 2 : The ations interfere.

Inf(G)

¬I(G)

I(G)

¬I(G)

S1 A1 S1

The e�et of an ation negates the preondition of another.
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Mutex linksMutex links 3 : Competing for preonditions.
Buy(G)

Inf(G)

¬H(G)

A1

H(G)

S1

The preondition for an ation is mutually exlusive with the preonditionfor another. (See next slide!)
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Mutex linksA state level Si ontains all propositions that ould be true, given thepossible preeding ations.We also use mutex links to reord pairs that an not be true simultaneously:Possibility 1 : pair onsists of a proposition and its negation.
¬H(G)

H(G)

S1
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Mutex linksPossibility 2 : all pairs of ations that ould ahieve the pair of propositionsare mutex.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

I(G)

S1

The onstrution of a planning graph is ontinued until two idential levelsare obtained.
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Planning graphs
Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2
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Obtaining heuristis from a planning graphTo estimate the ost of reahing a single proposition:� Any proposition not appearing in the �nal level has in�nite ost andan never be reahed .� The level ost of a proposition is the level at whih it �rst appears butthis may be inaurate as several ations an apply at eah level and thisost does not ount the number of ations . (It is however admissible .)� A serial planning graph inludes mutex links between all pairs of a-tions exept persistene ations.Level ost in serial planning graphs an be quite a good measurement.
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Obtaining heuristis from a planning graphHow about estimating the ost to ahieve a olletion of propositions?� Max-level : use the maximum level in the graph of any proposition inthe set. Admissible but an be inaurate.� Level-sum : use the sum of the levels of the propositions. Inadmissiblebut sometimes quite aurate if goals tend to be deomposable.� Set-level : use the level at whih all propositions appear with nonebeing mutex. Can be aurate if goals tend not to be deomposable.
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Other points about planning graphsA planning graph guarantees that:1. If a proposition appears at some level, there may be a way of ahievingit.2. If a proposition does not appear, it an not be ahieved.The �rst point here is a loose guarantee beause only pairs of items arelinked by mutex links.Looking at larger olletions an strengthen the guarantee, but in pratiethe gains are outweighed by the inreased omputation.
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GraphplanThe GraphPlan algorithm goes beyond using the planning graph as asoure of heuristis.

Start at level 0;

while(true) {

if (all goal propositions appear in the current level

AND no pair has a mutex link) {

attempt to extract a plan;

if (a solution is obtained)

return the solution;

else if (graph indicates there is no solution)

return fail;

else

expand the graph to the next level;

}

}We extrat a plan diretly from the planning graph. Termination an beproved but will not be overed here.
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Graphplan in ationHere, at levels S0 and S1 we do not have both H(G) and I(G) available withno mutex links, and so we expand �rst to S1 and then to S2.
Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

At S2 we try to extrat a solution (plan).
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Extrating a plan from the graphExtration of a plan an be formalised as a searh problem .States ontain a level , and a olletion of unsatis�ed goal propositions .Start state: the urrent �nal level of the graph, along with the relevantgoal propositions.Goal: a state at level S0 ontaining the initial propositions.
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Extrating a plan from the graphAtions: For a state S with level Si, a valid ation is to selet any set X ofations in Ai−1 suh that:1. no pair has a mutex link;2. no pair of their preonditions has a mutex link;3. the e�ets of the ations in X ahieve the propositions in S.The e�et of suh an ation is a state having level Si−1, and ontaining thepreonditions for the ations in X.Eah ation has a ost of 1.
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Graphplan in ation
Start state

Action: Action:

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Buy(G)

H(G)

S0 S1 S2

H(G) I(G)

Inf(G) and 2
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Heuristis for plan extrationWe an of ourse also apply heuristis to this part of the proess.For example, when dealing with a set of propositions :� Choose the proposition having maximum level ost �rst.� For that proposition, attempt to ahieve it using the ation for whihthe maximum/sum level ost of its preonditions is minimum .
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Planning III: planning using propositional logiLast year we saw that plans might be extrated from a knowledge base viatheorem proving , using �rst order logi (FOL) and situation alulus .BUT : this might be omputationally infeasible for realisti problems.Sophistiated tehniques are available for testing satis�ability in proposi-tional logi, and these have also been applied to planning.The basi idea is to attempt to �nd a model of a sentene having the formdesription of start state
∧ desriptions of the possible ations

∧ desription of goal
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Propositional logi for planningWe attempt to onstrut this sentene suh that:� If M is a model of the sentene then M assigns ⊤ to a proposition ifand only if it is in the plan.� Any assignment denoting an inorret plan will not be a model as thegoal desription will not be ⊤.� The sentene is unsatis�able if no plan exists.
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Propositional logi for planningStart state :

S =At0(a, spire) ∧ At0(b, ground)

∧ ¬At0(a, ground) ∧ ¬At0(b, spire)

b

The two limbers want to swap plaes...a

Remember that an expression suh as At0(a, spire) is a proposition . Thesupersripted number now denotes time.
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Propositional logi for planningGoal :

G =Ati(a, ground) ∧ Ati(b, spire)

∧ ¬Ati(a, spire) ∧ ¬Ati(b, ground)Ations : an be introdued using the equivalent of suessor-state axioms
At1(a,ground)↔

(At0(a, ground) ∧ ¬(At0(a, ground) ∧ Move0(a, ground, spire)))

∨ (At0(a, spire) ∧ Move0(a, spire, ground))

(1)

Denote by A the olletion of all suh axioms.
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Propositional logi for planningWe will now �nd that S∧A∧G has a model in whih Move0(a, spire, ground)and Move0(b, ground, spire) are ⊤ while all remaining ations are ⊥.In more realisti planning problems we will learly not know in advane atwhat time the goal might expet to be ahieved.We therefore:� Loop through possible �nal times T .� Generate a goal for time T and ations up to time T .� Try to �nd a model and extrat a plan.� Until a plan is obtained or we hit some maximum time.
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Propositional logi for planningUnfortunately there is a problem|we may, if onsiderable are is not ap-plied, also be able to obtain less sensible plans.In the urrent example

Move0(b, ground, spire) = ⊤
Move0(a, spire, ground) = ⊤

Move0(a, ground, spire) = ⊤is a model, beause the suessor-state axiom (1) does not in fat preludethe appliation of Move0(a, ground, spire).We need a preondition axiom
Movei(a, ground, spire)→ Ati(a, ground)and so on.
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Propositional logi for planningLife beomes more ompliated still if a third loation is added: hospital.
Move0(a, spire, ground) ∧ Move0(a, spire, hospital)is perfetly valid and so we need to speify that he an't move to twoplaes simultaneously

¬(Movei(a, spire, ground) ∧ Movei(a, spire, hospital))

¬(Movei(a, ground, spire) ∧ Movei(a, ground, hospital))...and so on.These are ation-exlusion axioms.Unfortunately they will tend to produe totally-ordered rather than partially-ordered plans.
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Propositional logi for planningAlternatively:1. Prevent ations ourring together if one negates the e�et or preon-dition of the other.2. Or, speify that something an't be in two plaes simultaneously
∀x, i, l1, l2 l1 6= l2→ ¬(Ati(x, l1) ∧ Ati(x, l2))This is an example of a state onstraint .Clearly this proess an beome very omplex, but there are tehniques tohelp deal with this.
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Planning IV: planning using onstraint satisfationUnertainty I: Probability as Degree of BeliefWe now examine:� How probability theory might be used to represent and reason withknowledge when we are unertain about the world.� How inferene in the presene of unertainty an in priniple be per-formed using only basi results along with the full joint probabilitydistribution .� How this approah fails in pratie.� How the notions of independene and onditional independene maybe used to solve this problem.Reading: Russell and Norvig, hapter 13.
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Unertainty in AIThe (predominantly logi-based) methods overed so far have assortedshortomings:� Limited epistemologial ommitment|true/false/unknown.� Ations are possible when suÆient knowledge is available...� ...but this is not generally the ase.� In pratie there is a need to ope with unertainty .For example in the Wumpus World:� We an not make observations further a�eld than the urrent loality.� Consequently inferenes regarding pit/wumpus loation et will notusually be possible.
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Unertainty in AIA ouple of more subtle problems have also presented themselves:� The Quali�ation Problem: it is not generally possible to guaranteethat an ation will sueed|only that it will sueed if many otherpreonditions do/don't hold.� Rational ation depends on the likelihood of ahieving di�erent goals,and their relative desirability .
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Logi (as seen so far) has major shortomingsAn example:

∀x symptom(x, toothache)→ problem(x, cavity)This is plainly inorret. Toothahes an be aused by things other thanavities.

∀x symptom(x, toothache)→problem(x, cavity)∨

problem(x, abscess)∨

problem(x, gum-disease)∨

· · ·BUT:� It is impossible to omplete the list.� There's no lear way to take aount of the relative likelihoods of dif-ferent auses.
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Logi (as seen so far) has major shortomingsIf we try to make a ausal rule

∀x problem(x, abscess)→ symptom(x, toothache)it's still wrong|absesses do not always ause pain.We need further information in addition to
problem(x, abscess)and it's still not possible to do this orretly.
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Logi (as seen so far) has major shortomingsFOL an fail for essentially three reasons:1. Laziness: it is not feasible to assemble a set of rules that is suÆientlyexhaustive.If we ould, it would not be feasible to apply them.2. Theoretial ignorane: insuÆient knowledge exists to allow us towrite the rules.3. Pratial ignorane: even if the rules have been obtained there maybe insuÆient information to apply them.Instead of thinking in terms of the truth or falsity of a statement we wantto deal with an agent's degree of belief in the statement.� Probability theory is the perfet tool for appliation here.� Probability theory allows us to summarise the unertainty due to lazi-ness and ignorane.
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An important distintionThere is a fundamental di�erene between probability theory and fuzzylogi:� When dealing with probability theory, statements remain in fat eithertrue or false .� A probability denotes an agent's degree of belief one way or another.� Fuzzy logi deals with degree of truth .In pratie the use of probability theory has proved spetaularly suessful.
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Belief and evideneAn agent's beliefs will depend on what it has pereived : probabilities arebased on evidene and may be altered by the aquisition of new evidene:� Prior (unonditional) probability denotes a degree of belief in theabsene of evidene.� Posterior (onditional) probability denotes a degree of belief after ev-idene is pereived.As we shall see Bayes' theorem is the fundamental onept that allows usto update one to obtain the other.
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Making rational deisions under unertaintyWhen using logi, we onentrated on �nding an ation sequene guaran-teed to ahieve a goal, and then exeuting it.When dealing with unertainty we need to de�ne preferenes among statesof the world and take into aount the probability of reahing those states.Utility theory is used to assign preferenes.Deision theory ombines probability theory and utility theory.A rational agent should at in order to maximise expeted utility.
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ProbabilityWe want to assign degrees of belief to propositions about the world.We will need:� Random variables with assoiated domains|typially Boolean, dis-rete, or ontinuous.� All the usual onepts|events, atomi events, sets et.� Probability distributions and densities.� Probability axioms (Kolmogorov).� Conditional probability and Bayes' theorem.So if you've forgotten this stu� now is a good time to re-read it.

57



ProbabilityThe standard axioms are:� Range

0 ≤ Pr(x) ≤ 1� Always true propositionsPr(always true proposition) = 1� Always false propositionsPr(always false proposition) = 0� Union Pr(x ∨ y) = Pr(x) + Pr(y) − Pr(x ∧ y)
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Origins of probabilities IHistorially speaking, probabilities have been regarded in a number of dif-ferent ways:� Frequentist: probabilities ome from measurements.� Objetivist: probabilities are atual \properties of the universe" whihfrequentist measurements seek to unover.An exellent example: quantum phenomena.A bad example: oin ipping|the unertainty is due to our unertaintyabout the initial onditions of the oin.� Subjetivist: probabilities are an agent's degrees of belief.This means the agent is allowed to make up the numbers!
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Origins of probabilities IIThe referene lass problem : even frequentist probabilities are subjetive.Example: Say a dotor takes a frequentist approah to diagnosis. Sheexamines a large number of people to establish the prior probability ofwhether or not they have heart disease.To be aurate she tries to measure \similar people". (She knows for ex-ample that gender might be important.)Taken to an extreme, all people are di�erent and there is therefore noreferene lass .
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Origins of probabilities IIIThe priniple of indi�erene (Laplae).� Give equal probability to all propositions that are syntatially sym-metri with respet to the available evidene.� Re�nements of this idea led to the attempted development by Carnapand others of indutive logi.� The aim was to obtain the orret probability of any proposition froman arbitrary set of observations.It is urrently thought that no unique indutive logi exists.Any indutive logi depends on prior beliefs and the e�et of these beliefsis overome by evidene.
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Prior probabilityA prior probability denotes the probability (degree of belief) assigned toa proposition in the absene of any other evidene .For example Pr(Cavity = true) = 0.05denotes the degree of belief that a random person has a avity before wemake any atual observation of that person .To keep things ompat, we will usePr(Cavity)to denote the entire probability distribution of the random variable Cavity.Instead of Pr(Cavity = true) = 0.05Pr(Cavity = false) = 0.95write Pr(Cavity) = (0.05, 0.95)62



NotationA similar onvention will apply for joint distributions. For example, if
Decay an take the values severe, moderate or low thenPr(Cavity, Decay)is a 2 by 3 table of numbers.

severe moderate low

true 0.26 0.1 0.01

false 0.01 0.02 0.6Similarly Pr(true, Decay)denotes 3 numbers et.
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The full joint probability distributionThe full joint probability distribution is the joint distribution of all ran-dom variables that desribe the state of the world.This an be used to answer any query .(But of ourse life's not really that simple!)
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Conditional probabilityWe use the onditional probabilityPr(x|y)to denote the probability that a proposition x holds given that all theevidene we have so far is ontained in proposition y.From basi probability theoryPr(x|y) =

Pr(x ∧ y)Pr(y)Conditional probability is not analogous to logial impliation .� Pr(x|y) = 0.1 does not mean that if y is true then Pr(x) = 0.1.� Pr(x) is a prior probability .� The notation Pr(x|y) is for use when y is the entire evidene .� Pr(x|y ∧ z) might be very di�erent.
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Using the full joint distribution to perform infereneWe an regard the full joint distribution as a knowledge base .We want to use it to obtain answers to questions.
CP ¬CP

HBP ¬HBP HBP ¬HBP

HBP 0.09 0.05 0.07 0.01
¬HBP 0.02 0.08 0.03 0.65We'll use this medial diagnosis problem as a running example.� HD = Heart disease� CP = Chest pain� HBP = High blood pressure
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Using the full joint distribution to perform infereneThe proess is nothing more than the appliation of basi results:� Sum atomi events:Pr(HD ∨ CP) =Pr(HD ∧ CP ∧ HBP)

+ Pr(HD ∧ CP ∧ ¬HBP)

+ Pr(HD ∧ ¬CP ∧ HBP)

+ Pr(HD ∧ ¬CP ∧ ¬HBP)

+ Pr(¬HD ∧ CP ∧ HBP)

+ Pr(¬HD ∧ CP ∧ ¬HBP)

= 0.09 + 0.05 + 0.07 + 0.01 + 0.02 + 0.08

= 0.32� Marginalisation: if A and B are sets of variables thenPr(A) =
∑

b
Pr(A ∧ b) =
∑

b

Pr(A|b)Pr(b)
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Using the full joint distribution to perform infereneUsually we will want to ompute the onditional probability of some vari-able(s) given some evidene .For examplePr(HD|HBP) =

Pr(HD ∧ HBP)Pr(HBP) =
0.09 + 0.07

0.09 + 0.07 + 0.02 + 0.03
= 0.76andPr(¬HD|HBP) =

Pr(¬HD ∧ HBP)Pr(HBP) =
0.02 + 0.03

0.09 + 0.07 + 0.02 + 0.03
= 0.24
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Using the full joint distribution to perform infereneThe proess an be simpli�ed slightly by noting that
α =

1Pr(HBP)is a onstant and an be regarded as a normaliser making relevant prob-abilities sum to 1.So a short ut is to avoid omputing it as above. Instead:Pr(HD|HBP) = αPr(HD ∧ HBP) = (0.09 + 0.07)α

Pr(¬HD|HBP) = αPr(¬HD ∧ HBP) = (0.02 + 0.03)αand we need Pr(HD|HBP) + Pr(¬HD|HBP) = 1so

α =
1

0.09 + 0.07 + 0.02 + 0.03
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Using the full joint distribution to perform infereneThe general inferene proedure is as follows:Pr(Q|e) =
1

Z

Pr(Q ∧ e) =
1

Z

∑

u

Pr(Q, e, u)where� Q is the query variable.� e is the evidene.� u are the unobserved variables.� 1/Z normalises the distribution.
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Using the full joint distribution to perform infereneSimple eh?Well, no...� For n Boolean variables the table has 2n entries.� Storage and proessing time are both O(2n).� You need to establish 2n numbers to work with.In reality we might well have n > 1000, and of ourse it's even worse ifvariables are non-Boolean .How an we get around this?
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Exploiting independeneIf I toss a oin and roll a die, the full joint distribution of outomes requires
2 × 6 = 12 numbers to be spei�ed.

1 2 3 4 5 6

head 0.014 0.028 0.042 0.057 0.071 0.086

tail 0.033 0.067 0.1 0.133 0.167 0.2Here Pr(Coin = head) = 0.3 and the die has probability i/21 for the ithoutome.BUT : if we assume the outomes are independent thenPr(Coin, Dice) = Pr(Coin)Pr(Dice)Where Pr(Coin) has two numbers and Pr(Dice) has six.So instead of 12 numbers we only need 8.
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Exploiting independeneSimilarly, say instead of just onsidering HD, HBP and CP we also onsiderthe outome of the Oxford versus Cambridge tiddlywinks ompetition
TC: Pr(TC = Oxford) = 0.2Pr(TC = Cambridge) = 0.7Pr(TC = Draw) = 0.1Now Pr(HD, HBP, CP, TC) = Pr(TC|HD, HBP, HD)Pr(HD, HBP, HD)Assuming that the patient is not an extraordinarily keen fan of tiddly-winks , their ardia health has nothing to do with the outome, soPr(TC|HD, HBP, HD) = Pr(TC)and 2 × 2 × 2 × 3 = 24 numbers has been redued to 3 + 8 = 11.
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Exploiting independeneIn general you need to identify suh independene through knowledge ofthe problem .BUT :� It generally does not work as learly as this.� The independent subsets themselves an be big.
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Bayes theoremFrom �rst priniples Pr(x, y) = Pr(x|y)Pr(y)Pr(x, y) = Pr(y|x)Pr(x)so Pr(x|y) =

Pr(y|x)Pr(x)Pr(y)The most important equation in modern AI?When evidene e is involved this an be writtenPr(Q|R, e) =

Pr(R|Q,e)Pr(Q|e)Pr(R|e)
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Bayes theoremTaking another simple medial diagnosis example: does a patient with afever have malaria? A dotor might know thatPr(fever|malaria) = 0.99

Pr(malaria) =
1

10000Pr(fever) =
1

20Consequently we an try to obtain Pr(malaria|fever) by diret appliationof Bayes theoremPr(malaria|fever) =
0.99 × 0.0001

0.05
= 0.00198or using the alternative tehniquePr(malaria|fever) = αPr(fever|malaria)Pr(malaria)if the relevant further quantity Pr(fever|¬malaria) is known.
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Bayes theorem� Sometimes the �rst possibility is easier, sometimes not.� Causal knowledge suh asPr(fever|malaria)might well be available when diagnosti knowledge suh asPr(malaria|fever)is not.� Say the inidene of malaria, modelled by Pr(Malaria), suddenly hanges.Bayes theorem tells us what to do.� The quantity Pr(fever|malaria)would not be a�eted by suh a hange.Causal knowledge an be more robust.
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Conditional independeneWhat happens if we have multiple piees of evidene?We have seen that to omputePr(HD|CP, HBP)diretly might well run into problems.We ould try using Bayes theorem to obtainPr(HD|CP, HBP) = αPr(CP, HBP|HD)Pr(HD)However while HD is probably manageable, a quantity suh as Pr(CP, HBP|HD)might well still be problemati espeially in more realisti ases.
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Conditional independeneHowever although in this ase we might not be able to exploit independenediretly we an say thatPr(CP, HBP|HD) = Pr(CP|HD)Pr(HBP|HD)whih simpli�es matters.Conditional independene :� Pr(A,B|C) = Pr(A|C)Pr(B|C).� If we know that C is the ase then A and B are independent.Although CP and HBP are not independent, they do not diretly inueneone another in a patient known to have heart disease .This is muh nier!Pr(HD|CP, HBP) = αPr(CP|HD)Pr(HBP|HD)Pr(HD)
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Naive BayesConditional independene is often assumed even when it does not hold.Naive Bayes : Pr(A,B1, B2, . . . , Bn) = Pr(A)

n∏

i=1

Pr(Bi|A)Also known as Idiot's Bayes .Despite this, it is often surprisingly e�etive.
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Unertainty II - Bayesian NetworksHaving seen that in priniple, if not in pratie, the full joint distributionalone an be used to perform any inferene of interest, we now examine apratial tehnique.� We introdue the Bayesian Network (BN) as a ompat representationof the full joint distribution.� We examine the way in whih a BN an be onstruted .� We examine the semantis of BNs.� We look briey at how inferene an be performed.Reading: Russell and Norvig, hapter 14.
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Bayesian networksAlso alled probabilisti/belief/ausal networks or knowledge maps .
CP HBP

HDTW

� Eah node is a random variable (RV).� Eah node Ni has a distributionPr(Ni|parents(Ni))� A Bayesian network is a direted ayli graph .� Roughly speaking, an arrow from N to M means N diretly a�ets M.
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Bayesian networksAfter a regrettable inident involving an inatable gorilla , a famous Col-lege has deided to install an alarm for the detetion of roof limbers.� The alarm is very good at deteting limbers.� Unfortunately, it is also sometimes triggered when one of the extremelyfat geese that lives in the College lands on the roof.� One porter's lodge is near the alarm, and inhabited by a hap withexellent hearing and a pathologial hatred of roof limbers: he alwaysreports an alarm. His hearing is so good that he sometimes thinks hehears an alarm, even when there isn't one .� Another porter's lodge is a good distane away and inhabited by anold hap with dodgy hearing who likes to listen to his olletion ofDEATH METAL with the sound turned up.
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Bayesian networks

No: 0.95

Yes: 0.05 Yes: 0.2No: 0.8

a

¬a ¬a

a

0.001

Y NYNY YNNAlarm

Climber Goose

Lodge1 Lodge2
Pr(A|C, G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)
Pr(A|C, G)C G

Pr(Goose)Pr(Climber)

84



Bayesian networksNote that:� In the present example all RVs are disrete (in fat Boolean) and so inall ases Pr(Ni|parents(Ni)) an be represented as a table of numbers .� Climber and Goose have only prior probabilities.� All RVs here are Boolean, so a node with p parents requires 2p numbers.A BN with n nodes represents the full joint probability distribution forthose nodes asPr(N1 = n1,N2 = n2, . . . , Nn = nn) =

n∏

i=1

Pr(Ni = ni|parents(Ni)) (2)For examplePr(¬C,¬G, A, L1, L2) = Pr(L1|A)Pr(L2|A)Pr(A|¬C,¬G)Pr(¬C)Pr(¬G)
= 0.99 × 0.6 × 0.08 × 0.95 × 0.8
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SemantisIn general Pr(A,B) = Pr(A|B)Pr(B) so abbreviating Pr(N1 = n1,N2 =

n2, . . . ,Nn = nn) to Pr(n1, n2, . . . , nn) we havePr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1)Pr(nn−1, . . . , n1)Repeating this givesPr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1)Pr(nn−1|nn−2, . . . , n1) · · ·Pr(n1)

=

n∏

i=1

Pr(ni|ni−1, . . . , n1)

(3)

Now ompare equations 2 and 3. We see that BNs make the assumptionPr(Ni|Ni−1, . . . ,N1) = Pr(Ni|parents(Ni))for eah node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.Eah Ni is onditionally independent of its predeessors given itsparents
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Semantis� When onstruting a BN we want to make sure the preeding propertyholds.� This means we need to take are over ordering .� In general auses should diretly preede e�ets .
· · ·

Ni

parents(Ni)

Here, parents(Ni) ontains all preeding nodes having a diret inueneon Ni.
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SemantisDeviation from this rule an have major e�ets on the omplexity of thenetwork.That's bad! We want to keep the network simple:� If eah node has at most p parents and there are n Boolean nodes, weneed to speify at most n2p numbers...� ...whereas the full joint distribution requires us to speify 2n numbers.So: there is a trade-o� attahed to the inlusion of tenuous althoughstritly-speaking orret edges.
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SemantisAs a rule, we should inlude the most basi auses �rst, then the thingsthey inuene diretly et.What happens if you get this wrong?Example: add nodes in the order L2,L1,G,C,A.
Goose

Lodge2

Climber Alarm

Lodge1
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SemantisIn this example:� Inreased onnetivity.� Many of the probabilities here will be quite unnatural and hard to spe-ify.One again: ausal knowledge is preferred to diagnosti knowledge .
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SemantisAs an alternative we an say diretly what onditional independene as-sumptions a graph should be interpreted as expressing. There are twoommon ways of doing this.

A

P2P1

N1 N2

Any nodeA is onditionally independent of theNi|its non-desendants|given the Pi|its parents.
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Semantis
M7 M6 M5

M4M8

M1 M2 M3

A

Any node A is onditionally independent of all other nodes given theMarkov blanket Mi|that is, its parents , its hildren and its hildren'sparents .
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More omplex nodesHow do we represent Pr(Ni|parents(Ni))when nodes an denote general disrete and/or ontinuous RVs?� BNs ontaining both kinds of RV are alled hybrid BNs .� Naive disretisation of ontinuous RVs tends to result in both a redu-tion in auray and large tables.� O(2p) might still be large enough to be unwieldy.� We an instead attempt to use standard and well-understood distri-butions, suh as the Gaussian .� This will typially require only a small number of parameters to bespei�ed.
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More omplex nodesExample: funtional relationships are easy to deal with.
Ni = f(parents(Ni))

Pr(Ni = ni|parents(Ni)) =

{
1 if ni = f(parents(Ni))

0 otherwise
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More omplex nodesExample: a ontinuous RV with one ontinuous and one disrete parent.Pr(Speed of car|Throttle position, Tuned engine)where SC and TP are ontinuous and TE is Boolean.� For a spei� setting of ET = true it might be the ase that SC inreaseswith TP, but that some unertainty is involvedPr(SC|TP, et) = N(getTP + cet, σ
2
et)� For an un-tuned engine we might have a similar relationship with adi�erent behaviourPr(SC|TP, ¬et) = N(g¬etTP + c¬et, σ

2
¬et)There is a set of parameters {g, c, σ} for eah possible value of the disreteRV.
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More omplex nodesExample: a disrete RV with a ontinuous parentPr(Go roofclimbing|Size of fine)We ould for example use the probit distributionPr(Go roofclimbing = true|size) = Φ

(

t − size

s

)

where

Φ(x) =

∫ x

−∞
N(y)dyand N(x) is the Gaussian distribution with zero mean and variane 1.
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More omplex nodes
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More omplex nodesAlternatively, for this example we ould use the logit distributionPr(Go roofclimbing = true|size) =
1

1 + e(−2(t−size)/s)whih has a similar shape.� Tails are longer for the logit distribution.� The logit distribution tends to be easier to use...� ...but the probit distribution is often more aurate.
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Basi infereneWe saw earlier that the full joint distribution an be used to perform allinferene tasks :Pr(Q|e) =
1

Z

Pr(Q ∧ e) =
1

Z

∑

u

Pr(Q, e, u)where� Q is the query variable� e is the evidene� u are the unobserved variables� 1/Z normalises the distribution.
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Basi infereneAs the BN fully desribes the full joint distributionPr(Q,u, e) =

n∏

i=1

Pr(Ni|parents(Ni))It an be used to perform inferene in the obvious wayPr(Q|e) =
1

Z

∑

u

n∏

i=1

Pr(Ni|parents(Ni))but as we'll see this is in pratie problemati.� More sophistiated algorithms aim to ahieve this more eÆiently .� For omplex BNs we resort to approximation tehniques .

100



Other approahes to unertainty: Default reasoningOne ritiism made of probability is that it is numerial whereas humanargument seems fundamentally di�erent in nature:� On the one hand this seems quite defensible. I ertainly am not awareof doing logial thought through diret manipulation of probabilities ,but. . .� . . . on the other hand, neither am I aware of solving di�erential equa-tions in order to walk !Default reasoning:� Does not maintain degrees of belief .� Allows something to be believed until a reason is found not to.
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Other approahes to unertainty: rule-based systemsRule-based systems have some desirable properties:� Loality : if we establish the evidene X and we have a rule X→ Y then
Y an be onluded regardless of any other rules.� Detahment : one any Y has been established it an then be assumed.(It's justi�ation is irrelevant.)� Truth-funtionality : truth of a omplex formula is a funtion of thetruth of its omponents.These are not in general shared by probabilisti systems. What happens if:� We try to attah measures of belief to rules and propositions.� We try to make a truth-funtional system by, for example, making beliefin X ∧ Y a funtion of beliefs in X and Y?
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Other approahes to unertainty: rule-based systemsProblems that an arise:1. Say I have the ausal ruleHeart disease 0.95
−→ Chest painand the diagnosti ruleChest pain 0.7

−→ Heart diseaseWithout taking very great are to keep trak of the reasoning proess,these an form a loop.2. If in addition I haveChest pain 0.6
−→ Reent physial exertionthen it is quite possible to form the onlusion that with some degreeof ertainty heart disease is explained by exertion , whih may well beinorret.
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Other approahes to unertainty: rule-based systemsIn addition, we might argue that beause heart disease is an explanationfor hest pain the belief in physial exertion should derease .In general when suh systems have been suessful it has been through veryareful ontrol in setting up the rules.
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Other approahes to unertainty: Dempster-Shafer theoryDempster-Shafer theory attempts to distinguish between unertainty andignorane .Whereas the probabilisti approah looks at the probability of X, we insteadlook at the probability that the available evidene supports X.This is denoted by the belief funtion Bel(X).Example : given a oin but no information as to whether it is fair I haveno reason to think one outome should be preferred to anotherBel(outome = head) = Bel(outome = tail) = 0These beliefs an be updated when new evidene is available. If an experttells us there is n perent ertainty that it's a fair oin thenBel(outome = head) = Bel(outome = tail) =
n

100
× 1

2
.We may still have a gap in thatBel(outome = head) + Bel(outome = tail) 6= 1.Dempster-Shafer theory provides a oherent system for dealing with belieffuntions. 105



Other approahes to unertainty: Dempster-Shafer theoryProblems :� The Bayesian approah deals more e�etively with the quanti�ation ofhow belief hanges when new evidene is available .� The Bayesian approah has a better onnetion to the onept of utility ,whereas the latter is not well-understood for use in onjuntion withDempster-Shafer theory.
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Unertainty III: exat inferene in Bayesian networksWe now examine:� The basi equation for inferene in Bayesian networks, the latter beinghard to ahieve if approahed in the obvious way.� The way in whih matters an be improved a little by a small modi�-ation to the way in whih the alulation is done.� The way in whih muh better improvements might be possible using astill more informed approah, although not in all ases.Reading: Russell and Norvig, hapter 14, setion 14.4.
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Performing exat infereneWe know that in priniple any query Q an be answered by the alulationPr(Q|e) =
1

Z

∑

u

Pr(Q, e, u)where Q denotes the query, e denotes the evidene, u denotes unobservedvariables and 1/Z normalises the distribution.The naive implementation of this approah yields the Enumerate-Joint-Ask algorithm, whih unfortunately requires O(2n) time and spae for nBoolean random variables (RVs).
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Performing exat infereneIn what follows we will make use of some abbreviations.� C denotes Climber� G denotes Goose� A denotes Alarm� L1 denotes Lodge1� L2 denotes Lodge2Instead of writing out Pr(C = ⊤), Pr(C = ⊥) et we will write Pr(c),Pr(¬c) and so on.
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Performing exat infereneAlso Pr(Q, e, u) has a partiular form expressing onditional independenes:

No: 0.95

Yes: 0.05 Yes: 0.2No: 0.8

a

¬a ¬a

a

0.001

Y NYNY YNNAlarm

Climber Goose

Lodge1 Lodge2

Pr(A|C, G)
0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)
Pr(A|C, G)C G

Pr(Goose)Pr(Climber)

Pr(C, G,A, L1, L2) = Pr(C)Pr(G)Pr(A|C,G)Pr(L1|A)Pr(L2|A)
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Performing exat infereneConsider the omputation of the query Pr(C|l1, l2)We havePr(C|l1, l2) =
1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)Here there are 5 multipliations for eah set of values that appears forsummation, and there are 4 suh values.In general this gives time omplexity O(n2n) for n Boolean RVs.Looking more losely we see thatPr(C|l1, l2) =
1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)

=
1

Z

Pr(C)
∑

A

Pr(l1|A)Pr(l2|A)
∑

G

Pr(G)Pr(A|C,G)

=
1

Z

Pr(C)
∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

(4)

So for example... 111



Performing exat inferene

Pr(c|l1, l2) =
1

Z

Pr(c)(Pr(g)

{ Pr(a|c, g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c, g)Pr(l1|¬a)Pr(l2|¬a)

}

+Pr(¬g)

{ Pr(a|c,¬g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c,¬g)Pr(l1|¬a)Pr(l2|¬a)

})

with a similar alulation for Pr(¬c|l1, l2).Basially straightforward, BUT optimisations an be made.

112



Performing exat inferene
Pr(c)

Pr(g) Pr(¬g)

Pr(¬a|c, ¬g)

+
+

+Pr(¬a|c, g)Pr(a|c, g) Pr(a|c, ¬g)

Repeated Repeated

Pr(l1|a)Pr(l2|a)

Pr(l1|¬a)Pr(l2|¬a) Pr(l2|a)

Pr(l1|a) Pr(l1|¬a)Pr(l2|¬a)
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Optimisation 1: Enumeration-AskThe enumeration-ask algorithm improves matters to O(2n) time and O(n)spae by performing the omputation depth-�rst .However matters an be improved further by avoiding the dupliation ofomputations that learly appears in the example tree.
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Optimisation 2: variable eliminationLooking again at the fundamental equation (8)

1

Z

Pr(C)︸ ︷︷ ︸
C

∑

G

Pr(G)︸ ︷︷ ︸
G

∑

A

Pr(A|C,G)︸ ︷︷ ︸
A

Pr(l1|A)︸ ︷︷ ︸
L1

Pr(l2|A)︸ ︷︷ ︸
L2where C, G, A, L1, L2 denote the relevant fators .The basi idea is to evaluate (8) from right to left (or in terms of thetree, bottom up) storing results as we progress and re-using them whenneessary.Pr(l1|A) depends on the value of A. We store it as a table FL1(A). Similarlyfor Pr(l2|A).

FL1(A) =

(

0.99

0.08

)

FL2(A) =

(

0.6

0.001

)

as Pr(l1|a) = 0.99, Pr(l1|¬a) = 0.08 and so on.
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Optimisation 2: variable eliminationSimilarly for Pr(A|C,G), whih is dependent on A, C and G

FA(A, C,G) =

A C G FA(A,C, G)

⊤ ⊤ ⊤ 0.98

⊤ ⊤ ⊥ 0.96

⊤ ⊥ ⊤ 0.2

⊤ ⊥ ⊥ 0.08

⊥ ⊤ ⊤ 0.02

⊥ ⊤ ⊥ 0.04

⊥ ⊥ ⊤ 0.8

⊥ ⊥ ⊥ 0.92Can we write Pr(A|C,G)Pr(l1|A)Pr(l2|A) (5)as

FA(A,C,G)FL1(A)FL2(A) (6)in a reasonable way?
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Optimisation 2: variable eliminationThe answer is \yes" providedmultipliation of fators is de�ned orretly.Looking at (8)

1

Z

Pr(C)
∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)note that the values of the produt (9) in the summation depend on thevalues of C and G external to it, and the values of A themselves. So (6)should be a table olleting values for (9) where orrespondenes betweenRVs are maintained.This leads to a de�nition for multipliation of fators best given by example.
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Optimisation 2: variable elimination
F(A,B)F(B,C) = F(A,B,C)where

A B F(A,B) B C F(B,C) A B C F(A,B,C)

⊤ ⊤ 0.3 ⊤ ⊤ 0.1 ⊤ ⊤ ⊤ 0.3 × 0.1

⊤ ⊥ 0.9 ⊤ ⊥ 0.8 ⊤ ⊤ ⊥ 0.3 × 0.8

⊥ ⊤ 0.4 ⊥ ⊤ 0.8 ⊤ ⊥ ⊤ 0.9 × 0.8

⊥ ⊥ 0.1 ⊥ ⊥ 0.3 ⊤ ⊥ ⊥ 0.9 × 0.3

⊥ ⊤ ⊤ 0.4 × 0.1

⊥ ⊤ ⊥ 0.4 × 0.8

⊥ ⊥ ⊤ 0.1 × 0.8

⊥ ⊥ ⊥ 0.1 × 0.3
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Optimisation 2: variable eliminationThis proess gives us

FA(A,C, G)FL1(A)FL2(A) =

A C G

⊤ ⊤ ⊤ 0.98 × 0.99 × 0.6

⊤ ⊤ ⊥ 0.96 × 0.99 × 0.6

⊤ ⊥ ⊤ 0.2 × 0.99 × 0.6

⊤ ⊥ ⊥ 0.08 × 0.99 × 0.6

⊥ ⊤ ⊤ 0.02 × 0.08 × 0.001

⊥ ⊤ ⊥ 0.04 × 0.08 × 0.001

⊥ ⊥ ⊤ 0.8 × 0.08 × 0.001

⊥ ⊥ ⊥ 0.92 × 0.08 × 0.001
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Optimisation 2: variable eliminationHow about

FA,L1,L2(C, G) =
∑

A

FA(A,C,G)FL1(A)FL2(A)To denote the fat that A has been summed out we plae a bar over it inthe notation.

∑

A

FA(A,C,G)FL1(A)FL2(A) =FA(a, C,G)FL1(a)FL2(a)

+ FA(¬a,C, G)FL1(¬a)FL2(¬a)where

FA(a, C,G) =

C G

⊤ ⊤ 0.98

⊤ ⊥ 0.96

⊥ ⊤ 0.2

⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly for FA(¬a,C,G), FL1(¬a) and FL2(¬a).
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Optimisation 2: variable elimination
FA(a,C, G)FL1(a)FL2(a) =

C G

⊤ ⊤ 0.98 × 0.99 × 0.6

⊤ ⊥ 0.96 × 0.99 × 0.6

⊥ ⊤ 0.2 × 0.99 × 0.6

⊥ ⊥ 0.08 × 0.99 × 0.6

FA(¬a,C, G)FL1(¬a)FL2(¬a) =

C G

⊤ ⊤ 0.02 × 0.08 × 0.001

⊤ ⊥ 0.04 × 0.08 × 0.001

⊥ ⊤ 0.8 × 0.08 × 0.001

⊥ ⊥ 0.92 × 0.08 × 0.001

FA,L1,L2(C,G) =

C G

⊤ ⊤ (0.98 × 0.99 × 0.6) + (0.02 × 0.08 × 0.001)

⊤ ⊥ (0.96 × 0.99 × 0.6) + (0.04 × 0.08 × 0.001)

⊥ ⊤ (0.2 × 0.99 × 0.6) + (0.8 × 0.08 × 0.001)

⊥ ⊥ (0.08 × 0.99 × 0.6) + (0.92 × 0.08 × 0.001)
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Optimisation 2: variable eliminationNow, say for example we have ¬c, g. Then doing the alulation expliitlywould give

∑

A

Pr(A|¬c, g)Pr(l1|A))Pr(l2|A)

= Pr(a|¬c, g)Pr(l1|a)Pr(l2|a) + Pr(¬a|¬c, g)Pr(l1|¬a)Pr(l2|¬a)

= (0.2 × 0.99 × 0.6) + (0.8 × 0.08 × 0.001)whih mathes!Continuing in this manner form
FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C, G)sum out G to obtain FG,A,L1,L2(C) =

∑
G FG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)and normalise.

122



Optimisation 2: variable eliminationWhat's the omputational omplexity now?� For Bayesian networks with suitable struture we an perform inferenein linear time and spae.� However in the worst ase it is#P-hard , whih is worse than NP-hard .Consequently, we may need to resort to approximate inferene .Unertainty IV: Simple Deision-MakingWe now examine:� The onept of a utility funtion .� The way in whih suh funtions an be related to reasonable axiomsabout preferenes .� A generalization of the Bayesian network, known as a deision network .� How to measure the value of information , and how to use suh mea-surements to design agents that an ask questions .123



Reading: Russell and Norvig, hapter 16.
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Simple deision-makingWe now look at hoosing an ation by maximising expeted utility .A utility funtion U(s) measures the desirability of a state .If we an express a probability distribution for the states resulting fromalternative ations, then we an at in order to maximise expeted utility.For an ation a, let Result(a) = {s1, . . . , sn} be a set of states that mightbe the result of performing ation a. Then the expeted utility of a is

EU(a|E) =
∑

s∈Result(a)

Pr(s|a, E)U(s)Note that this applies to individual ations . Sequenes of ations will notbe overed in this ourse.
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Simple deision-making: all of AI?Muh as this looks like a omplete and highly attrative method for anagent to deide how to at, it hides a great deal of omplexity:1. It may be hard to ompute U(s). You generally don't know how gooda state is until you know where it might lead on to: planning et...2. Knowing what state you're urrently in involves most of AI !3. Dealing with Pr(s|a, E) involves Bayesian networks .
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Utility in more detailOverall, we now want to express preferenes between di�erent things.Let's use the following notation:

X > Y : X is preferred to Y

X = Y : we are indi�erent regarding X and Y

X ≥ Y : X is preferred, or we're indi�erent
X, Y and so on are lotteries . A lottery has the form

X = [p1, O1|p2, O2| · · · |pn, On]where Oi are the outomes of the lottery and pi their respetive probabil-ities. Outomes an be other lotteries or atual states.
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Axioms for utility theoryGiven we are dealing with preferenes it seems that there are some learproperties that suh things should exhibit:Transitivity : if X > Y and Y > Z then X > Z.Orderability : either X > Y or Y > X or X = Y.Continuity : if X > Y > Z then there is a probability p suh that
[p,X|(1 − p), Z] = Y

Substitutability : if X = Y then
[p,X|(1 − p), L] = [p, Y|(1 − p), L]
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Axioms for utility theoryMonotoniity : if X > Y then for probabilities p1 and p2, p1 ≥ p2 if andonly if

[p1, X|(1 − p1), Y] ≥ [p2, X|(1 − p2), Y]

Deomposability :

[p1, X|(1 − p1), [p2, Y|(1 − p2), Z]] = [p1, X|(1 − p1)p2, Y|(1 − p1)(1 − p2), Z]If an agent's preferenes onform to the utility theory axioms|and notethat we are only onsidering preferenes, not numbers|then it is possibleto de�ne a utility funtion U(s) for states suh that:1. U(s1) > U(s2)←→ s1 > s22. U(s1) = U(s2)←→ s1 = s23. U([p1, s1|p2, s2| · · · |pn, sn]) =
∑n

i=1 piU(si).We therefore have a justi�ation for the suggested approah.
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Designing utility funtionsThere is omplete freedom in how a utility funtion is de�ned, but learlyit will pay to de�ne them arefully.Example : the utility of money (for most people) exhibits a monotonipreferene . That is, we prefer to have more of it .But we need to talk about preferenes between lotteries .Say you've won 100, 000 pounds in a quiz and you're o�ered a oin ip:� For heads: you win a total of 1, 000, 000 pounds.� For tails: you walk away with nothing!Would you take the o�er?
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Designing utility funtionsThe expeted monetary value (EMV) of this lottery is
(0.5 × 1, 000, 000) + (0.5 × 0) = 500, 000whereas the EMV of the initial amount is 100, 000.BUT : most of us would probably refuse to take the oin ip.The story is not quite as simple as this though: our attitude probablydepends on how muh money we have to start with . If I have M poundsto start with then I am in fat hoosing between expeted utility of

U(M + 100, 000)and expeted utility of
(0.5 × U(M)) + (0.5 × U(M + 1, 000, 000))If M is 50, 000, 000 my attitude is muh di�erent to if it is 10, 000.
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Designing utility funtionsIn fat, researh shows that the utility of M pounds is for most peoplealmost exatly proportional to logM for M > 0. . .
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. . . and follows a similar shape for M < 0.
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Deision networksDeision networks|also known as inuene diagrams . . .
Build cost

Site of landfill

Legal action

Road traffic Air quality

Cost to taxpayer

Road conjestion

Utility

. . . allow us to work ations and utilities into the formalism of Bayesiannetworks .A deision network has three types of node. . .
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Deision networksA deision network has three types of node:Chane nodes : are denoted by ovals. These are random variables (RVs)represented by a distribution onditional on their parents, as in Bayesiannetworks. Parents an be other hane nodes or a deision node.Deision nodes : are denoted by squares. They desribe possible outomesof the deision of interest. Here we deal only with single deisions: multipledeisions require alternative tehniques.Utility nodes : are denoted by diamonds. They desribe the utility funtionrelevant to the problem, as a funtion of the values of the node's parents.
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Deision networksSometimes suh diagrams are simpli�ed by leaving out the RVs desribingthe new state and onverting urrent state and deision diretly to utility:

This gives us fewer nodes to deal with BUT 
potentially less flexibility in exploring alternative 
descriptions of the problem.

and so never appear as evidence.
road conjestion describe future state
Air quality, cost to taxpayer and 

Build cost

Legal action

Road traffic

Site of landfill

Utility

EU(a|E) =
∑

s∈Result(a) Pr(s|a, E)U(s)

This is an ation-utility table . The utility no longer depends on a statebut is the expeted utility for a given ation.
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Evaluation of deision networksOne a spei� ation is seleted for a deision node it ats like a hanenode for whih a spei� value is being used as evidene .1. Set the urrent state hane nodes to their evidene values.2. For eah potential ation� Fix the deision node.� Compute the probabilities for the utility node's parents.� Compute the expeted utility.3. Return the ation that maximised EU(a|E).
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The value of informationWe have been assuming that a deision is to be made with all evideneavailable beforehand . This is unlikely to be the ase.Knowing what questions one should ask is a entral, and important partof making deisions. Example :� Dotors do not diagnose by �rst obtaining results for all possible testson their patients.� They ask questions to deide what tests to do.� They are informed in formulating whih tests to perform by probabilitiesof test outomes, and by the manner in whih knowing an outomemight improve treatment.� Tests an have assoiated osts.
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The value of perfet informationInformation value theory provides a formal way in whih we an reasonabout what further information to gather using sensing ations .Say we have evidene E, so

EU(action|E) = max

a

∑

s∈Result(a)

Pr(s|a, E)U(s)denotes how valuable the best ation based on E must be.How valuable would it be to learn about a further piee of evidene?If we examined another RV E ′ and found that E ′ = e ′ then the best ationmight be altered as we'd be omputing
EU(action ′|E, E ′) = max

a

∑

s∈Result(a)

Pr(s|a, E, E ′)U(s)BUT : beause E ′ is a RV, and in advane of testing we don't know its value,we need to average over its possible values using our urrent knowledge .
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The value of perfet informationThis leads to the de�nition of the value of perfet information (VPI)
VPIE(E

′) =

{
∑

e ′

Pr(E ′ = e ′|E)EU(action ′|E, E ′ = e ′)

}
− EU(action|E)VPI has the following properties:� VPIE(E

′) ≥ 0� It is not neessarily additive, that is, it is possible that
VPIE(E

′, E ′′) 6= VPIE(E
′) + VPIE(E

′′)� It is independent of ordering
VPIE(E

′, E ′′) = VPIE(E
′) + VPIE,E ′(E ′′)

= VPIE(E
′′) + VPIE,E ′′(E ′)
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Agents that an gather informationIn onstruting an agent with the ability to ask questions, we would hopethat it would:� Use a good order in whih to ask the questions.� Avoid asking irrelevant questions.� Trade o� the ost of obtaining information against the value of thatinformation.� Choose a good time to stop asking questions.We now have the means with whih to approah suh a design.

140



Agents that an gather informationAssuming we an assoiate a ost C(E ′) with obtaining the knowledge that
E ′ = e ′ an agent an at as follows:� Given a deision network and urrent perept.� Find the piee of evidene E ′ maximising VPIE(E

′) − C(E ′).� If VPIE(E
′) − C(E ′) is positive then �nd the value of E ′, else take theation indiated by the deision network.This is known as a myopi agent as it requests a single piee of evideneat one. Supervised learning II: the Bayesian approahWe now plae supervised learning into a probabilisti setting by examining:� The appliation of Bayes' theorem to the supervised learning problem .� Priors, the likelihood, and the posterior probability of a hypothesis .141



� The maximum likelihood and maximum a posteriori hypotheses, andsome examples.� Bayesian deision theory : minimising the error rate.� Appliation of the approah to neural networks , using approximationtehniques.
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ReadingThere is some relevant material to be found in Russell and Norvig hapters18 to 20 although the intersetion between that material and what I willover is small.Almost all of what I over an be found in:� Mahine Learning . Tom Mithell, MGraw Hill 1997, hapter 6.� Pattern Reognition and Mahine Learning . Christopher M. Bishop,Springer, 2006.
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Supervised learning: a quik reminderWe want to design a lassi�er , denoted h(x)

x

Classi�er

h(x) LabelAttribute vetor

It should take an attribute vetor

xT =
(

x1 x2 · · · xn

)and label it.What we mean by label depends on whether we're doing lassi�ation orregression .
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Supervised learning: a quik reminderIn lassi�ation we're assigning x to one of a set {ω1, . . . , ωc} of c lasses .For example, if x ontains measurements taken from a patient then theremight be three lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a omputer!We'll often speialise to the ase of two lasses, denoted C1 and C2.
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Supervised learning: a quik reminderIn regression we're assigning x to a real number h(x) ∈ R.For example, if x ontains measurements taken regarding today's weatherthen we might have

h(x) = estimate of amount of rainfall expeted tomorrowFor the two-lass lassi�ation problem we will also refer to a situationsomewhat between the two, where

h(x) = Pr(x is in C1)
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Supervised learning: a quik reminderWe don't want to design h expliitly.
Training sequene

h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute vetor

x

So we use a learner L to infer it on the basis of a sequene s of trainingexamples .
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Supervised learning: a quik reminderThe training sequene s is a sequene of m labelled examples .
s =









(x1, y1)

(x2, y2)...

(xm, ym)









That is, examples of attribute vetors x with their orret label attahed.So a learner only gets to see the labels for a|most probably small|subsetof the possible inputs x.Regardless, we aim that the hypothesis h = L(s) will usually be suessfulat prediting the label of an input it hasn't seen before.This ability is alled generalization .
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Supervised learning: a quik reminderThere is generally a set H of hypotheses from whih L is allowed to selet
h

L(s) = h ∈ H
H is alled the hypothesis spae .The learner an output a hypothesis expliitly or|as in the ase of a mul-tilayer pereptron|it an output a vetor

w =
(

w1 w2 · · · wW

)of weights whih in turn speify h

h(x) = f(w;x)where w = L(s).

149



Supervised learning: a quik reminderIn AI I you saw the bakpropagation algorithm for training multilayerpereptrons, in the ase of regression .This worked by minimising a funtion of the weights representing the errorurrently being made:

E(w) =
1

2

m∑

i=1

(f(w;xi) − yi)
2

The summation here is over the training examples. The expression in thesummation grows as f's predition for xi diverges from the known label yi.Bakpropagation tries to �nd a w that minimises E(w) by performing gra-dient desent

wt+1 = wt − α
∂E(w)

∂w

∣

∣

∣

∣

wt
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DiÆulties with lassial neural networksThere are some well-known diÆulties assoiated with neural network train-ing of this kind.
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Soures of unertaintySo we have to be areful. But let's press on with this approah for a littlewhile longer...The model used above suggests two soures of unertainty that we mighttreat with probabilities.� Let's assume we've seleted an H to use, and it's the same one natureis using .� We don't know how nature hooses h ′ from H. We therefore model ourunertainty by introduing the prior distribution Pr(h) on H.� There is noise on the training examples.It's worth emphasising at this point that in modelling noise on the trainingexamples we'll only onsider noise on the labels . The input vetors xare not modelled using a probability distribution.
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The likelihoodWe model our unertainty in the training examples by speifying a likeli-hood : Pr(Y|h,x)Translation: the probability of seeing a given label Y, when the input vetoris x and the underlying hypothesis is h.Example: two-lass lassi�ation. A ommon likelihood isPr(Y = C1|h,x) = σ(h(x))where

σ(z) =
1

1 + exp(−z)(Note : stritly speaking x should not appear in these probabilities beauseit's not a random variable. It is inluded for larity.)
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The likelihood
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The likelihoodSo: if we're given a training sequene, what is the probability that it wasgenerated using some h?For an example (x, y), y an be C1 or C2. It's helpful here to renamethe lasses as just 1 and 0 respetively beause this leads to a nie simpleexpression. Now Pr(Y|h,x) =

{
σ(h(x)) if Y = 1

1 − σ(h(x)) if Y = 0Consequently when y has a known value we an writePr(y|h,x) = [σ(h(x))]
y
[1 − σ(h(x))]

(1−y)If we assume that the examples are independent then the probability ofseeing the labels in a training sequene s is straightforward.
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The likelihoodColleting the inputs and outputs in s together into separate matries, so
yT =

(

y1 y2 · · · ym

)and

X =
(

x1 x2 · · · xm

)we have the likelihood of the training sequene

Pr(y|h,X) =

m∏

i=1

Pr(yi|h,xi)

=

m∏

i=1

[σ(h(xi))]
yi [1 − σ(h(xi))]

(1−yi)
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The likelihoodAnother example: regression. A ommon likelihood in the regression aseworks by assuming that examples are orrupted by Gaussian noise withmean 0 and some spei�ed variane σ2

y = h(x) + ǫ, where ǫ ∼ N (0, σ2)As usual, the density for N (µ, σ2) is

p(Z) =
1√

2πσ2

exp(−
(z − µ)2

2σ2

)

by adding h(x) to ǫ we just shift its mean, so
p(y|h,x) =

1√
2πσ2

exp(−
(y − h(x))2

2σ2

)
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The likelihoodConsequently if the examples are independent then the likelihood of a train-ing sequene s is

p(y|h,X) =

m∏

i=1

p(yi|h,xi)

=

m∏

i=1

1√
2πσ2

exp(−
(yi − h(xi))

2

2σ2

)

=
1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)

where we've used the fat thatexp(a) exp(b) = exp(a + b)
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Bayes' theorem appears one more...Right: we've take are of the unertainty by introduing the prior p(h)and the likelihood of the training sequene p(y|h,X).By this point you hopefully want to apply Bayes' theorem and write
p(h|y) =

p(y|h)p(h)

p(y)where

p(y) =
∑

h∈H
p(h,y) =

∑

h∈H
p(y|h)p(h)and to simplify the expression we have now dropped the mention of X asthe inputs are �xed. p(h|y) is alled the posterior distribution .The denominator Z = p(y) is alled the evidene and leads on to fas-inating issues of its own. Unfortunately we won't have time to explorethem.
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Bayes' theorem appears one more...The boxed equation on the last slide has a very simple interpretation:what's the probability that this spei� h was used to generate the train-ing sequene I've been given?Two natural learning algorithms now present themselves:1. The maximum likelihood hypothesis
hML = argmax

h∈H
p(y|h)2. The maximum a posteriori hypothesis

hMAP = argmax
h∈H

p(h|y)

= argmax
h∈H

p(y|h)p(h)Obviously hML orresponds to the ase where the prior p(h) is uniform.
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Example: maximum likelihood learningWe derived an exat expression for the likelihood in the regression aseabove:

p(y|h) =
1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)

Proposition: under the assumptions used, any learning algorithm thatworks by minimising the sum of squared errors on s �nds hML.This is learly of interest: the notable example is the bakpropagationalgorithm .We now prove the proposition...
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Example: maximum likelihood learningThe proposition holds beause:

hML = argmax

h∈H
p(y|h)

= argmax

h∈H

log p(y|h)

= argmax

h∈H

log [ 1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)]

= argmax

h∈H

log [ 1

(2πσ2)m/2

]

−
1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmax

h∈H
−

1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmin
h∈H

m∑

i=1

(yi − h(xi))
2
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Example: maximum likelihood learningNote:� If the distribution of the noise is not Gaussian a di�erent result isobtained.� The use of log above to simplify a maximisation problem is a standardtrik.� The Gaussian assumption is sometimes, but not always a good hoie.(Beware the Central Limit Theorem!).
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The next step...We have so far onentrated throughout our overage of mahine learningon hoosing a single hypothesis .Are we asking the right question though?Ultimately, we want to generalise.That means being presented with a new x and asking the question: whatis the most probable lassi�ation of x?Is it reasonable to expet a single hypothesis to provide the optimal answer?We need to look at what the optimal solution to this kind of problemmight be...
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Bayesian deision theoryWhat is the optimal approah to this problem?Put another way: how should we make deisions in suh a way that theoutome obtained is, on average, the best possible? Say we have:� Attribute vetors x ∈ R
d.� A set of lasses {ω1, . . . ,ωc}.� Several possible ations {α1, . . . , αa}.The ations an be thought of as saying \assign the vetor to lass 1"and so on.There is also a loss λ(αi,ωj) assoiated with taking ation αi when thelass is ωj.The loss will sometimes be abbreviated to λ(αi, ωj) = λij.
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Bayesian deision theorySay we an also model the world as follows:� Classes have probabilities Pr(ω) of ourring.� The probability of seeing x when the lass is ω has density p(x|ω).Think of nature hoosing lasses at random (although not revealing them)and showing us a vetor seleted at random using p(x|ω).As usual Bayes rule tells us thatPr(ω|x) =
p(x|ω)Pr(ω)

p(x)and now the denominator is
p(x) =

c∑

i=1

p(x|ωi)Pr(ωi).
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Bayesian deision theorySay nature shows us x and we take ation αi.If we always take ation αi when we see x then the average loss on seeing
x is

R(αi|x) = Eω∼p(ω|x) [λij|x] =

c∑

j=1

λ(αi,ωj)Pr(ωj|x).The quantity R(αi|x) is alled the onditional risk .Note that this partiular x is �xed .
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Bayesian deision theoryNow say we have a deision rule α : R
d → {α1, . . . , αa} telling us whatation to take on seeing any x ∈ R

d.The average loss, or risk , is

R = E(x,ω)∼p(x,ω) [λ(α(x), ω)]

= Ex∼p(x)

[

Eω∼Pr(ω|x) [λ(α(x), ω)|x]
]

= Ex∼p(x) [R(α(x)|x)] (7)

=

∫
R(α(x)|x)p(x)dxwhere we have used the standard result from probability theory that

E [E [X|Y]] = E [X] .(See the supplementary notes for a proof.)
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Bayesian deision theoryClearly the risk is minimised for the deision rule de�ned as follows:
α outputs the ation αi that minimises R(αi|x), for all x ∈ R

d.The provides us with the minimum possible risk, or Bayes risk R⋆.The rule spei�ed is alled the Bayes deision rule .
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Example: minimum error rate lassi�ationIn supervised learning our aim is often to work in suh a way that weminimise the probability of error .What loss should we onsider in these irumstanes? From basi proba-bility theory Pr(A) = E [I(A)]where

I(A) =

{
1 if A happens
0 otherwise(See the supplementary notes for a proof.)
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Example: minimum error rate lassi�ationSo if we are addressing a supervised learning problem with c lasses {ω1, . . . , ωc}and we interpret ation αi as meaning `the input is in lass ωi', then a loss
λij =

{
1 if i 6= j

0 otherwisemeans that the risk R is

R = E [λ] = Pr(α(x) is in error)and the Bayes deision rule minimises the probability of error.
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Example: minimum error rate lassi�ationNow, what is the Bayes deision rule?

R(αi|x) =

c∑

j=1

λ(αi,ωj)Pr(ωj|x)

=
∑

i6=j

Pr(ωj|x)

= 1 − Pr(ωi|x)so α(x) should be the lass that maximises Pr(ωi|x).THE IMPORTANT SUMMARY : Given a new x to lassify, hoosing thelass that maximises Pr(ωi|x) is the best strategy if your aim is to obtainthe minimum error rate!
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Bayesian learning IIBayes deision theory tells us that in this ontext we should onsider thequantity Pr(ωi|s,x) where the involvement of the training sequene hasbeen made expliit.Pr(ωi|s,x) =
∑

h∈H

Pr(ωi, h|s,x)

=
∑

h∈H

Pr(ωi|h, s,x)Pr(h|s,x)

=
∑

h∈H

Pr(ωi|h,x)Pr(h|s).Here we have re-introdued H using marginalisation. In moving from line2 to line 3 we are assuming some independene properties.
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Bayesian learning IISo our lassi�ation should be

ω = argmax

ω∈{ω1,...,ωc}

∑

h∈H

Pr(ω|h,x)Pr(h|s)If H is in�nite the sum beomes an integral. So for example for a neuralnetwork

ω = argmax

ω∈{ω1,...,ωc}

∫

RW

Pr(ω|w,x)Pr(w|s)dwwhere W is the number of weights in w.
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Bayesian learning IIWhy might this make any di�erene? (Aside from the fat that we nowknow it's optimal!)Example 1: Say |H| = 3 and h(x) = Pr(x is in lass C1) for a 2 lass prob-lem. Pr(h1|s) = 0.4Pr(h2|s) = Pr(h3|s) = 0.3Now, say we have an x for whih
h1(x) = 1

h2(x) = h3(x) = 0so hMAP says that x is in lass C1.
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Bayesian learning IIHowever, Pr(lass 1|s,x) = 1 × 0.4 + 0 × 0.3 + 0 × 0.3

= 0.4Pr(lass 2|s,x) = 0 × 0.4 + 1 × 0.3 + 1 × 0.3

= 0.6so lass C2 is the more probable!In this ase the Bayes optimal approah in fat leads to a di�erentanswer .
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A more in-depth exampleLet's take this a step further and work through something a little moreomplex in detail. For a two-lass lassi�ation problem with h(x) denotingPr(C1|h, x) and x ∈ R:Hypotheses: We have three hypotheses

h1(x) = exp(−(x − 1)2)

h2(x) = exp(−(2x − 2)2)

h3(x) = exp(−(1/10)(x − 3)2)

Prior: The prior is Pr(h1) = 0.1, Pr(h2) = 0.05 and Pr(h3) = 0.85.
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A more in-depth exampleWe see the examples (0.5, C1), (0.9, C1), (3.1, C2) and (3.4, C1).Likelihood: For the individual hypotheses the likelihoods are given byPr(s|h) = h(x1)h(x2)[1 − h(x3)]h(x4)Whih in this ase tells usPr(s|h1) = 0.0024001365Pr(s|h2) = 0.0031069836Pr(s|h3) = 0.0003387476Posterior: Multiplying by the priors and normalising givesPr(h1|s) = 0.3512575000Pr(h2|s) = 0.2273519164Pr(h3|s) = 0.4213905836
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A more in-depth exampleNow let's lassify the point x ′ = 2.5.We needPr(C1|s, x
′) = Pr(C1|h1)Pr(h1|s) + Pr(C1|h2)Pr(h2|s) + Pr(C1|h3)Pr(h3|s)

= 0.6250705317So: it's most likely to be in lass C1, but not with great ertainty.
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The Bayesian approah to neural networksLet's now see how this an be applied to neural networks . We have:� A neural network omputing a funtion f(w;x).� A training sequene s = ((x1, y1), . . . , (xm, ym)), split into
y = ( y1 y2 · · · ym )and

X = ( x1 x2 · · · xm )The prior distribution p(w) is now on the weight vetors and Bayes' the-orem tells us that

p(w|s) = p(w|X,y) =
p(y|w,X)p(w|X)

p(y|X)Nothing new so far...
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The Bayesian approah to neural networksAs usual, we don't onsider unertainty in x and so X will be omitted.Consequently

p(w|y) =
p(y|w)p(w)

p(y)where

p(y) =

∫

RW

p(y|w)p(w)dw

p(y|w) is a model of the noise orrupting the labels and as previously isthe likelihood funtion .
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The Bayesian approah to neural networks
p(w) is typially a broad distribution to reet the fat that in the abseneof any data we have little idea of what w might be.When we see some data the above equation tells us how to obtain p(w|y).This will typially be more loalised .
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To put this into pratie we need expressions for p(w) and p(y|w).182



Reminder: the general Gaussian densityReminder: we're going to be making a lot of use of the general Gaussiandensity N (µ, Σ) in d dimensions

p(z) = (2π)−d/2|Σ|−1/2 exp [−1

2

(

(z − µ)TΣ−1(z − µ)
)

]

where µ is the mean vetor and Σ is the ovariane matrix .
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The Gaussian priorA ommon hoie for p(w) is the Gaussian prior with zero mean and
Σ = σ2Iso

p(w) = (2π)−W/2σ−W exp [−wTw

2σ2

]

Note that σ ontrols the distribution of other parameters.� Suh parameters are alled hyperparameters .� Assume for now that they are both �xed and known.Hyperparameters an be learnt using s through the appliation of moreadvaned tehniques.
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The Bayesian approah to neural networksPhysiists like to express quantities suh as p(w) in terms of a measure of\energy". The expression is therefore usually re-written as
p(w) =

1

ZW(α)

exp(−α

2
||w||2

)

where

EW(w) =
1

2
||w||2

ZW(α) =

(

2π

α

)d/2

α =
1

σ2This is simply a re-arranged version of the more usual equation.
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The Gaussian noise model for regressionWe've already seen that for a regression problem with zero mean Gaussiannoise having variane σ2
n

yi = f(xi) + ǫi

p(ǫi) =
1

√

2πσ2
n

exp(−
ǫ2

i

2σ2
n

)

where f orresponds to some unknown network, the likelihood funtion is

p(y|w) =
1

(2πσ2
n)m/2

exp(−
1

2σ2
n

m∑

i=1

(yi − f(w;xi))
2

)

Note that there are now two varianes: σ2 for the prior and σ2
n for thenoise.
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The Bayesian approah to neural networksThis expression an also be rewritten in physiist-friendly form
p(y|w) =

1

Zy(β)

exp (−βEy(w))where

β =
1

σ2
n

Zy(β) =

(

2π

β

)m/2

Ey(w) =
1

2

m∑

i=1

(yi − f(w;xi))
2

Here, β is a seond hyperparameter . Again, we assume it is �xed andknown, although it an be learnt using s using more advaned tehniques.
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The Bayesian approah to neural networksCombining the two boxed equations gives

p(w|y) =
1

ZS(α, β)

exp(−S(w))where

S(w) = αEW(w) + βEy(w)The quantity

ZS(α, β) =

∫

RW

exp(−S(w))dwnormalises the density. Reall that this is alled the evidene .
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Example I: gradient desent revisited...To �nd hMAP (in this senario by �nding wMAP) we therefore maximise
p(w|y) =

1

ZS(α, β)

exp(−(αEW(w) + βEy(w)))or equivalently �nd

wMAP = argmin

w

α

2
||w||2 +

β

2

m∑

i=1

(yi − f(w;xi))
2

This algorithm has also been used a lot in the neural network literatureand is alled the weight deay tehnique.
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Example II: two-lass lassi�ation in two dimensions
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Examples

x1

x
2

−10
0

10

−10

0

10
0.5

1

1.5

2

x 10
−3

w1

Prior density p(w)

w2

−10
0

10

−10

0

10
0

0.02

0.04

0.06

w1

Likelihood p(y|w)

w2 −10
0

10

−10

0

10
0

0.5

1

x 10
−4

w1

Posterior density p(w|y)

w2

190



The Bayesian approah to neural networksWhat happens as the number m of examples inreases?� The �rst term orresponding to the prior remains �xed.� The seond term orresponding to the likelihood inreases.So for small training sequenes the prior dominates, but for large ones hMLis a good approximation to hMAP.
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The Bayesian approah to neural networksWhere have we got to...? We have obtained

p(w|y) =
1

ZS(α, β)

exp(−(αEW(w) + βEy(w)))

ZS(α, β) =

∫

RW

exp(−(αEW(w) + βEy(w)))dwTranslating the expression for the Bayes optimal solution given earlierinto the urrent senario, we need to ompute
p(Y|y,x) =

∫

RW

p(y|w,x)p(w|y)dwEasy huh? Unfortunately not...
192



The Bayesian approah to neural networksIn order to make further progress it's neessary to perform integrals of thegeneral form ∫

RW

F(w)p(w|y)dwfor various funtions F and this is generally not possible.There are two ways to get around this:1. We an use an approximate form for p(w|y).2. We an use Monte Carlo methods.
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Method 1: approximation to p(w|y)The �rst approah introdues a Gaussian approximation to p(w|y) byusing a Taylor expansion of

S(w) = αEW(w) + βEy(w)at wMAP.This allows us to use a standard integral .The result will be approximate but we hope it's good!Let's reall how Taylor series work...
194



Reminder: Taylor expansionIn one dimension the Taylor expansion about a point x0 ∈ R for a funtion
f : R→ R is

f(x) ≈ f(x0) +
1

1!
(x − x0)f

′(x0) +
1

2!
(x − x0)

2f ′′(x0) + · · · + 1

k!
(x − x0)

kfk(x0)What does this look like for the kinds of funtion we're interested in? Wean try to approximate exp (−f(x))where

f(x) = x4 −
1

2
x3 − 7x2 −

5

2
x + 22This has a form similar to S(w), but in one dimension.
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Reminder: Taylor expansionThe funtions of interest look like this:
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By replaing −f(x) with its Taylor expansion about its maximum, whihis at

xmax = 2.1437we an see what the approximation to exp(−f(x)) looks like. Note that theexp hugely emphasises peaks.
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Reminder: Taylor expansionHere are the approximations for k = 1, k = 2 and k = 3.
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xThe use of k = 2 looks promising...
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Reminder: Taylor expansionIn multiple dimensions the Taylor expansion for k = 2 is
f(x) ≈ f(x0) +

1

1!
(x − x0)

T ∇f(x)|x0
+

1

2!
(x − x0)

T ∇2f(x0)
∣

∣

x0
(x − x0)where ∇ denotes gradient

∇f(x) =
(

∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

)

and ∇2f(x) is the matrix with elements
Mij =

∂2f(x)

∂xi∂xj(Although this looks ompliated, it's just the obvious extension of the1-dimensional ase.)
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Method 1: approximation to p(w|y)Applying this to S(w) and expanding around wMAP

S(w) ≈ S(wMAP) + (w − wMAP)T ∇S(w)|wMAP

+
1

2
(w − wMAP)TA(w − wMAP)notie the following:� As wMAP minimises the funtion the �rst derivatives are zero and theorresponding term in the Taylor expansion disappears .� The quantity A = ∇∇S(w)|wMAP an be simpli�ed.This is beause

A = ∇∇(αEW(w) + βEy(w))|
wMAP

= αI + β∇∇Ey(wMAP)
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Method 1: approximation to p(w|y)De�ning

∆w = w − wMAPwe now have

S(w) ≈ S(wMAP) +
1

2
∆wTA∆wThe vetor wMAP an be obtained using any standard optimisation method(suh as bakpropagation).The quantity ∇∇Ey(w) an be evaluated using an extended form of bak-propagation .
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A useful integralDropping for this slide only the speial meanings usually given to vetors
x and y, here is a useful standard integral:If A ∈ R

n×n is symmetri then for b ∈ R
n and c ∈ R

∫

Rn

exp(−
1

2

(

xTAx + xTb + c
)

)

dx

= (2π)n/2|A|−1/2 exp(−
1

2

(

c −
bTA−1b

4

))

At the beginning of the ourse, two exerises were set involving the eval-uation of this integral.To make this easy to refer to, let's all it the BIG INTEGRAL.

201



Method 1: approximation to p(w|y)We now have

p(w|y) ≈
1

Z(α,β)

exp(−S(wMAP) −
1

2
∆wTA∆w

)

where ∆w = w − wMAP and using the BIG INTEGRAL
Z(α, β) = (2π)W/2|A|−1/2 exp(−S(wMAP))Our earlier disussion tells us that given a new input x we should alulate

p(Y|y,x) =

∫

RW

p(y|w,x)p(w|y)dw

p(y|w,x) is just the likelihood so...
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Method 1: approximation to p(w|y)The likelihood we're using is

p(y|w,x) =
1√

2πσ2

exp(−
(y − f(w;x))2

2σ2

)

∝ exp(−
β

2
(y − f(w;x))2

)

and plugging it into the integral gives
p(y|x,y) ∝

∫

RW

exp(−
β

2
(y − f(w;x))2

) exp(−
1

2
∆wTA∆w

)

dwwhih has no solution!We need another approximation...
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Method 1: approximation to p(w|y)If we assume that p(w|y) is narrow (this depends on A) then we anintrodue a linear approximation of f(w;x) at wMAP:
f(w;x) ≈ f(wMAP;x) + gT∆wwhere g = ∇f(w;x)|wMAP.By linear approximation we just mean the Taylor expansion for k = 1.This leads to

p(Y|y,x) ∝
∫

RW

exp(−
β

2

(

y − f(wMAP;x) − gT∆w
)2

−
1

2
∆wTA∆w

)

dwand this integral an be evaluated using the BIG INTEGRAL to give THEANSWER...
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Method 1: approximation to p(w|y)Finally

p(Y|y,x) =
1

√

2πσ2
y

exp(−
(y − f(wMAP;x))2

2σ2
y

)

where

σ2
y =

1

β
+ gTA−1g.Hooray! But what does it mean?
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Method 1: approximation to p(w|y)This is a Gaussian density , so we an now see that p(Y|y,x) peaks at
f(wMAP;x). That is, the MAP solution .The variane σ2

y an be interpreted as a measure of ertainty .� The �rst term of σ2
y is 1/β and orresponds to the noise.� The seond term of σ2

y is gTA−1g and orresponds to the width of

p(w|y).Or interpreted graphially...
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Method 1: approximation to p(w|y)
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Method II: Markov hain Monte Carlo (MCMC) methodsThe seond solution to the problem of performing integrals
I =

∫
F(w)p(w|y)dwis to use Monte Carlo methods. The basi approah is to make the ap-proximation

I ≈
1

N

N∑

i=1

F(wi)where the wi have distribution p(w|y). Unfortunately, generating wi witha given distribution an be non-trivial.
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MCMC methodsA simple tehnique is to introdue a random walk, so
wi+1 = wi + ǫwhere ǫ is zero mean spherial Gaussian and has small variane. Obviouslythe sequene wi does not have the required distribution. However we anuse the Metropolis algorithm , whih does not aept all the steps in therandom walk:1. If p(wi+1|y) > p(wi|y) then aept the step.2. Else aept the step with probability p(wi+1|y)

p(wi|y)
.In pratie, the Metropolis algorithm has several shortomings, and a greatdeal of researh exists on improved methods, see:R. Neal, \Probabilisti inferene using Markov hain Monte Carlomethods," University of Toronto, Department of Computer SieneTehnial Report CRG-TR-93-1, 1993.Unertainty V: probabilisti reasoning through time209



We now examine:� How an agent might operate by keeping trak of the state of its envi-ronment in an unertain world, and how alterations in world state andunertainty in observing the world an be modelled using probabilitydistributions.� How inferenes an be performed regarding the urrent state, past stateand future states.� The Viterbi algorithm for omputing the most likely sequene.� A slightly simpli�ed system within this framework alled a hiddenMarkov model (HMM), and the way in whih some inferene tasksan be simpli�ed in the HMM ase.Reading: Russell and Norvig, hapter 15.
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Probabilisti reasoning through timeA fundamental idea throughout the AI ourses has been that an agentshould keep trak of the state of the environment :� The environment's state hanges over time .� The knowledge of how the state hanges may be unertain .� The agent's pereption of the state of the environment may be uner-tain .For all the usual reasons related to unertainty , we need to move beyondlogi, situation alulus et.
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States and evideneWe model the (unobservable) state of the environment as follows:� We use a sequene

(S0, S1, S2, . . .)of sets of random variables (RVs).� Eah St is a set of RVs

St = {S
(1)
t , . . . , S

(n)
t }denoting the state of the environment at time t, where t = 0, 1, 2, . . ..Think of the state as hanging over time.

S0 → S1→ S2 → · · ·
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States and evideneAt eah time t there is also an observable set

Et = {E
(1)
t , . . . , E

(m)
t }of random variables denoting the evidene that an agent obtains aboutthe state at time t.As usual apitals denote RVs and lower ase denotes atual values. Soatual values for the assorted RVs are denoted

St = {s
(1)
t , . . . , s

(n)
t } = st

Et = {e
(1)
t , . . . , e

(m)
t } = et
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Stationary and Markov proessesAs t an in priniple inrease without bound we now need some simplifyingassumptions.Assumption 1: We deal with stationary proesses : probability distribu-tions do not hange over time.Assumption 2: We deal with Markov proessesPr(St|S0:t−1) = Pr(St|St−1) (8)where S0:t−1 = (S0, S1, . . . , St−1).(Stritly speaking this is a �rst order Markov Proess , and we'll onlyonsider these.)Pr(St|St−1) is alled the transition model .

214



Stationary and Markov proessesAssumption 3: We assume that evidene only depends on the urrent statePr(Et|S0:t, E1:t−1) = Pr(Et|St) (9)Then Pr(Et|St) is alled the sensor model .

Pr(St|St−1)

Pr(Et|St)

Pr(S0) S0 S1 S2 S3

E1 E2 E3

· · ·

Pr(S0) is the prior probability of the starting state. We need this as therehas to be some way of getting the proess started.215



The full joint distributionGiven:1. The prior Pr(S0).2. The transition model Pr(St|St−1).3. The sensor model Pr(Et|St).along with the assumptions of stationarity and the assumptions of inde-pendene in equations 8 and 9 we have

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si) .

This follows from basi probability theory as for examplePr(S0, S1, S2, E1, E2) = Pr(E2|S0:2, E1)Pr(S2|S0:1, E1)Pr(E1|S0:1)Pr(S1|S0)Pr(S0)

= Pr(E2|S2)Pr(S2|S1)Pr(E1|S1)Pr(S1|S0)Pr(S0)
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Example: two biased oinsHere's a simple example with only two states and two observations .I have two biased oins .I ip one and tell you the outome .I then either stay with the same oin, or swap them.This ontinues, produing a suession of outomes:
0.2

0.2

head

0.90.1

head

0.80.8 coin1 coin2
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Example: two biased oinsWe'll use the following numbers:� The prior Pr(S0 = coin1) = 0.5.� The transition modelPr(St = coin1|St−1 = coin1) = Pr(St = coin2|St−1 = coin2) = 0.8Pr(St = coin1|St−1 = coin2) = Pr(St = coin2|St−1 = coin1) = 0.2� The sensor model Pr(Et = head|St = coin1) = 0.1Pr(Et = head|St = coin2) = 0.9
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Example: two biased oinsThis is straightforward to simulate.Here's an example of what happens:

[C2,C2,C1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

⇓

[Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Tl,Tl,Hd,Tl,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd]

As expeted, we tend to see runs of a single oin, and might expet to beable to guess whih is being used as one favours heads and the other tails.
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Example: 2008, paper 9, question 5A friend of mine likes to limb on the roofs of Cambridge. To make a goodstart to the oming week, he limbs on a Sunday with probability 0.98.Being onerned for his own safety, he is less likely to limb today if helimbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not limb yesterday then he is very unlikely to limb today, soPr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good limber, and is quite likely to injurehimself if he goes limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1
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Example: 2008, paper 9, question 5This has a similar orresponding diagram:

0.1

0.10.8

0.4

0.6

0.9¬climbclimb

injury injuryWe'll look at the rest of this exam question later.
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Performing infereneThere are four basi inferene tasks that we might want to perform.In eah of the following ases, assume that we have observed the evidene
E1:t = e1:tTask 1: �lteringDedue what state we might now be in by omputingPr(St|e1:t).In the oin tossing question: \If you've seen all the outomes so far,infer whih oin was used last".In the exam question: \If you observed all the injuries so far, inferwhether my friend limbed today".
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Performing infereneTask 2: preditionDedue what state we might be in some time in the future by omputingPr(St+T |e1:t) for some T > 0.In the oin tossing question: \If you've seen all the outomes so far,infer whih oin will be tossed T steps in the future".In the exam question: \If you've observed all the injuries so far, inferwhether my friend will go limbing T nights from now".
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Performing infereneTask 3: SmoothingDedue what state we might have been in at some point in the past byomputing Pr(St|e1:T) for 0 ≤ t < T.In the oin tossing question: \If you've seen all the outomes so far,infer whih oin was tossed at time t in the past".In the exam question: \If you've observed all the injuries so far, inferwhether my friend limbed on night t in the past".
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Performing infereneTask 4: Find the most likely explanationDedue the most likely sequene of states so far by omputingargmax

s1:t

Pr(s1:t|e1:t)In the oin tossing question: \If you've seen all the outomes so far,infer the most probable sequene of oins used".In the exam question: \If you've observed all the injuries so far, inferthe most probable olletion of nights on whih my friend limbed".
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FilteringWe want to ompute Pr(St|e1:t). This is often alled the forward messageand denoted

f1:t = Pr(St|e1:t)for reasons that are about to beome lear.Remember that St is an RV and so f1:t is a probability distribution on-taining a probability for eah possible value of St.It turns out that this an be done in a simple manner with a reursiveestimation . Obtain the result at time t + 1:1. using the result from time t and...2. ...inorporating new evidene et+1.
f1:t+1 = g(et+1, f1:t)for a suitable funtion g that we'll now derive.
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FilteringStep 1:Projet the urrent state distribution forwardPr(St+1|e1:t+1) = Pr(St+1|e1:t, et+1)

= cPr(et+1|St+1, e1:t)Pr(St+1|e1:t)

= cPr(et+1|St+1)︸ ︷︷ ︸Sensor model Pr(St+1|e1:t)︸ ︷︷ ︸Needs more workwhere as usual c is a onstant that normalises the distribution. Here,� The �rst line does nothing but split e1:t+1 into et+1 and e1:t.� The seond line is an appliation of Bayes' theorem.� The third line uses assumption 3 regarding sensor models.
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FilteringStep 2:To obtain Pr(St+1|e1:t)Pr(St+1|e1:t) =
∑

st

Pr(St+1, st|e1:t)

=
∑

st

Pr(St+1|st, e1:t)Pr(st|e1:t)

=
∑

st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸Available from previous stepHere,� The �rst line uses marginalisation.� The seond line uses the basi equation Pr(A,B) = Pr(A|B)Pr(B).� The third line uses assumption 2 regarding transition models.
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FilteringPulling it all togetherPr(St+1|e1:t+1) = cPr(et+1|St+1)︸ ︷︷ ︸Sensor model ∑st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸From previous step (10)

This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)Here� f1:t is a shorthand for Pr(St|e1:t).� f1:t is often interpreted as a message being passed forward.� The proess is started using the prior .
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PreditionPredition is somewhat simpler asPr(St+T+1|e1:t)︸ ︷︷ ︸Predition at t+T+1

=
∑

st+T

Pr(St+T+1, st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T , e1:t)Pr(st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T)︸ ︷︷ ︸Transition model Pr(st+T |e1:t)︸ ︷︷ ︸Predition at t+THowever we do not get to make aurate preditions arbitrarily far into thefuture!
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SmoothingFor smoothing, we want to alulate Pr(St|e1:T) for 0 ≤ t < T .Again, we an do this in two steps.Step 1: Pr(St|e1:T) = Pr(St|e1:T , et+1:T)

= cPr(St|e1:t)Pr(et+1:T |St, e1:t)

= cPr(St|e1:t)Pr(et+1:T |St)

= cf1:tbt+1:THere� f1:t is the forward message de�ned earlier.� bt+1:T is a shorthand for Pr(et+1:T |St) to be regarded as a message beingpassed bakward .
231



SmoothingStep 2:

bt+1:T = Pr(et+1:T |St) =
∑

st+1

Pr(et+1:T , st+1|St)

=
∑

st+1

Pr(et+1:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1, et+2:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1|st+1)︸ ︷︷ ︸Sensor model Pr(et+2:T |st+1)︸ ︷︷ ︸
bt+2:T

Pr(st+1|St)︸ ︷︷ ︸Transition model

= BACKWARD(et+1:T , bt+2:T)

(11)

This proess is initialised with
bt+1:t = Pr(eT+1:T |ST) = (1, . . . , 1)
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The forward-bakward algorithmSo: our original aim of omputing Pr(St|e1:T) an be ahieved using:� A reursive proess working from time 1 to time t (equation 10).� A reursive proess working from time T to time t + 1 (equation 11).This results in a proess that is O(T) given the evidene e1:T and smoothsfor a single point at time t.To smooth at all points 1 : T we an easily repeat the proess obtaining

O(T 2).Alternatively a very simple example of dynami programming allows usto smooth at all points in O(T) time.
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The forward-bakward algorithm

DonePrior
Reursively ompute all values bt+1:T and ombine with stored values for f1:t.

Reursively ompute all values for f1:t and store results
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Computing the most likely sequene: the Viterbi algorithmIn omputing the most likely sequene the aim is to obtainargmax

s1:t

Pr(s1:t|e1:t)Earlier we derived the joint distribution for all relevant variables

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si)
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Computing the most likely sequene: the Viterbi algorithmWe therefore havemax

s1:t

Pr(s1:t, St+1|e1:t+1)

= cmax

s1:t

Pr(et+1|St+1)Pr(St+1|st)Pr(s1:t|e1:t)

= cPr(et+1|St+1)max

st




Pr(St+1|st) max
s1:t−1

Pr(s1:t−1, st|e1:t)




This looks a bit �ere , despite the fat that:� The seond line is just Bayes' theorem applied to the joint distribution.� The last line is just a re-arrangement of the seond line.
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Computing the most likely sequene: the Viterbi algorithmThere is however a way to visualise it that leads to a dynami programmingalgorithm alled the Viterbi algorithm .Step 1: Simplify the notation.� Assume there are n states s1, . . . , sn and m possible observations e1, . . . , emat any given time.� Denote Pr(St = sj|St−1 = si) by pi,j(t).� Denote Pr(et|St = si) by qi(t).It's important to remember in what follows that the observations areknown but that we're maximising over all possible state sequenes .
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Computing the most likely sequene: the Viterbi algorithmThe equation we're interested in is now of the form
P =

T∏

t=1

pi,j(t)qi(t)

(The prior Pr(S0) has been dropped out for the sake of larity, but is easyto put bak in in what follows.)The equation P will be referred to in what follows.It is in fat a funtion of any given sequene of states .
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Computing the most likely sequene: the Viterbi algorithmStep 2: Make a grid: olumns denote time and rows denote state.

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn
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Computing the most likely sequene: the Viterbi algorithmStep 3: Label the nodes:� Say at time t the atual observation was et. Then label the node for siin olumn t with the value qi(t).� Any sequene of states through time is now a path through the grid. Sofor any transition from si at time t−1 to sj at time t label the transitionwith the value pi,j(t).In the following diagrams we an often just write pi,j and qi beause thetime is lear from the diagram.So for instane...
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Computing the most likely sequene: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1) p1,3(3)

q3(3)

pn,n−1(k + 1)

qn−1(k + 1)
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Computing the most likely sequene: the Viterbi algorithm� The value of P =
∏T

t=1 pi,j(t)qi(t) for any path through the grid is justthe produt of the orresponding labels that have been added.� But we don't want to �nd the maximum by looking at all the possiblepaths beause this would be time-onsuming.� The Viterbi algorithm omputes the maximum by moving from oneolumn to the next updating as it goes.� Say you're at olumn k and for eah node m in that olumn you knowthe highest value for the produt to this point over any possible path .Call this:

Wm(k) = max
s1:k

k∏

t=1

pi,j(t)qi(t)
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Computing the most likely sequene: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

Wn(k)
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Computing the most likely sequene: the Viterbi algorithmHere is the key point: you only need to know� The values Wi(k) for i = 1, . . . , n at time k.� The numbers pi,j(k + 1).� The numbers qi(k + 1).to ompute the values Wi(k + 1) for the next olumn k + 1.This is beause

Wi(k + 1) = max
j

Wj(k)pj,i(k + 1)qi(k + 1)
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Computing the most likely sequene: the Viterbi algorithmOne you get to the olumn for time t:� The node with the largest value for Wi(t) tells you the largest possiblevalue of P.� Provided you stored the path taken to get there you an work bak-wards to �nd the orresponding sequene of states .This is the Viterbi algorithm .
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Computing the most likely sequene: the Viterbi algorithm

... ... ... ... ...... ...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

W3(t) maximum
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Hidden Markov modelsNow for a spei� ase: hidden Markov models (HMMs). Here we have asingle , disrete state variable Si taking values s1, s2, . . . , sn. For example,with n = 3 we might have

s1

s2

s3

Pr(St+1|St = s1) Pr(St+1|St = s2)

0.3

0.6

0.1

0.2

0.6

0.2

Pr(St+1|St = s3)

0.2

0.3

0.5

s3

s2s1
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Hidden Markov modelsIn this simpli�ed ase the onditional probabilities Pr(St+1|St) an be rep-resented using the matrix

Sij = Pr(St+1 = sj|St = si)or for the example on the previous slide
S =





0.3 0.1 0.6

0.2 0.6 0.2

0.2 0.3 0.5





← Pr(S|s1)

← Pr(S|s2)

← Pr(S|s3)

=









Pr(s1|s1) Pr(s2|s1) · · · Pr(sn|s1)Pr(s1|s2) Pr(s2|s2) · · · Pr(sn|s2)... ... . . . ...Pr(s1|sn) Pr(s2|sn) · · · Pr(sn|sn)









To save spae, I am abbreviating Pr(St+1 = si|St = sj) to Pr(si|sj).
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Hidden Markov modelsThe omputations we're making are always onditional on some atualobservations e1:T .For eah t we an therefore use the sensor model to de�ne a further matrix
Et:� Et is square and diagonal (all o�-diagonal elements are 0).� The ith element of the diagonal is Pr(et|St = si).So in our present example with 3 states, there will be a matrix

Et =





Pr(et|s1) 0 0

0 Pr(et|s2) 0

0 0 Pr(et|s3)





for eah t = 1, . . . , T .
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Hidden Markov modelsIn the general ase the equation for �ltering wasPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)and the message f1:t was introdued as a representation of Pr(St|e1:t).In the present ase we an de�ne f1:t to be the vetor
f1:t =









Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)









Key point: the �ltering equation now redues to nothing but matrixmultipliation .
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What does matrix multipliation do?What does matrix multipliation do? It omputes weighted summations :
Ab =









a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m... ... . . . ...

an,1 an,2 · · · an,m

















b1

b2...

bm









=









∑m
i=1 a1,ibi∑m
i=1 a2,ibi...∑m
i=1 an,ibi









So the point at the end of the last slide shouldn't ome as a big surprise!
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Hidden Markov modelsNow, note that if we have n states

STf1:t =











Pr(s1|s1) · · · Pr(s1|sn)Pr(s2|s1) · · · Pr(s2|sn)... . . . ...Pr(sn|s1) · · · Pr(sn|sn)





















Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)











=











Pr(s1|s1)Pr(s1|e1:t) + · · · + Pr(s1|sn)Pr(sn|e1:t)Pr(s2|s1)Pr(s1|e1:t) + · · · + Pr(s2|sn)Pr(sn|e1:t)...Pr(sn|s1)Pr(s1|e1:t) + · · · + Pr(sn|sn)Pr(sn|e1:t)











=











∑
s Pr(s1|s)Pr(s|e1:t)∑
s Pr(s2|s)Pr(s|e1:t)...∑
s Pr(sn|s)Pr(s|e1:t)
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Hidden Markov modelsAnd taking things one step further

Et+1S
Tf1:t =





Pr(et+1|s1) 0. . .

0 Pr(et+1|sn)













∑
sPr(s1|s)Pr(s|e1:t)∑
sPr(s2|s)Pr(s|e1:t)...∑
sPr(sn|s)Pr(s|e1:t)









=









Pr(et+1|s1)
∑

sPr(s1|s)Pr(s|e1:t)Pr(et+1|s2)
∑

sPr(s2|s)Pr(s|e1:t)...Pr(et+1|sn)
∑

sPr(sn|s)Pr(s|e1:t)









Compare this with the equation for �lteringPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)
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Hidden Markov modelsComparing the expression for Et+1S
Tf1:t with the equation for �ltering wesee that

f1:t+1 = cEt+1S
Tf1:tand a similar equation an be found for b

bT+1:t = SET+1bT+2:tExerise: derive this.The fat that these an be expressed simply using only multipliation ofvetors and matries allows us to make an improvement to the forward-bakward algorithm.
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Hidden Markov modelsThe forward-bakward algorithm works by:� Moving up the sequene from 1 to T , omputing and storing values for
f.� Moving down the sequene from T to 1 omputing values for b andombining them with the stored values for f using the equationPr(St|e1:T) = cf1:tbt+1:TNow in our simpli�ed HMM ase we have

f1:t+1 = cEt+1S
Tf1:tor multiplying through by (Et+1S

T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1
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Hidden Markov modelsSo as long as:� We know the �nal value for f.� ST has an inverse.� Every observation has non-zero probability in every state.We don't have to store T di�erent values for f|we just work through, dis-arding intermediate values, to obtain the last value and then work bak-ward.
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Example: 2008, paper 9, question 5A friend of mine likes to limb on the roofs of Cambridge. To make a goodstart to the oming week, he limbs on a Sunday with probability 0.98.Being onerned for his own safety, he is less likely to limb today if helimbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not limb yesterday then he is very unlikely to limb today, soPr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good limber, and is quite likely to injurehimself if he goes limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1
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Example: 2008, paper 9, question 5You learn that on Monday and Tuesday evening he obtains an injury,but on Wednesday evening he does not. Use the �ltering algorithm toompute the probability that he limbed on Wednesday.Initially

f1:0 =

(

0.98

0.02

)

S =

(

0.4 0.6

0.1 0.9

)

E =

(

0.8 0

0 0.1

)

E ′ =

(

0.2 0

0 0.9

)
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Example: 2008, paper 9, question 5The update equation is

f1:t+1 = cEt+1S
Tf1:tso

f1:1 =
c

10, 000

(

8 0

0 1

)(

4 1

6 9

)(

98

2

)

=

(

0.83874

0.16126

)

Repeating this twie more using E ′ rather than E the �nal time gives
f1:2 =

(

0.81268

0.18732

)

f1:3 =

(

0.10429

0.89571

)

so the answer is 0.1.
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Example: 2008, paper 9, question 5Over the ourse of the week, you also learn that he does not obtainan injury on Thursday or Friday. Use the smoothing algorithm toompute the probability that he limbed on Thursday.The S, E and E ′ matries are the same. The bakward message starts as
b6:5 =

(

1

1

)

and the update equation is

bt:T = SEtbt+1:TThen working bakwards
b5:5 =

1

100

(

4 6

1 9

)(

2 0

0 9

)(

1

1

)

=

(

0.62

0.83

)
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Example: 2008, paper 9, question 5We also need one more forward step, whih gives

f1:4 =

(

0.03249

0.96751

)

Finally

cf1:4b5:5 = c

(

0.03249 × 0.62

0.96751 × 0.83

)

=

(

0.02447

0.97553

)

giving the answer 0.02447.
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Online smoothingSay we want to smooth at a �xed number of time steps . We an alsoobtain a simple algorithm for updating the result eah time a new et+1appears.

1 2 TT − lag

· · · · · ·

1 2 TT − lag
· · · · · ·

New eT+1

Smooth here

Update to hereT + 1T − lag+ 1
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Online smoothingAs usual we need to alulate

cf1:T−lagbT−lag+1:Tto smooth at time (T − lag) if we've progressed to time T . So: assume
f1:T−lag and bT−lag+1:T are known.What an we now do when eT+1 arrives to obtain f1:T−lag+1 and bT−lag+2:T+1?

f is easy to update beause as usual
f1:T−lag+1 = cET−lag+1S

T f1:T−lagKnown
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Online smoothing

b is more triky.We know that

bT−lag+1:T = SET−lag+1bT−lag+2:Tand ontinuing this reursion up to the end of the sequene at T gives
bT−lag+1:T =

T∏

i=T−lag+1

SEi ×









1

1...
1









De�ne

βa:b =

b∏

i=a

SEiso

bT−lag+1:T = βT−lag+1:T ×









1

1...

1
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Online smoothingNow when eT+1 arrives we have

bT−lag+2:T+1 =

T+1∏

i=T−lag+2

SEi ×









1

1...
1









= βT−lag+2:T+1 ×









1

1...
1









= E−1
T−lag+1S

−1βT−lag+1:TSET+1 ×









1

1...

1
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Online smoothingThis leads to an easy way to update β

βa+1:b+1 = E−1
a S−1βa:bSEb+1Using this gives the required update for b.Reinforement LearningWe now examine:� Some potential shortomings of hidden Markov models, and of super-vised learning.� An extension know as the Markov Deision Proess (MDP).� The way in whih we might learn from rewards gained as a result ofating within an environment .� Spei�, simple algorithms for performing suh learning, and their on-vergene properties.Reading: Russell and Norvig, hapter 21. Mithell hapter 13.266



Reinforement learning and HMMsHidden Markov Models (HMMs) are appropriate when our agent modelsthe world as follows
Pr(S0) S0 S1 S2 S3

E1 E3

Pr(St|St−1)

Pr(Et|St)

E2

· · ·

and only wants to infer information about the state of the world on thebasis of observing the available evidene .This might be ritiised as un-neessarily restrited, although it is verye�etive for the right kind of problem.
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Reinforement learning and supervised learningSupervised learners learn from spei�ally labelled hunks of informa-tion :

x ???
(x1, 1)

(x2, 1)

(x3, 0)...

This might also be ritiised as un-neessarily restrited: there are otherways to learn.
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Reinforement learning: the basi aseWe now begin to model the world in a more realisti way as follows:
S0 S1 S2 S3In any state:Perform an ation a to move to a new state. (There may be many possibilities.)Reeive a reward r depending on the start state and ation.

· · ·

The agent an perform ations in order to hange the world's state .If the agent performs an ation in a partiular state, then it gains a or-responding reward .
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Deterministi Markov Deision ProessesFormally, we have a set of states

S = {s1, s2, . . . , sn}and in eah state we an perform one of a set of ations
A = {a1, a2, . . . , am}.We also have a funtion

S : S × A→ Ssuh that S(s, a) is the new state resulting from performing ation a instate s, and a funtion

R : S × A→ Rsuh that R(s, a) is the reward obtained by exeuting ation a in state s.
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Deterministi Markov Deision ProessesFrom the point of view of the agent, there is a matter of onsiderableimportane:The agent does not have aess to the funtions S and R .It therefore has to learn a poliy , whih is a funtion
p : S→ Asuh that p(s) provides the ation a that should be exeuted in state s.What might the agent use as its riterion for learning a poliy?
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Measuring the quality of a poliySay we start in a state at time t, denoted st, and we follow a poliy p. Ateah future step in time we get a reward. Denote the rewards rt, rt+1, . . .and so on.A ommon measure of the quality of a poliy p is the disounted umula-tive reward

Vp(st) =

∞∑

i=0

ǫirt+i

= rt + ǫrt+1 + ǫ2rt+2 + · · ·where 0 ≤ ǫ ≤ 1 is a onstant, whih de�nes a trade-o� for how muh wevalue immediate rewards against future rewards.The intuition for this measure is that, on the whole, we should like ouragent to prefer rewards gained quikly.
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Measuring the quality of a poliyOther ommon measures are the average rewardlim

T→∞

1

T

T∑

i=0

rt+iand the �nite horizon reward

T∑

i=0

rt+iIn these notes we will only address the disounted umulative reward.

273



Two important issuesNote that in this kind of problem we need to address two partiularlyrelevant issues:� The temporal redit assignment problem: that is, how do we deidewhih spei� ations are important in obtaining a reward?� The exploration/exploitation problem. How do we deide between ex-ploiting the knowledge we already have, and exploring the environmentin order to possibly obtain new (and more useful) knowledge?We will see later how to deal with these.
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The optimal poliyUltimately, our learner's aim is to learn the optimal poliy
popt = argmax

p
Vp(s)for all s. We will denote the optimal disounted umulative reward as

Vopt(s) = Vpopt(s).How might we go about learning the optimal poliy?
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Learning the optimal poliyThe only information we have during learning is the individual rewardsobtained from the environment.We ould try to learn Vopt(s) diretly, so that states an be ompared:Consider s as better than s ′ if Vopt(s) > Vopt(s ′).However we atually want to ompare ations , not states . Learning

Vopt(s) might help as

popt(s) = argmax

a
[R(s, a) + ǫVopt(S(s, a))]but only if we know S and R.As we are interested in the ase where these funtions are not known, weneed something slightly di�erent.
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The Q funtionThe trik is to de�ne the following funtion:

Q(s, a) = R(s, a) + ǫVopt(S(s, a))This funtion spei�es the disounted umulative reward obtained if youdo ation a in state s and then follow the optimal poliy .As

popt(s) = argmax
a

Q(s, a)then provided one an learn Q it is not neessary to have knowledge of

S and R to obtain the optimal poliy .
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The Q funtionNote also that

Vopt(s) = max

α
Q(s, α)and so

Q(s, a) = R(s, a) + ǫmax

α
Q(S(s, a), α)whih suggests a simple learning algorithm.Let Q ′ be our learner's estimate of what the exat Q funtion is.That is, in the urrent senario Q ′ is a table ontaining the estimated valuesof Q(s, a) for all pairs (s, a).
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Q-learningStart with all entries in Q ′ set to 0. (In fat we will see in a moment thatrandom entries will do.)Repeat the following:1. Look at the urrent state s and hoose an ation a. (We will see howto do this in a moment.)2. Do the ation a and obtain some reward R(s, a).3. Observe the new state S(s, a).4. Perform the update

Q ′(s, a) = R(s, a) + ǫmax
α

Q ′(S(s, a), α)Note that this an be done in episodes . For example, in learning to playgames, we an play multiple games, eah being a single episode.
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Convergene of Q-learningThis looks as though it might onverge!Note that, if the rewards are at least 0 and we initialise Q ′ to 0 then,
∀n, s, a Q ′

n+1(s, a) ≥ Q ′
n(s, a)and

∀n, s, a Q(s, a) ≥ Q ′
n(s, a) ≥ 0However, we need to be a bit more rigorous than this...
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Convergene of Q-learningIf:1. The agent is operating in an environment that is a deterministi MDP.2. Rewards are bounded in the sense that there is a onstant δ > 0 suhthat

∀s, a |R(s, a)| < δ3. All possible pairs s and a are visited in�nitely often.Then the Q-learning algorithm onverges, in the sense that
∀a, s Q ′

n(s, a)→ Q(s, a)as n→∞.
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Convergene of Q-learningThis is straightforward to demonstrate.Using ondition 3, take two strethes of time in whih all s and a pairsour: All s, a our All s, a our

De�ne

ξ(n) = max

s,a
|Q ′

n(s, a) − Q(s, a)|the maximum error in Q ′ at n.What happens when Q ′
n(s, a) is updated to Q ′

n+1(s, a)?
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Convergene of Q-learningWe have,

|Q ′
n+1(s, a) − Q(s, a)|

= |(R(s, a) − ǫmax

α
Q ′

n(S(s, a), α)) − (R(s, a) − ǫmax
α

Q(S(s, a), α))|

= ǫ|max

α
Q ′

n(S(s, a), α) − max

α
Q(S(s, a), α)|

≤ ǫmax

α
|Q ′

n(S(s, a), α) − Q(S(s, a), α)|

≤ ǫmax

s,a
|Q ′

n(s, a) − Q(s, a)|

= ǫξ(n).Convergene as desribed follows.
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Choosing ations to performWe have not yet answered the question of how to hoose ations to performduring learning.One approah is to hoose ations based on our urrent estimate Q ′. Forinstane ation hosen in urrent state s = argmax
a

Q ′(s, a).However we have already noted the trade-o� between exploration andexploitation. It makes more sense to:� Explore during the early stages of training.� Exploit during the later stages of training.This seems partiularly important in the light of ondition 3 of the onver-gene proof.
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Choosing ations to performOne way in whih to hoose ations that inorporates these requirementsis to introdue a onstant λ and hoose ations probabilistially aordingto Pr(ation a|state s) =
λQ ′(s,a)

∑
a λQ ′(s,a)Note that:� If λ is small this promotes exploration .� If λ is large this promotes exploitation .We an vary λ as training progresses.
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Improving the training proessThere are two simple ways in whih the proess an be improved:1. If training is episodi, we an store the rewards obtained during anepisode and update bakwards at the end.This allows better updating at the expense of requiring more memory.2. We an remember information about rewards and oasionally re-useit by re-training.
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Nondeterministi MDPsThe Q-learning algorithm generalises easily to a more realisti situation,where the outomes of ations are probabilisti.Instead of the funtions S and R we have probability distributionsPr(new state|urrent state, ation)and Pr(reward|urrent state, ation).and we now use S(s, a) and R(s, a) to denote the orresponding randomvariables.We now have

Vp = E

( ∞∑

i=0

ǫirt+i

)

and the best poliy popt maximises Vp.
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Q-learning for nondeterministi MDPsWe now have

Q(s, a) = E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)Vopt(σ)

= E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)max
α

Q(σ,α)and the rule for learning beomes

Q ′
n+1 = (1 − θn+1)Q

′
n(s, a) + θn+1

[

R(s, a) + max
α

Q ′
n(S(s, a), α)

]

with

θn+1 =
1

1 + vn+1(s, a)where vn+1(s, a) is the number of times the pair s and a has been visitedso far.
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Convergene of Q-learning for nondeterministi MDPsIf:1. The agent is operating in an environment that is a nondeterministiMDP.2. Rewards are bounded in the sense that there is a onstant δ > 0 suhthat

∀s, a |R(s, a)| < δ3. All possible pairs s and a are visited in�nitely often.4. ni(s, a) is the ith time that we do ation a in state s.and also...
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Convergene of Q-learning for nondeterministi MDPs...we have

0 ≤θn < 1
∞∑

i=1

θni(s,a) =∞

∞∑

i=1

θ2
ni(s,a) <∞then with probability 1 the Q-learning algorithm onverges, in the sensethat

∀a, s Q ′
n(s, a)→ Q(s, a)as n→∞.
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Alternative representation for the Q ′ tableBut there's always a ath...We have to store the table for Q ′:� Even for quite straightforward problems it is HUGE!!! - ertainly bigenough that it an't be stored.� A standard approah to this problem is, for example, to represent it asa neural network .� One way might be to make s and a the inputs to the network and trainit to produe Q ′(s, a) as its output.This, of ourse, introdues its own problems, although it has been usedvery suessfully in pratie.It might be overed in Arti�ial Intelligene III , whih unfortunately doesnot yet exist.
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