
Arti�
ial Intelligen
e IIDr Sean HoldenComputer Laboratory, Room FC06Telephone extension 63725Email: sbh11@cl.cam.ac.uk
www.cl.cam.ac.uk/∼sbh11/

Copyright

 Sean Holden 2002-11.1

Syllabus part I: advan
ed planningNew things to be looked at in
lude some more advan
ed material on plan-ning algorithms:� Heuristi
s and GraphPlan: in
orporating heuristi
s into partial-orderplanning, planning graphs, the GraphPlan algorithm. [1 le
ture℄� Planning using propositional logi
: representing planning problemsusing propositional logi
, and generating plans using satis�ability solvers.[1 le
ture℄� Planning using
onstraint satisfa
tion: representing and solving plan-ning problems as
onstraint satisfa
tion problems. [1 le
ture℄Note: there is no warranty atta
hed to the stated le
ture timings.

2

Syllabus part II: probability in AIWe then delve into some more modern material whi
h takes a

ount ofun
ertainty:� Un
ertainty and Bayesian networks: review of probability as appliedto AI, Bayesian networks, inferen
e in Bayesian networks using both ex-a
t and approximate te
hniques, other ways of dealing with un
ertainty.[4 le
tures℄� Utility and de
ision-making: maximising expe
ted utility, de
isionnetworks, the value of information. [1 le
ture℄� Further supervised learning: Bayes theorem as applied to supervisedlearning, the maximum likelihood and maximum a posteriori hypothe-ses, applying the Bayesian approa
h to neural networks. [5 le
tures℄

3

Syllabus part III: un
ertainty and timeFinally, we look at how un
ertain reasoning and learning
an take pla
ewhen time is to be taken into a

ount:� Un
ertain reasoning over time: Markov pro
esses, transition and sen-sor models. Inferen
e in temporal models: �ltering, predi
tion, smooth-ing and �nding the most likely explanation. Hidden Markov models.[2 le
tures℄� Reinfor
ement learning: Learning from rewards and punishments.[1 le
ture℄

4

BooksOn
e again, the main single text book for the
ourse is:� Arti�
ial Intelligen
e: A Modern Approa
h . Stuart Russell and PeterNorvig, Prenti
e Hall.There is an a

ompanying web site at

aima.cs.berkeley.eduEither the se
ond or third edition should be �ne, but avoid the �rst editionas it does not �t this
ourse so well.Chapter numbers given in these notes refer to the se
ond edition.

5

BooksFor some of the new material on neural networks you might also like totake a look at:� Pattern Re
ognition and Ma
hine Learning . Christopher M. Bishop,Springer, 2006.For some of the new material on reinfor
ement learning you might like to
onsult:� Ma
hine Learning . Tom Mit
hell. M
Graw Hill, 1997.

6

Dire Warning!!!DIRE WARNING!!!This
ourse
ontains quite a lot of:1. Probability2. Matrix algebra3. Cal
ulusAs I am an evil and vindi
tive person I will assume that you know every-thing on these subje
ts that was
overed in earlier
ourses.If you don't it is essential that you re-visit your old notes and make surethat you're at home with that material.YOU HAVE BEEN WARNED
7

How's your maths?To see if you're up to speed on the maths, have a go at the following:Evaluate the integral ∫∞

−∞

exp(−x2)dx

Hint: this is a pretty standard result. Square the integral and
hange topolar
oordinates.

8

How's your maths?Following on from that, here's something a bit more
hallenging.Evaluate the integral

∫∞

−∞
· · ·
∫∞

−∞

exp(−
1

2

(

xTMx + xTv + c
)

)

dx1 · · ·dxnwhere M is a symmetri
 n × n matrix with real elements, v ∈ R
n, c ∈ Rand

xT =
[

x1 x2 · · · xn

]

∈ R
n

(This se
ond one is a bit tri
ky. Don't worry, I'll show you the answerssomewhere around le
ture 10.)
9

Planning IIWe now examine:� The way in whi
h basi
 heuristi
s might be de�ned for use in planningproblems.� The
onstru
tion of planning graphs and their use in obtaining moresensible heuristi
s.� Planning graphs as the basis of the GraphPlan algorithm.� Planning using propositional logi
.� Planning using
onstraint satisfa
tion .
Reading: Russell and Norvig, relevant se
tions of
hapter 11.

10

A qui
k reviewWe used the following simple example problem.The intrepid little s
amps in the Cambridge University Roof-ClimbingSo
iety wish to atta
h an in
atable gorilla to the spire of a famous College.To do this they need to leave home and obtain:� An in
atable gorilla : these
an be pur
hased from all good joke shops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly es
apade?
11

The STRIPS languageSTRIPS: \Stanford Resear
h Institute Problem Solver" (1970).States: are
onjun
tions of ground literals with no fun
tions .
At(Home) ∧ ¬Have(Gorilla)

∧ ¬Have(Rope)

∧ ¬Have(Kit)Goals: are
onjun
tions of literals where variables are assumed existen-tially quanti�ed.

At(x) ∧ Sells(x, Gorilla)A planner �nds a sequen
e of a
tions that makes the goal true whenperformed.

12

An example of partial-order planningHere is the initial plan:

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

Finish

Start

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.
13

An example of partial-order planningThere are two a
tions available:

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)

14

An example of partial-order planning
Start

Buy(G)

At(JS), Sells(JS,G)

Go(JS)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)

At(Home)

The At(HS) pre
ondition is easy to a
hieve.But if we introdu
e a
ausal link from Start to Go(HS) then we riskinvalidating the pre
ondition for Go(JS).
15

An example of partial-order planningThe planner
ould ba
ktra
k and try to a
hieve the At(x) pre
onditionusing the existing Go(JS) step.

Start

Buy(G)

At(JS), Sells(JS,G)

Go(JS)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

Go(HS)

At(JS)

¬At(JS)

Sells(HS,R), At(HS)

At(Home)

This involves a threat, but one that
an be �xed using promotion.

16

Using heuristi
s in planningWe found in looking at sear
h problems that heuristi
s were a helpful thingto have.Note that now:� There is no simple representation of a state .� Consequently it is harder to measure the distan
e to a goal .De�ning heuristi
s for planning is therefore more diÆ
ult than it was forsear
h problems.

17

Using heuristi
s in planningWe
an qui
kly suggest some possibilities.For example

h = number of unsatis�ed pre
onditionsor

h =number of unsatis�ed pre
onditions
− number satis�ed by the start stateThese
an lead to underestimates or overestimates:� Underestimates if a
tions
an a�e
t one another in undesirable ways.� Overestimates if a
tions a
hieve many pre
onditions.

18

Using heuristi
s in planningWe
an go a little further by learning from Constraint Satisfa
tion Prob-lems and adopting the most
onstrained variable heuristi
:� Prefer the pre
ondition satis�able in the smallest number of ways.This
an be
omputationally demanding but two spe
ial
ases are helpful:� Choose pre
onditions for whi
h no a
tion will satisfy them.� Choose pre
onditions that
an only be satis�ed in one way.

19

Planning graphsPlanning graphs
an be used:� To
ompute more sensible heuristi
s.� To generate entire plans.Also, planning graphs are easy to
onstru
t .They apply only when it is possible to work entirely using propositionalrepresentations of plans.Lu
kily, STRIPS
an always be propositionalized...
20

Planning graphsFor example : the triumphant return of the gorilla-pur
hasing roof-
limbers...

At(y), ¬At(x)

Go(y)

At(x)

Predi
ate

Go(Home)

At(JS)

At(Home)

Go(JS)

and so on...
Propositional

At(Home)

Go(HS)

Go(HS)

At(HS), ¬At(Home)

At(Home), ¬At(JS)

At(JS)

At(JS), ¬At(Home) At(HS), ¬At(JS)

21

Planning graphsA planning graph is
onstru
ted in levels:� Level 0
orresponds to the start state .� At ea
h level we keep approximate tra
k of all things that
ould betrue at the
orresponding time.� At ea
h level we keep approximate tra
k of what a
tions
ould beappli
able at the
orresponding time.The approximation is due to the fa
t that not all
on
i
ts between a
tionsare tra
ked. So:� The graph
an underestimate how long it might take for a parti
ularproposition to appear, and therefore . . .� . . . a heuristi

an be extra
ted.
22

Planning graphs: a simple exampleOur intrepid student adventurers will of
ourse need to in
ate their gorillabefore atta
hing it to a distinguished roof . It has to be pur
hased beforeit
an be in
ated.Start state : Empty.We assume that anything not mentioned in a state is false. So the state isa
tually

¬Have(Gorilla) and ¬Inflated(Gorilla)A
tions :

Buy(Gorilla)

¬Have(Gorilla)

Have(Gorilla) Inflated(Gorilla)

Have(Gorilla)

Inflate(Gorilla)

Goal : Have(Gorilla) and Inflated(Gorilla).
23

Planning graphs
Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

¬I(G)

Des
ribe startstate. All a
tions available instart state.

S1 S1

All possibilities forwhat might be the
ase at time 1. All a
tions that mightbe available at time

1. All possibilities forwhat might be the
ase at time 2.

= a persisten
e a
tion|what happens if no a
tion is taken.
H(G)

I(G)

An a
tion level Ai
ontains all a
tions that
ould happen given the propositions in Si.

24

Mutex linksWe also re
ord, using mutual ex
lusion (mutex) links whi
h pairs of a
-tions
ould not o

ur together.Mutex links 1 : E�e
ts are in
onsistent.
Buy(G)

¬H(G) ¬H(G)

A0S0

H(G)

S1

The e�e
t of one a
tion negates the e�e
t of another.
25

Mutex linksMutex links 2 : The a
tions interfere.

Inf(G)

¬I(G)

I(G)

¬I(G)

S1 A1 S1

The e�e
t of an a
tion negates the pre
ondition of another.

26

Mutex linksMutex links 3 : Competing for pre
onditions.
Buy(G)

Inf(G)

¬H(G)

A1

H(G)

S1

The pre
ondition for an a
tion is mutually ex
lusive with the pre
onditionfor another. (See next slide!)
27

Mutex linksA state level Si
ontains all propositions that
ould be true, given thepossible pre
eding a
tions.We also use mutex links to re
ord pairs that
an not be true simultaneously:Possibility 1 : pair
onsists of a proposition and its negation.
¬H(G)

H(G)

S1

28

Mutex linksPossibility 2 : all pairs of a
tions that
ould a
hieve the pair of propositionsare mutex.

Buy(G)

Inf(G)

¬H(G)

A1

H(G)

I(G)

S1

The
onstru
tion of a planning graph is
ontinued until two identi
al levelsare obtained.

29

Planning graphs
Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

30

Obtaining heuristi
s from a planning graphTo estimate the
ost of rea
hing a single proposition:� Any proposition not appearing in the �nal level has in�nite
ost and
an never be rea
hed .� The level
ost of a proposition is the level at whi
h it �rst appears butthis may be ina

urate as several a
tions
an apply at ea
h level and this
ost does not
ount the number of a
tions . (It is however admissible .)� A serial planning graph in
ludes mutex links between all pairs of a
-tions ex
ept persisten
e a
tions.Level
ost in serial planning graphs
an be quite a good measurement.

31

Obtaining heuristi
s from a planning graphHow about estimating the
ost to a
hieve a
olle
tion of propositions?� Max-level : use the maximum level in the graph of any proposition inthe set. Admissible but
an be ina

urate.� Level-sum : use the sum of the levels of the propositions. Inadmissiblebut sometimes quite a

urate if goals tend to be de
omposable.� Set-level : use the level at whi
h all propositions appear with nonebeing mutex. Can be a

urate if goals tend not to be de
omposable.

32

Other points about planning graphsA planning graph guarantees that:1. If a proposition appears at some level, there may be a way of a
hievingit.2. If a proposition does not appear, it
an not be a
hieved.The �rst point here is a loose guarantee be
ause only pairs of items arelinked by mutex links.Looking at larger
olle
tions
an strengthen the guarantee, but in pra
ti
ethe gains are outweighed by the in
reased
omputation.

33

GraphplanThe GraphPlan algorithm goes beyond using the planning graph as asour
e of heuristi
s.

Start at level 0;

while(true) {

if (all goal propositions appear in the current level

AND no pair has a mutex link) {

attempt to extract a plan;

if (a solution is obtained)

return the solution;

else if (graph indicates there is no solution)

return fail;

else

expand the graph to the next level;

}

}We extra
t a plan dire
tly from the planning graph. Termination
an beproved but will not be
overed here.
34

Graphplan in a
tionHere, at levels S0 and S1 we do not have both H(G) and I(G) available withno mutex links, and so we expand �rst to S1 and then to S2.
Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

At S2 we try to extra
t a solution (plan).
35

Extra
ting a plan from the graphExtra
tion of a plan
an be formalised as a sear
h problem .States
ontain a level , and a
olle
tion of unsatis�ed goal propositions .Start state: the
urrent �nal level of the graph, along with the relevantgoal propositions.Goal: a state at level S0
ontaining the initial propositions.

36

Extra
ting a plan from the graphA
tions: For a state S with level Si, a valid a
tion is to sele
t any set X ofa
tions in Ai−1 su
h that:1. no pair has a mutex link;2. no pair of their pre
onditions has a mutex link;3. the e�e
ts of the a
tions in X a
hieve the propositions in S.The e�e
t of su
h an a
tion is a state having level Si−1, and
ontaining thepre
onditions for the a
tions in X.Ea
h a
tion has a
ost of 1.
37

Graphplan in a
tion
Start state

Action: Action:

Buy(G)

¬H(G)

Buy(G)

Inf(G)

¬H(G) ¬H(G)

¬I(G) ¬I(G)

A0 A1S0

H(G)

H(G)

I(G)

¬I(G)

S1 S2

Buy(G)

H(G)

S0 S1 S2

H(G) I(G)

Inf(G) and 2

38

Heuristi
s for plan extra
tionWe
an of
ourse also apply heuristi
s to this part of the pro
ess.For example, when dealing with a set of propositions :� Choose the proposition having maximum level
ost �rst.� For that proposition, attempt to a
hieve it using the a
tion for whi
hthe maximum/sum level
ost of its pre
onditions is minimum .

39

Planning III: planning using propositional logi
Last year we saw that plans might be extra
ted from a knowledge base viatheorem proving , using �rst order logi
 (FOL) and situation
al
ulus .BUT : this might be
omputationally infeasible for realisti
 problems.Sophisti
ated te
hniques are available for testing satis�ability in proposi-tional logi
, and these have also been applied to planning.The basi
 idea is to attempt to �nd a model of a senten
e having the formdes
ription of start state
∧ des
riptions of the possible a
tions

∧ des
ription of goal
40

Propositional logi
 for planningWe attempt to
onstru
t this senten
e su
h that:� If M is a model of the senten
e then M assigns ⊤ to a proposition ifand only if it is in the plan.� Any assignment denoting an in
orre
t plan will not be a model as thegoal des
ription will not be ⊤.� The senten
e is unsatis�able if no plan exists.
41

Propositional logi
 for planningStart state :

S =At0(a, spire) ∧ At0(b, ground)

∧ ¬At0(a, ground) ∧ ¬At0(b, spire)

b

The two
limbers want to swap pla
es...a

Remember that an expression su
h as At0(a, spire) is a proposition . Thesupers
ripted number now denotes time.
42

Propositional logi
 for planningGoal :

G =Ati(a, ground) ∧ Ati(b, spire)

∧ ¬Ati(a, spire) ∧ ¬Ati(b, ground)A
tions :
an be introdu
ed using the equivalent of su

essor-state axioms
At1(a,ground)↔

(At0(a, ground) ∧ ¬(At0(a, ground) ∧ Move0(a, ground, spire)))

∨ (At0(a, spire) ∧ Move0(a, spire, ground))

(1)

Denote by A the
olle
tion of all su
h axioms.
43

Propositional logi
 for planningWe will now �nd that S∧A∧G has a model in whi
h Move0(a, spire, ground)and Move0(b, ground, spire) are ⊤ while all remaining a
tions are ⊥.In more realisti
 planning problems we will
learly not know in advan
e atwhat time the goal might expe
t to be a
hieved.We therefore:� Loop through possible �nal times T .� Generate a goal for time T and a
tions up to time T .� Try to �nd a model and extra
t a plan.� Until a plan is obtained or we hit some maximum time.

44

Propositional logi
 for planningUnfortunately there is a problem|we may, if
onsiderable
are is not ap-plied, also be able to obtain less sensible plans.In the
urrent example

Move0(b, ground, spire) = ⊤
Move0(a, spire, ground) = ⊤

Move0(a, ground, spire) = ⊤is a model, be
ause the su

essor-state axiom (1) does not in fa
t pre
ludethe appli
ation of Move0(a, ground, spire).We need a pre
ondition axiom
Movei(a, ground, spire)→ Ati(a, ground)and so on.

45

Propositional logi
 for planningLife be
omes more
ompli
ated still if a third lo
ation is added: hospital.
Move0(a, spire, ground) ∧ Move0(a, spire, hospital)is perfe
tly valid and so we need to spe
ify that he
an't move to twopla
es simultaneously

¬(Movei(a, spire, ground) ∧ Movei(a, spire, hospital))

¬(Movei(a, ground, spire) ∧ Movei(a, ground, hospital))...and so on.These are a
tion-ex
lusion axioms.Unfortunately they will tend to produ
e totally-ordered rather than partially-ordered plans.

46

Propositional logi
 for planningAlternatively:1. Prevent a
tions o

urring together if one negates the e�e
t or pre
on-dition of the other.2. Or, spe
ify that something
an't be in two pla
es simultaneously
∀x, i, l1, l2 l1 6= l2→ ¬(Ati(x, l1) ∧ Ati(x, l2))This is an example of a state
onstraint .Clearly this pro
ess
an be
ome very
omplex, but there are te
hniques tohelp deal with this.

47

Planning IV: planning using
onstraint satisfa
tionUn
ertainty I: Probability as Degree of BeliefWe now examine:� How probability theory might be used to represent and reason withknowledge when we are un
ertain about the world.� How inferen
e in the presen
e of un
ertainty
an in prin
iple be per-formed using only basi
 results along with the full joint probabilitydistribution .� How this approa
h fails in pra
ti
e.� How the notions of independen
e and
onditional independen
e maybe used to solve this problem.Reading: Russell and Norvig,
hapter 13.
48

Un
ertainty in AIThe (predominantly logi
-based) methods
overed so far have assortedshort
omings:� Limited epistemologi
al
ommitment|true/false/unknown.� A
tions are possible when suÆ
ient knowledge is available...� ...but this is not generally the
ase.� In pra
ti
e there is a need to
ope with un
ertainty .For example in the Wumpus World:� We
an not make observations further a�eld than the
urrent lo
ality.� Consequently inferen
es regarding pit/wumpus lo
ation et
 will notusually be possible.
49

Un
ertainty in AIA
ouple of more subtle problems have also presented themselves:� The Quali�
ation Problem: it is not generally possible to guaranteethat an a
tion will su

eed|only that it will su

eed if many otherpre
onditions do/don't hold.� Rational a
tion depends on the likelihood of a
hieving di�erent goals,and their relative desirability .
50

Logi
 (as seen so far) has major short
omingsAn example:

∀x symptom(x, toothache)→ problem(x, cavity)This is plainly in
orre
t. Tootha
hes
an be
aused by things other than
avities.

∀x symptom(x, toothache)→problem(x, cavity)∨

problem(x, abscess)∨

problem(x, gum-disease)∨

· · ·BUT:� It is impossible to
omplete the list.� There's no
lear way to take a

ount of the relative likelihoods of dif-ferent
auses.

51

Logi
 (as seen so far) has major short
omingsIf we try to make a
ausal rule

∀x problem(x, abscess)→ symptom(x, toothache)it's still wrong|abs
esses do not always
ause pain.We need further information in addition to
problem(x, abscess)and it's still not possible to do this
orre
tly.

52

Logi
 (as seen so far) has major short
omingsFOL
an fail for essentially three reasons:1. Laziness: it is not feasible to assemble a set of rules that is suÆ
ientlyexhaustive.If we
ould, it would not be feasible to apply them.2. Theoreti
al ignoran
e: insuÆ
ient knowledge exists to allow us towrite the rules.3. Pra
ti
al ignoran
e: even if the rules have been obtained there maybe insuÆ
ient information to apply them.Instead of thinking in terms of the truth or falsity of a statement we wantto deal with an agent's degree of belief in the statement.� Probability theory is the perfe
t tool for appli
ation here.� Probability theory allows us to summarise the un
ertainty due to lazi-ness and ignoran
e.
53

An important distin
tionThere is a fundamental di�eren
e between probability theory and fuzzylogi
:� When dealing with probability theory, statements remain in fa
t eithertrue or false .� A probability denotes an agent's degree of belief one way or another.� Fuzzy logi
 deals with degree of truth .In pra
ti
e the use of probability theory has proved spe
ta
ularly su

essful.

54

Belief and eviden
eAn agent's beliefs will depend on what it has per
eived : probabilities arebased on eviden
e and may be altered by the a
quisition of new eviden
e:� Prior (un
onditional) probability denotes a degree of belief in theabsen
e of eviden
e.� Posterior (
onditional) probability denotes a degree of belief after ev-iden
e is per
eived.As we shall see Bayes' theorem is the fundamental
on
ept that allows usto update one to obtain the other.
55

Making rational de
isions under un
ertaintyWhen using logi
, we
on
entrated on �nding an a
tion sequen
e guaran-teed to a
hieve a goal, and then exe
uting it.When dealing with un
ertainty we need to de�ne preferen
es among statesof the world and take into a

ount the probability of rea
hing those states.Utility theory is used to assign preferen
es.De
ision theory
ombines probability theory and utility theory.A rational agent should a
t in order to maximise expe
ted utility.

56

ProbabilityWe want to assign degrees of belief to propositions about the world.We will need:� Random variables with asso
iated domains|typi
ally Boolean, dis-
rete, or
ontinuous.� All the usual
on
epts|events, atomi
 events, sets et
.� Probability distributions and densities.� Probability axioms (Kolmogorov).� Conditional probability and Bayes' theorem.So if you've forgotten this stu� now is a good time to re-read it.

57

ProbabilityThe standard axioms are:� Range

0 ≤ Pr(x) ≤ 1� Always true propositionsPr(always true proposition) = 1� Always false propositionsPr(always false proposition) = 0� Union Pr(x ∨ y) = Pr(x) + Pr(y) − Pr(x ∧ y)

58

Origins of probabilities IHistori
ally speaking, probabilities have been regarded in a number of dif-ferent ways:� Frequentist: probabilities
ome from measurements.� Obje
tivist: probabilities are a
tual \properties of the universe" whi
hfrequentist measurements seek to un
over.An ex
ellent example: quantum phenomena.A bad example:
oin
ipping|the un
ertainty is due to our un
ertaintyabout the initial
onditions of the
oin.� Subje
tivist: probabilities are an agent's degrees of belief.This means the agent is allowed to make up the numbers!

59

Origins of probabilities IIThe referen
e
lass problem : even frequentist probabilities are subje
tive.Example: Say a do
tor takes a frequentist approa
h to diagnosis. Sheexamines a large number of people to establish the prior probability ofwhether or not they have heart disease.To be a

urate she tries to measure \similar people". (She knows for ex-ample that gender might be important.)Taken to an extreme, all people are di�erent and there is therefore noreferen
e
lass .

60

Origins of probabilities IIIThe prin
iple of indi�eren
e (Lapla
e).� Give equal probability to all propositions that are synta
ti
ally sym-metri
 with respe
t to the available eviden
e.� Re�nements of this idea led to the attempted development by Carnapand others of indu
tive logi
.� The aim was to obtain the
orre
t probability of any proposition froman arbitrary set of observations.It is
urrently thought that no unique indu
tive logi
 exists.Any indu
tive logi
 depends on prior beliefs and the e�e
t of these beliefsis over
ome by eviden
e.
61

Prior probabilityA prior probability denotes the probability (degree of belief) assigned toa proposition in the absen
e of any other eviden
e .For example Pr(Cavity = true) = 0.05denotes the degree of belief that a random person has a
avity before wemake any a
tual observation of that person .To keep things
ompa
t, we will usePr(Cavity)to denote the entire probability distribution of the random variable Cavity.Instead of Pr(Cavity = true) = 0.05Pr(Cavity = false) = 0.95write Pr(Cavity) = (0.05, 0.95)62

NotationA similar
onvention will apply for joint distributions. For example, if
Decay
an take the values severe, moderate or low thenPr(Cavity, Decay)is a 2 by 3 table of numbers.

severe moderate low

true 0.26 0.1 0.01

false 0.01 0.02 0.6Similarly Pr(true, Decay)denotes 3 numbers et
.
63

The full joint probability distributionThe full joint probability distribution is the joint distribution of all ran-dom variables that des
ribe the state of the world.This
an be used to answer any query .(But of
ourse life's not really that simple!)
64

Conditional probabilityWe use the
onditional probabilityPr(x|y)to denote the probability that a proposition x holds given that all theeviden
e we have so far is
ontained in proposition y.From basi
 probability theoryPr(x|y) =

Pr(x ∧ y)Pr(y)Conditional probability is not analogous to logi
al impli
ation .� Pr(x|y) = 0.1 does not mean that if y is true then Pr(x) = 0.1.� Pr(x) is a prior probability .� The notation Pr(x|y) is for use when y is the entire eviden
e .� Pr(x|y ∧ z) might be very di�erent.
65

Using the full joint distribution to perform inferen
eWe
an regard the full joint distribution as a knowledge base .We want to use it to obtain answers to questions.
CP ¬CP

HBP ¬HBP HBP ¬HBP

HBP 0.09 0.05 0.07 0.01
¬HBP 0.02 0.08 0.03 0.65We'll use this medi
al diagnosis problem as a running example.� HD = Heart disease� CP = Chest pain� HBP = High blood pressure

66

Using the full joint distribution to perform inferen
eThe pro
ess is nothing more than the appli
ation of basi
 results:� Sum atomi
 events:Pr(HD ∨ CP) =Pr(HD ∧ CP ∧ HBP)

+ Pr(HD ∧ CP ∧ ¬HBP)

+ Pr(HD ∧ ¬CP ∧ HBP)

+ Pr(HD ∧ ¬CP ∧ ¬HBP)

+ Pr(¬HD ∧ CP ∧ HBP)

+ Pr(¬HD ∧ CP ∧ ¬HBP)

= 0.09 + 0.05 + 0.07 + 0.01 + 0.02 + 0.08

= 0.32� Marginalisation: if A and B are sets of variables thenPr(A) =
∑

b
Pr(A ∧ b) =
∑

b

Pr(A|b)Pr(b)
67

Using the full joint distribution to perform inferen
eUsually we will want to
ompute the
onditional probability of some vari-able(s) given some eviden
e .For examplePr(HD|HBP) =

Pr(HD ∧ HBP)Pr(HBP) =
0.09 + 0.07

0.09 + 0.07 + 0.02 + 0.03
= 0.76andPr(¬HD|HBP) =

Pr(¬HD ∧ HBP)Pr(HBP) =
0.02 + 0.03

0.09 + 0.07 + 0.02 + 0.03
= 0.24

68

Using the full joint distribution to perform inferen
eThe pro
ess
an be simpli�ed slightly by noting that
α =

1Pr(HBP)is a
onstant and
an be regarded as a normaliser making relevant prob-abilities sum to 1.So a short
ut is to avoid
omputing it as above. Instead:Pr(HD|HBP) = αPr(HD ∧ HBP) = (0.09 + 0.07)α

Pr(¬HD|HBP) = αPr(¬HD ∧ HBP) = (0.02 + 0.03)αand we need Pr(HD|HBP) + Pr(¬HD|HBP) = 1so

α =
1

0.09 + 0.07 + 0.02 + 0.03

69

Using the full joint distribution to perform inferen
eThe general inferen
e pro
edure is as follows:Pr(Q|e) =
1

Z

Pr(Q ∧ e) =
1

Z

∑

u

Pr(Q, e, u)where� Q is the query variable.� e is the eviden
e.� u are the unobserved variables.� 1/Z normalises the distribution.
70

Using the full joint distribution to perform inferen
eSimple eh?Well, no...� For n Boolean variables the table has 2n entries.� Storage and pro
essing time are both O(2n).� You need to establish 2n numbers to work with.In reality we might well have n > 1000, and of
ourse it's even worse ifvariables are non-Boolean .How
an we get around this?
71

Exploiting independen
eIf I toss a
oin and roll a di
e, the full joint distribution of out
omes requires
2 × 6 = 12 numbers to be spe
i�ed.

1 2 3 4 5 6

head 0.014 0.028 0.042 0.057 0.071 0.086

tail 0.033 0.067 0.1 0.133 0.167 0.2Here Pr(Coin = head) = 0.3 and the di
e has probability i/21 for the ithout
ome.BUT : if we assume the out
omes are independent thenPr(Coin, Dice) = Pr(Coin)Pr(Dice)Where Pr(Coin) has two numbers and Pr(Dice) has six.So instead of 12 numbers we only need 8.
72

Exploiting independen
eSimilarly, say instead of just
onsidering HD, HBP and CP we also
onsiderthe out
ome of the Oxford versus Cambridge tiddlywinks
ompetition
TC: Pr(TC = Oxford) = 0.2Pr(TC = Cambridge) = 0.7Pr(TC = Draw) = 0.1Now Pr(HD, HBP, CP, TC) = Pr(TC|HD, HBP, HD)Pr(HD, HBP, HD)Assuming that the patient is not an extraordinarily keen fan of tiddly-winks , their
ardia
 health has nothing to do with the out
ome, soPr(TC|HD, HBP, HD) = Pr(TC)and 2 × 2 × 2 × 3 = 24 numbers has been redu
ed to 3 + 8 = 11.

73

Exploiting independen
eIn general you need to identify su
h independen
e through knowledge ofthe problem .BUT :� It generally does not work as
learly as this.� The independent subsets themselves
an be big.
74

Bayes theoremFrom �rst prin
iples Pr(x, y) = Pr(x|y)Pr(y)Pr(x, y) = Pr(y|x)Pr(x)so Pr(x|y) =

Pr(y|x)Pr(x)Pr(y)The most important equation in modern AI?When eviden
e e is involved this
an be writtenPr(Q|R, e) =

Pr(R|Q,e)Pr(Q|e)Pr(R|e)

75

Bayes theoremTaking another simple medi
al diagnosis example: does a patient with afever have malaria? A do
tor might know thatPr(fever|malaria) = 0.99

Pr(malaria) =
1

10000Pr(fever) =
1

20Consequently we
an try to obtain Pr(malaria|fever) by dire
t appli
ationof Bayes theoremPr(malaria|fever) =
0.99 × 0.0001

0.05
= 0.00198or using the alternative te
hniquePr(malaria|fever) = αPr(fever|malaria)Pr(malaria)if the relevant further quantity Pr(fever|¬malaria) is known.

76

Bayes theorem� Sometimes the �rst possibility is easier, sometimes not.� Causal knowledge su
h asPr(fever|malaria)might well be available when diagnosti
 knowledge su
h asPr(malaria|fever)is not.� Say the in
iden
e of malaria, modelled by Pr(Malaria), suddenly
hanges.Bayes theorem tells us what to do.� The quantity Pr(fever|malaria)would not be a�e
ted by su
h a
hange.Causal knowledge
an be more robust.
77

Conditional independen
eWhat happens if we have multiple pie
es of eviden
e?We have seen that to
omputePr(HD|CP, HBP)dire
tly might well run into problems.We
ould try using Bayes theorem to obtainPr(HD|CP, HBP) = αPr(CP, HBP|HD)Pr(HD)However while HD is probably manageable, a quantity su
h as Pr(CP, HBP|HD)might well still be problemati
 espe
ially in more realisti

ases.

78

Conditional independen
eHowever although in this
ase we might not be able to exploit independen
edire
tly we
an say thatPr(CP, HBP|HD) = Pr(CP|HD)Pr(HBP|HD)whi
h simpli�es matters.Conditional independen
e :� Pr(A,B|C) = Pr(A|C)Pr(B|C).� If we know that C is the
ase then A and B are independent.Although CP and HBP are not independent, they do not dire
tly in
uen
eone another in a patient known to have heart disease .This is mu
h ni
er!Pr(HD|CP, HBP) = αPr(CP|HD)Pr(HBP|HD)Pr(HD)
79

Naive BayesConditional independen
e is often assumed even when it does not hold.Naive Bayes : Pr(A,B1, B2, . . . , Bn) = Pr(A)

n∏

i=1

Pr(Bi|A)Also known as Idiot's Bayes .Despite this, it is often surprisingly e�e
tive.
80

Un
ertainty II - Bayesian NetworksHaving seen that in prin
iple, if not in pra
ti
e, the full joint distributionalone
an be used to perform any inferen
e of interest, we now examine apra
ti
al te
hnique.� We introdu
e the Bayesian Network (BN) as a
ompa
t representationof the full joint distribution.� We examine the way in whi
h a BN
an be
onstru
ted .� We examine the semanti
s of BNs.� We look brie
y at how inferen
e
an be performed.Reading: Russell and Norvig,
hapter 14.
81

Bayesian networksAlso
alled probabilisti
/belief/
ausal networks or knowledge maps .
CP HBP

HDTW

� Ea
h node is a random variable (RV).� Ea
h node Ni has a distributionPr(Ni|parents(Ni))� A Bayesian network is a dire
ted a
y
li
 graph .� Roughly speaking, an arrow from N to M means N dire
tly a�e
ts M.

82

Bayesian networksAfter a regrettable in
ident involving an in
atable gorilla , a famous Col-lege has de
ided to install an alarm for the dete
tion of roof
limbers.� The alarm is very good at dete
ting
limbers.� Unfortunately, it is also sometimes triggered when one of the extremelyfat geese that lives in the College lands on the roof.� One porter's lodge is near the alarm, and inhabited by a
hap withex
ellent hearing and a pathologi
al hatred of roof
limbers: he alwaysreports an alarm. His hearing is so good that he sometimes thinks hehears an alarm, even when there isn't one .� Another porter's lodge is a good distan
e away and inhabited by anold
hap with dodgy hearing who likes to listen to his
olle
tion ofDEATH METAL with the sound turned up.
83

Bayesian networks

No: 0.95

Yes: 0.05 Yes: 0.2No: 0.8

a

¬a ¬a

a

0.001

Y NYNY YNNAlarm

Climber Goose

Lodge1 Lodge2
Pr(A|C, G)

0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)
Pr(A|C, G)C G

Pr(Goose)Pr(Climber)

84

Bayesian networksNote that:� In the present example all RVs are dis
rete (in fa
t Boolean) and so inall
ases Pr(Ni|parents(Ni))
an be represented as a table of numbers .� Climber and Goose have only prior probabilities.� All RVs here are Boolean, so a node with p parents requires 2p numbers.A BN with n nodes represents the full joint probability distribution forthose nodes asPr(N1 = n1,N2 = n2, . . . , Nn = nn) =

n∏

i=1

Pr(Ni = ni|parents(Ni)) (2)For examplePr(¬C,¬G, A, L1, L2) = Pr(L1|A)Pr(L2|A)Pr(A|¬C,¬G)Pr(¬C)Pr(¬G)
= 0.99 × 0.6 × 0.08 × 0.95 × 0.8

85

Semanti
sIn general Pr(A,B) = Pr(A|B)Pr(B) so abbreviating Pr(N1 = n1,N2 =

n2, . . . ,Nn = nn) to Pr(n1, n2, . . . , nn) we havePr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1)Pr(nn−1, . . . , n1)Repeating this givesPr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1)Pr(nn−1|nn−2, . . . , n1) · · ·Pr(n1)

=

n∏

i=1

Pr(ni|ni−1, . . . , n1)

(3)

Now
ompare equations 2 and 3. We see that BNs make the assumptionPr(Ni|Ni−1, . . . ,N1) = Pr(Ni|parents(Ni))for ea
h node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.Ea
h Ni is
onditionally independent of its prede
essors given itsparents
86

Semanti
s� When
onstru
ting a BN we want to make sure the pre
eding propertyholds.� This means we need to take
are over ordering .� In general
auses should dire
tly pre
ede e�e
ts .
· · ·

Ni

parents(Ni)

Here, parents(Ni)
ontains all pre
eding nodes having a dire
t in
uen
eon Ni.

87

Semanti
sDeviation from this rule
an have major e�e
ts on the
omplexity of thenetwork.That's bad! We want to keep the network simple:� If ea
h node has at most p parents and there are n Boolean nodes, weneed to spe
ify at most n2p numbers...� ...whereas the full joint distribution requires us to spe
ify 2n numbers.So: there is a trade-o� atta
hed to the in
lusion of tenuous althoughstri
tly-speaking
orre
t edges.
88

Semanti
sAs a rule, we should in
lude the most basi

auses �rst, then the thingsthey in
uen
e dire
tly et
.What happens if you get this wrong?Example: add nodes in the order L2,L1,G,C,A.
Goose

Lodge2

Climber Alarm

Lodge1

89

Semanti
sIn this example:� In
reased
onne
tivity.� Many of the probabilities here will be quite unnatural and hard to spe
-ify.On
e again:
ausal knowledge is preferred to diagnosti
 knowledge .

90

Semanti
sAs an alternative we
an say dire
tly what
onditional independen
e as-sumptions a graph should be interpreted as expressing. There are two
ommon ways of doing this.

A

P2P1

N1 N2

Any nodeA is
onditionally independent of theNi|its non-des
endants|given the Pi|its parents.
91

Semanti
s
M7 M6 M5

M4M8

M1 M2 M3

A

Any node A is
onditionally independent of all other nodes given theMarkov blanket Mi|that is, its parents , its
hildren and its
hildren'sparents .

92

More
omplex nodesHow do we represent Pr(Ni|parents(Ni))when nodes
an denote general dis
rete and/or
ontinuous RVs?� BNs
ontaining both kinds of RV are
alled hybrid BNs .� Naive dis
retisation of
ontinuous RVs tends to result in both a redu
-tion in a

ura
y and large tables.� O(2p) might still be large enough to be unwieldy.� We
an instead attempt to use standard and well-understood distri-butions, su
h as the Gaussian .� This will typi
ally require only a small number of parameters to bespe
i�ed.

93

More
omplex nodesExample: fun
tional relationships are easy to deal with.
Ni = f(parents(Ni))

Pr(Ni = ni|parents(Ni)) =

{
1 if ni = f(parents(Ni))

0 otherwise
94

More
omplex nodesExample: a
ontinuous RV with one
ontinuous and one dis
rete parent.Pr(Speed of car|Throttle position, Tuned engine)where SC and TP are
ontinuous and TE is Boolean.� For a spe
i�
 setting of ET = true it might be the
ase that SC in
reaseswith TP, but that some un
ertainty is involvedPr(SC|TP, et) = N(getTP + cet, σ
2
et)� For an un-tuned engine we might have a similar relationship with adi�erent behaviourPr(SC|TP, ¬et) = N(g¬etTP + c¬et, σ

2
¬et)There is a set of parameters {g, c, σ} for ea
h possible value of the dis
reteRV.

95

More
omplex nodesExample: a dis
rete RV with a
ontinuous parentPr(Go roofclimbing|Size of fine)We
ould for example use the probit distributionPr(Go roofclimbing = true|size) = Φ

(

t − size

s

)

where

Φ(x) =

∫ x

−∞
N(y)dyand N(x) is the Gaussian distribution with zero mean and varian
e 1.

96

More
omplex nodes
−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
The probit distribution

x

Φ
(x

)

90 92 94 96 98 100 102 104 106 108 110
0

0.2

0.4

0.6

0.8

1
Pr(GRC = true |size) with t = 100 and different values of s

size

Φ
(t
−si

z
e

/s
)

97

More
omplex nodesAlternatively, for this example we
ould use the logit distributionPr(Go roofclimbing = true|size) =
1

1 + e(−2(t−size)/s)whi
h has a similar shape.� Tails are longer for the logit distribution.� The logit distribution tends to be easier to use...� ...but the probit distribution is often more a

urate.

98

Basi
 inferen
eWe saw earlier that the full joint distribution
an be used to perform allinferen
e tasks :Pr(Q|e) =
1

Z

Pr(Q ∧ e) =
1

Z

∑

u

Pr(Q, e, u)where� Q is the query variable� e is the eviden
e� u are the unobserved variables� 1/Z normalises the distribution.
99

Basi
 inferen
eAs the BN fully des
ribes the full joint distributionPr(Q,u, e) =

n∏

i=1

Pr(Ni|parents(Ni))It
an be used to perform inferen
e in the obvious wayPr(Q|e) =
1

Z

∑

u

n∏

i=1

Pr(Ni|parents(Ni))but as we'll see this is in pra
ti
e problemati
.� More sophisti
ated algorithms aim to a
hieve this more eÆ
iently .� For
omplex BNs we resort to approximation te
hniques .

100

Other approa
hes to un
ertainty: Default reasoningOne
riti
ism made of probability is that it is numeri
al whereas humanargument seems fundamentally di�erent in nature:� On the one hand this seems quite defensible. I
ertainly am not awareof doing logi
al thought through dire
t manipulation of probabilities ,but. . .� . . . on the other hand, neither am I aware of solving di�erential equa-tions in order to walk !Default reasoning:� Does not maintain degrees of belief .� Allows something to be believed until a reason is found not to.

101

Other approa
hes to un
ertainty: rule-based systemsRule-based systems have some desirable properties:� Lo
ality : if we establish the eviden
e X and we have a rule X→ Y then
Y
an be
on
luded regardless of any other rules.� Deta
hment : on
e any Y has been established it
an then be assumed.(It's justi�
ation is irrelevant.)� Truth-fun
tionality : truth of a
omplex formula is a fun
tion of thetruth of its
omponents.These are not in general shared by probabilisti
 systems. What happens if:� We try to atta
h measures of belief to rules and propositions.� We try to make a truth-fun
tional system by, for example, making beliefin X ∧ Y a fun
tion of beliefs in X and Y?

102

Other approa
hes to un
ertainty: rule-based systemsProblems that
an arise:1. Say I have the
ausal ruleHeart disease 0.95
−→ Chest painand the diagnosti
 ruleChest pain 0.7

−→ Heart diseaseWithout taking very great
are to keep tra
k of the reasoning pro
ess,these
an form a loop.2. If in addition I haveChest pain 0.6
−→ Re
ent physi
al exertionthen it is quite possible to form the
on
lusion that with some degreeof
ertainty heart disease is explained by exertion , whi
h may well bein
orre
t.

103

Other approa
hes to un
ertainty: rule-based systemsIn addition, we might argue that be
ause heart disease is an explanationfor
hest pain the belief in physi
al exertion should de
rease .In general when su
h systems have been su

essful it has been through very
areful
ontrol in setting up the rules.
104

Other approa
hes to un
ertainty: Dempster-Shafer theoryDempster-Shafer theory attempts to distinguish between un
ertainty andignoran
e .Whereas the probabilisti
 approa
h looks at the probability of X, we insteadlook at the probability that the available eviden
e supports X.This is denoted by the belief fun
tion Bel(X).Example : given a
oin but no information as to whether it is fair I haveno reason to think one out
ome should be preferred to anotherBel(out
ome = head) = Bel(out
ome = tail) = 0These beliefs
an be updated when new eviden
e is available. If an experttells us there is n per
ent
ertainty that it's a fair
oin thenBel(out
ome = head) = Bel(out
ome = tail) =
n

100
× 1

2
.We may still have a gap in thatBel(out
ome = head) + Bel(out
ome = tail) 6= 1.Dempster-Shafer theory provides a
oherent system for dealing with belieffun
tions. 105

Other approa
hes to un
ertainty: Dempster-Shafer theoryProblems :� The Bayesian approa
h deals more e�e
tively with the quanti�
ation ofhow belief
hanges when new eviden
e is available .� The Bayesian approa
h has a better
onne
tion to the
on
ept of utility ,whereas the latter is not well-understood for use in
onjun
tion withDempster-Shafer theory.
106

Un
ertainty III: exa
t inferen
e in Bayesian networksWe now examine:� The basi
 equation for inferen
e in Bayesian networks, the latter beinghard to a
hieve if approa
hed in the obvious way.� The way in whi
h matters
an be improved a little by a small modi�-
ation to the way in whi
h the
al
ulation is done.� The way in whi
h mu
h better improvements might be possible using astill more informed approa
h, although not in all
ases.Reading: Russell and Norvig,
hapter 14, se
tion 14.4.

107

Performing exa
t inferen
eWe know that in prin
iple any query Q
an be answered by the
al
ulationPr(Q|e) =
1

Z

∑

u

Pr(Q, e, u)where Q denotes the query, e denotes the eviden
e, u denotes unobservedvariables and 1/Z normalises the distribution.The naive implementation of this approa
h yields the Enumerate-Joint-Ask algorithm, whi
h unfortunately requires O(2n) time and spa
e for nBoolean random variables (RVs).
108

Performing exa
t inferen
eIn what follows we will make use of some abbreviations.� C denotes Climber� G denotes Goose� A denotes Alarm� L1 denotes Lodge1� L2 denotes Lodge2Instead of writing out Pr(C = ⊤), Pr(C = ⊥) et
 we will write Pr(c),Pr(¬c) and so on.

109

Performing exa
t inferen
eAlso Pr(Q, e, u) has a parti
ular form expressing
onditional independen
es:

No: 0.95

Yes: 0.05 Yes: 0.2No: 0.8

a

¬a ¬a

a

0.001

Y NYNY YNNAlarm

Climber Goose

Lodge1 Lodge2

Pr(A|C, G)
0.98
0.08
0.96
0.2

0.60.99

0.08

Pr(L1|A) Pr(L2|A)
Pr(A|C, G)C G

Pr(Goose)Pr(Climber)

Pr(C, G,A, L1, L2) = Pr(C)Pr(G)Pr(A|C,G)Pr(L1|A)Pr(L2|A)

110

Performing exa
t inferen
eConsider the
omputation of the query Pr(C|l1, l2)We havePr(C|l1, l2) =
1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)Here there are 5 multipli
ations for ea
h set of values that appears forsummation, and there are 4 su
h values.In general this gives time
omplexity O(n2n) for n Boolean RVs.Looking more
losely we see thatPr(C|l1, l2) =
1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C,G)Pr(l1|A)Pr(l2|A)

=
1

Z

Pr(C)
∑

A

Pr(l1|A)Pr(l2|A)
∑

G

Pr(G)Pr(A|C,G)

=
1

Z

Pr(C)
∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

(4)

So for example... 111

Performing exa
t inferen
e

Pr(c|l1, l2) =
1

Z

Pr(c)(Pr(g)

{ Pr(a|c, g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c, g)Pr(l1|¬a)Pr(l2|¬a)

}

+Pr(¬g)

{ Pr(a|c,¬g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c,¬g)Pr(l1|¬a)Pr(l2|¬a)

})

with a similar
al
ulation for Pr(¬c|l1, l2).Basi
ally straightforward, BUT optimisations
an be made.

112

Performing exa
t inferen
e
Pr(c)

Pr(g) Pr(¬g)

Pr(¬a|c, ¬g)

+
+

+Pr(¬a|c, g)Pr(a|c, g) Pr(a|c, ¬g)

Repeated Repeated

Pr(l1|a)Pr(l2|a)

Pr(l1|¬a)Pr(l2|¬a) Pr(l2|a)

Pr(l1|a) Pr(l1|¬a)Pr(l2|¬a)
113

Optimisation 1: Enumeration-AskThe enumeration-ask algorithm improves matters to O(2n) time and O(n)spa
e by performing the
omputation depth-�rst .However matters
an be improved further by avoiding the dupli
ation of
omputations that
learly appears in the example tree.

114

Optimisation 2: variable eliminationLooking again at the fundamental equation (8)

1

Z

Pr(C)︸ ︷︷ ︸
C

∑

G

Pr(G)︸ ︷︷ ︸
G

∑

A

Pr(A|C,G)︸ ︷︷ ︸
A

Pr(l1|A)︸ ︷︷ ︸
L1

Pr(l2|A)︸ ︷︷ ︸
L2where C, G, A, L1, L2 denote the relevant fa
tors .The basi
 idea is to evaluate (8) from right to left (or in terms of thetree, bottom up) storing results as we progress and re-using them whenne
essary.Pr(l1|A) depends on the value of A. We store it as a table FL1(A). Similarlyfor Pr(l2|A).

FL1(A) =

(

0.99

0.08

)

FL2(A) =

(

0.6

0.001

)

as Pr(l1|a) = 0.99, Pr(l1|¬a) = 0.08 and so on.
115

Optimisation 2: variable eliminationSimilarly for Pr(A|C,G), whi
h is dependent on A, C and G

FA(A, C,G) =

A C G FA(A,C, G)

⊤ ⊤ ⊤ 0.98

⊤ ⊤ ⊥ 0.96

⊤ ⊥ ⊤ 0.2

⊤ ⊥ ⊥ 0.08

⊥ ⊤ ⊤ 0.02

⊥ ⊤ ⊥ 0.04

⊥ ⊥ ⊤ 0.8

⊥ ⊥ ⊥ 0.92Can we write Pr(A|C,G)Pr(l1|A)Pr(l2|A) (5)as

FA(A,C,G)FL1(A)FL2(A) (6)in a reasonable way?
116

Optimisation 2: variable eliminationThe answer is \yes" providedmultipli
ation of fa
tors is de�ned
orre
tly.Looking at (8)

1

Z

Pr(C)
∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)note that the values of the produ
t (9) in the summation depend on thevalues of C and G external to it, and the values of A themselves. So (6)should be a table
olle
ting values for (9) where
orresponden
es betweenRVs are maintained.This leads to a de�nition for multipli
ation of fa
tors best given by example.

117

Optimisation 2: variable elimination
F(A,B)F(B,C) = F(A,B,C)where

A B F(A,B) B C F(B,C) A B C F(A,B,C)

⊤ ⊤ 0.3 ⊤ ⊤ 0.1 ⊤ ⊤ ⊤ 0.3 × 0.1

⊤ ⊥ 0.9 ⊤ ⊥ 0.8 ⊤ ⊤ ⊥ 0.3 × 0.8

⊥ ⊤ 0.4 ⊥ ⊤ 0.8 ⊤ ⊥ ⊤ 0.9 × 0.8

⊥ ⊥ 0.1 ⊥ ⊥ 0.3 ⊤ ⊥ ⊥ 0.9 × 0.3

⊥ ⊤ ⊤ 0.4 × 0.1

⊥ ⊤ ⊥ 0.4 × 0.8

⊥ ⊥ ⊤ 0.1 × 0.8

⊥ ⊥ ⊥ 0.1 × 0.3

118

Optimisation 2: variable eliminationThis pro
ess gives us

FA(A,C, G)FL1(A)FL2(A) =

A C G

⊤ ⊤ ⊤ 0.98 × 0.99 × 0.6

⊤ ⊤ ⊥ 0.96 × 0.99 × 0.6

⊤ ⊥ ⊤ 0.2 × 0.99 × 0.6

⊤ ⊥ ⊥ 0.08 × 0.99 × 0.6

⊥ ⊤ ⊤ 0.02 × 0.08 × 0.001

⊥ ⊤ ⊥ 0.04 × 0.08 × 0.001

⊥ ⊥ ⊤ 0.8 × 0.08 × 0.001

⊥ ⊥ ⊥ 0.92 × 0.08 × 0.001

119

Optimisation 2: variable eliminationHow about

FA,L1,L2(C, G) =
∑

A

FA(A,C,G)FL1(A)FL2(A)To denote the fa
t that A has been summed out we pla
e a bar over it inthe notation.

∑

A

FA(A,C,G)FL1(A)FL2(A) =FA(a, C,G)FL1(a)FL2(a)

+ FA(¬a,C, G)FL1(¬a)FL2(¬a)where

FA(a, C,G) =

C G

⊤ ⊤ 0.98

⊤ ⊥ 0.96

⊥ ⊤ 0.2

⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly for FA(¬a,C,G), FL1(¬a) and FL2(¬a).

120

Optimisation 2: variable elimination
FA(a,C, G)FL1(a)FL2(a) =

C G

⊤ ⊤ 0.98 × 0.99 × 0.6

⊤ ⊥ 0.96 × 0.99 × 0.6

⊥ ⊤ 0.2 × 0.99 × 0.6

⊥ ⊥ 0.08 × 0.99 × 0.6

FA(¬a,C, G)FL1(¬a)FL2(¬a) =

C G

⊤ ⊤ 0.02 × 0.08 × 0.001

⊤ ⊥ 0.04 × 0.08 × 0.001

⊥ ⊤ 0.8 × 0.08 × 0.001

⊥ ⊥ 0.92 × 0.08 × 0.001

FA,L1,L2(C,G) =

C G

⊤ ⊤ (0.98 × 0.99 × 0.6) + (0.02 × 0.08 × 0.001)

⊤ ⊥ (0.96 × 0.99 × 0.6) + (0.04 × 0.08 × 0.001)

⊥ ⊤ (0.2 × 0.99 × 0.6) + (0.8 × 0.08 × 0.001)

⊥ ⊥ (0.08 × 0.99 × 0.6) + (0.92 × 0.08 × 0.001)

121

Optimisation 2: variable eliminationNow, say for example we have ¬c, g. Then doing the
al
ulation expli
itlywould give

∑

A

Pr(A|¬c, g)Pr(l1|A))Pr(l2|A)

= Pr(a|¬c, g)Pr(l1|a)Pr(l2|a) + Pr(¬a|¬c, g)Pr(l1|¬a)Pr(l2|¬a)

= (0.2 × 0.99 × 0.6) + (0.8 × 0.08 × 0.001)whi
h mat
hes!Continuing in this manner form
FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C, G)sum out G to obtain FG,A,L1,L2(C) =

∑
G FG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)and normalise.

122

Optimisation 2: variable eliminationWhat's the
omputational
omplexity now?� For Bayesian networks with suitable stru
ture we
an perform inferen
ein linear time and spa
e.� However in the worst
ase it is#P-hard , whi
h is worse than NP-hard .Consequently, we may need to resort to approximate inferen
e .Un
ertainty IV: Simple De
ision-MakingWe now examine:� The
on
ept of a utility fun
tion .� The way in whi
h su
h fun
tions
an be related to reasonable axiomsabout preferen
es .� A generalization of the Bayesian network, known as a de
ision network .� How to measure the value of information , and how to use su
h mea-surements to design agents that
an ask questions .123

Reading: Russell and Norvig,
hapter 16.
124

Simple de
ision-makingWe now look at
hoosing an a
tion by maximising expe
ted utility .A utility fun
tion U(s) measures the desirability of a state .If we
an express a probability distribution for the states resulting fromalternative a
tions, then we
an a
t in order to maximise expe
ted utility.For an a
tion a, let Result(a) = {s1, . . . , sn} be a set of states that mightbe the result of performing a
tion a. Then the expe
ted utility of a is

EU(a|E) =
∑

s∈Result(a)

Pr(s|a, E)U(s)Note that this applies to individual a
tions . Sequen
es of a
tions will notbe
overed in this
ourse.
125

Simple de
ision-making: all of AI?Mu
h as this looks like a
omplete and highly attra
tive method for anagent to de
ide how to a
t, it hides a great deal of
omplexity:1. It may be hard to
ompute U(s). You generally don't know how gooda state is until you know where it might lead on to: planning et
...2. Knowing what state you're
urrently in involves most of AI !3. Dealing with Pr(s|a, E) involves Bayesian networks .

126

Utility in more detailOverall, we now want to express preferen
es between di�erent things.Let's use the following notation:

X > Y : X is preferred to Y

X = Y : we are indi�erent regarding X and Y

X ≥ Y : X is preferred, or we're indi�erent
X, Y and so on are lotteries . A lottery has the form

X = [p1, O1|p2, O2| · · · |pn, On]where Oi are the out
omes of the lottery and pi their respe
tive probabil-ities. Out
omes
an be other lotteries or a
tual states.

127

Axioms for utility theoryGiven we are dealing with preferen
es it seems that there are some
learproperties that su
h things should exhibit:Transitivity : if X > Y and Y > Z then X > Z.Orderability : either X > Y or Y > X or X = Y.Continuity : if X > Y > Z then there is a probability p su
h that
[p,X|(1 − p), Z] = Y

Substitutability : if X = Y then
[p,X|(1 − p), L] = [p, Y|(1 − p), L]

128

Axioms for utility theoryMonotoni
ity : if X > Y then for probabilities p1 and p2, p1 ≥ p2 if andonly if

[p1, X|(1 − p1), Y] ≥ [p2, X|(1 − p2), Y]

De
omposability :

[p1, X|(1 − p1), [p2, Y|(1 − p2), Z]] = [p1, X|(1 − p1)p2, Y|(1 − p1)(1 − p2), Z]If an agent's preferen
es
onform to the utility theory axioms|and notethat we are only
onsidering preferen
es, not numbers|then it is possibleto de�ne a utility fun
tion U(s) for states su
h that:1. U(s1) > U(s2)←→ s1 > s22. U(s1) = U(s2)←→ s1 = s23. U([p1, s1|p2, s2| · · · |pn, sn]) =
∑n

i=1 piU(si).We therefore have a justi�
ation for the suggested approa
h.

129

Designing utility fun
tionsThere is
omplete freedom in how a utility fun
tion is de�ned, but
learlyit will pay to de�ne them
arefully.Example : the utility of money (for most people) exhibits a monotoni
preferen
e . That is, we prefer to have more of it .But we need to talk about preferen
es between lotteries .Say you've won 100, 000 pounds in a quiz and you're o�ered a
oin
ip:� For heads: you win a total of 1, 000, 000 pounds.� For tails: you walk away with nothing!Would you take the o�er?
130

Designing utility fun
tionsThe expe
ted monetary value (EMV) of this lottery is
(0.5 × 1, 000, 000) + (0.5 × 0) = 500, 000whereas the EMV of the initial amount is 100, 000.BUT : most of us would probably refuse to take the
oin
ip.The story is not quite as simple as this though: our attitude probablydepends on how mu
h money we have to start with . If I have M poundsto start with then I am in fa
t
hoosing between expe
ted utility of

U(M + 100, 000)and expe
ted utility of
(0.5 × U(M)) + (0.5 × U(M + 1, 000, 000))If M is 50, 000, 000 my attitude is mu
h di�erent to if it is 10, 000.

131

Designing utility fun
tionsIn fa
t, resear
h shows that the utility of M pounds is for most peoplealmost exa
tly proportional to logM for M > 0. . .
−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
8

−8

−6

−4

−2

0

2

4

6

8
The utility U(M) of M pounds

M

U
(M

)

. . . and follows a similar shape for M < 0.
132

De
ision networksDe
ision networks|also known as in
uen
e diagrams . . .
Build cost

Site of landfill

Legal action

Road traffic Air quality

Cost to taxpayer

Road conjestion

Utility

. . . allow us to work a
tions and utilities into the formalism of Bayesiannetworks .A de
ision network has three types of node. . .
133

De
ision networksA de
ision network has three types of node:Chan
e nodes : are denoted by ovals. These are random variables (RVs)represented by a distribution
onditional on their parents, as in Bayesiannetworks. Parents
an be other
han
e nodes or a de
ision node.De
ision nodes : are denoted by squares. They des
ribe possible out
omesof the de
ision of interest. Here we deal only with single de
isions: multiplede
isions require alternative te
hniques.Utility nodes : are denoted by diamonds. They des
ribe the utility fun
tionrelevant to the problem, as a fun
tion of the values of the node's parents.

134

De
ision networksSometimes su
h diagrams are simpli�ed by leaving out the RVs des
ribingthe new state and
onverting
urrent state and de
ision dire
tly to utility:

This gives us fewer nodes to deal with BUT
potentially less flexibility in exploring alternative
descriptions of the problem.

and so never appear as evidence.
road conjestion describe future state
Air quality, cost to taxpayer and

Build cost

Legal action

Road traffic

Site of landfill

Utility

EU(a|E) =
∑

s∈Result(a) Pr(s|a, E)U(s)

This is an a
tion-utility table . The utility no longer depends on a statebut is the expe
ted utility for a given a
tion.
135

Evaluation of de
ision networksOn
e a spe
i�
 a
tion is sele
ted for a de
ision node it a
ts like a
han
enode for whi
h a spe
i�
 value is being used as eviden
e .1. Set the
urrent state
han
e nodes to their eviden
e values.2. For ea
h potential a
tion� Fix the de
ision node.� Compute the probabilities for the utility node's parents.� Compute the expe
ted utility.3. Return the a
tion that maximised EU(a|E).
136

The value of informationWe have been assuming that a de
ision is to be made with all eviden
eavailable beforehand . This is unlikely to be the
ase.Knowing what questions one should ask is a
entral, and important partof making de
isions. Example :� Do
tors do not diagnose by �rst obtaining results for all possible testson their patients.� They ask questions to de
ide what tests to do.� They are informed in formulating whi
h tests to perform by probabilitiesof test out
omes, and by the manner in whi
h knowing an out
omemight improve treatment.� Tests
an have asso
iated
osts.
137

The value of perfe
t informationInformation value theory provides a formal way in whi
h we
an reasonabout what further information to gather using sensing a
tions .Say we have eviden
e E, so

EU(action|E) = max

a

∑

s∈Result(a)

Pr(s|a, E)U(s)denotes how valuable the best a
tion based on E must be.How valuable would it be to learn about a further pie
e of eviden
e?If we examined another RV E ′ and found that E ′ = e ′ then the best a
tionmight be altered as we'd be
omputing
EU(action ′|E, E ′) = max

a

∑

s∈Result(a)

Pr(s|a, E, E ′)U(s)BUT : be
ause E ′ is a RV, and in advan
e of testing we don't know its value,we need to average over its possible values using our
urrent knowledge .

138

The value of perfe
t informationThis leads to the de�nition of the value of perfe
t information (VPI)
VPIE(E

′) =

{
∑

e ′

Pr(E ′ = e ′|E)EU(action ′|E, E ′ = e ′)

}
− EU(action|E)VPI has the following properties:� VPIE(E

′) ≥ 0� It is not ne
essarily additive, that is, it is possible that
VPIE(E

′, E ′′) 6= VPIE(E
′) + VPIE(E

′′)� It is independent of ordering
VPIE(E

′, E ′′) = VPIE(E
′) + VPIE,E ′(E ′′)

= VPIE(E
′′) + VPIE,E ′′(E ′)

139

Agents that
an gather informationIn
onstru
ting an agent with the ability to ask questions, we would hopethat it would:� Use a good order in whi
h to ask the questions.� Avoid asking irrelevant questions.� Trade o� the
ost of obtaining information against the value of thatinformation.� Choose a good time to stop asking questions.We now have the means with whi
h to approa
h su
h a design.

140

Agents that
an gather informationAssuming we
an asso
iate a
ost C(E ′) with obtaining the knowledge that
E ′ = e ′ an agent
an a
t as follows:� Given a de
ision network and
urrent per
ept.� Find the pie
e of eviden
e E ′ maximising VPIE(E

′) − C(E ′).� If VPIE(E
′) − C(E ′) is positive then �nd the value of E ′, else take thea
tion indi
ated by the de
ision network.This is known as a myopi
 agent as it requests a single pie
e of eviden
eat on
e. Supervised learning II: the Bayesian approa
hWe now pla
e supervised learning into a probabilisti
 setting by examining:� The appli
ation of Bayes' theorem to the supervised learning problem .� Priors, the likelihood, and the posterior probability of a hypothesis .141

� The maximum likelihood and maximum a posteriori hypotheses, andsome examples.� Bayesian de
ision theory : minimising the error rate.� Appli
ation of the approa
h to neural networks , using approximationte
hniques.

142

ReadingThere is some relevant material to be found in Russell and Norvig
hapters18 to 20 although the interse
tion between that material and what I will
over is small.Almost all of what I
over
an be found in:� Ma
hine Learning . Tom Mit
hell, M
Graw Hill 1997,
hapter 6.� Pattern Re
ognition and Ma
hine Learning . Christopher M. Bishop,Springer, 2006.

143

Supervised learning: a qui
k reminderWe want to design a
lassi�er , denoted h(x)

x

Classi�er

h(x) LabelAttribute ve
tor

It should take an attribute ve
tor

xT =
(

x1 x2 · · · xn

)and label it.What we mean by label depends on whether we're doing
lassi�
ation orregression .

144

Supervised learning: a qui
k reminderIn
lassi�
ation we're assigning x to one of a set {ω1, . . . , ωc} of c
lasses .For example, if x
ontains measurements taken from a patient then theremight be three
lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a
omputer!We'll often spe
ialise to the
ase of two
lasses, denoted C1 and C2.

145

Supervised learning: a qui
k reminderIn regression we're assigning x to a real number h(x) ∈ R.For example, if x
ontains measurements taken regarding today's weatherthen we might have

h(x) = estimate of amount of rainfall expe
ted tomorrowFor the two-
lass
lassi�
ation problem we will also refer to a situationsomewhat between the two, where

h(x) = Pr(x is in C1)

146

Supervised learning: a qui
k reminderWe don't want to design h expli
itly.
Training sequen
e

h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute ve
tor

x

So we use a learner L to infer it on the basis of a sequen
e s of trainingexamples .

147

Supervised learning: a qui
k reminderThe training sequen
e s is a sequen
e of m labelled examples .
s =









(x1, y1)

(x2, y2)...

(xm, ym)









That is, examples of attribute ve
tors x with their
orre
t label atta
hed.So a learner only gets to see the labels for a|most probably small|subsetof the possible inputs x.Regardless, we aim that the hypothesis h = L(s) will usually be su

essfulat predi
ting the label of an input it hasn't seen before.This ability is
alled generalization .
148

Supervised learning: a qui
k reminderThere is generally a set H of hypotheses from whi
h L is allowed to sele
t
h

L(s) = h ∈ H
H is
alled the hypothesis spa
e .The learner
an output a hypothesis expli
itly or|as in the
ase of a mul-tilayer per
eptron|it
an output a ve
tor

w =
(

w1 w2 · · · wW

)of weights whi
h in turn spe
ify h

h(x) = f(w;x)where w = L(s).

149

Supervised learning: a qui
k reminderIn AI I you saw the ba
kpropagation algorithm for training multilayerper
eptrons, in the
ase of regression .This worked by minimising a fun
tion of the weights representing the error
urrently being made:

E(w) =
1

2

m∑

i=1

(f(w;xi) − yi)
2

The summation here is over the training examples. The expression in thesummation grows as f's predi
tion for xi diverges from the known label yi.Ba
kpropagation tries to �nd a w that minimises E(w) by performing gra-dient des
ent

wt+1 = wt − α
∂E(w)

∂w

∣

∣

∣

∣

wt
150

DiÆ
ulties with
lassi
al neural networksThere are some well-known diÆ
ulties asso
iated with neural network train-ing of this kind.

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!!

151

Sour
es of un
ertaintySo we have to be
areful. But let's press on with this approa
h for a littlewhile longer...The model used above suggests two sour
es of un
ertainty that we mighttreat with probabilities.� Let's assume we've sele
ted an H to use, and it's the same one natureis using .� We don't know how nature
hooses h ′ from H. We therefore model ourun
ertainty by introdu
ing the prior distribution Pr(h) on H.� There is noise on the training examples.It's worth emphasising at this point that in modelling noise on the trainingexamples we'll only
onsider noise on the labels . The input ve
tors xare not modelled using a probability distribution.
152

The likelihoodWe model our un
ertainty in the training examples by spe
ifying a likeli-hood : Pr(Y|h,x)Translation: the probability of seeing a given label Y, when the input ve
toris x and the underlying hypothesis is h.Example: two-
lass
lassi�
ation. A
ommon likelihood isPr(Y = C1|h,x) = σ(h(x))where

σ(z) =
1

1 + exp(−z)(Note : stri
tly speaking x should not appear in these probabilities be
auseit's not a random variable. It is in
luded for
larity.)
153

The likelihood
−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)

−10
−5

0
5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)

154

The likelihoodSo: if we're given a training sequen
e, what is the probability that it wasgenerated using some h?For an example (x, y), y
an be C1 or C2. It's helpful here to renamethe
lasses as just 1 and 0 respe
tively be
ause this leads to a ni
e simpleexpression. Now Pr(Y|h,x) =

{
σ(h(x)) if Y = 1

1 − σ(h(x)) if Y = 0Consequently when y has a known value we
an writePr(y|h,x) = [σ(h(x))]
y
[1 − σ(h(x))]

(1−y)If we assume that the examples are independent then the probability ofseeing the labels in a training sequen
e s is straightforward.

155

The likelihoodColle
ting the inputs and outputs in s together into separate matri
es, so
yT =

(

y1 y2 · · · ym

)and

X =
(

x1 x2 · · · xm

)we have the likelihood of the training sequen
e

Pr(y|h,X) =

m∏

i=1

Pr(yi|h,xi)

=

m∏

i=1

[σ(h(xi))]
yi [1 − σ(h(xi))]

(1−yi)

156

The likelihoodAnother example: regression. A
ommon likelihood in the regression
aseworks by assuming that examples are
orrupted by Gaussian noise withmean 0 and some spe
i�ed varian
e σ2

y = h(x) + ǫ, where ǫ ∼ N (0, σ2)As usual, the density for N (µ, σ2) is

p(Z) =
1√

2πσ2

exp(−
(z − µ)2

2σ2

)

by adding h(x) to ǫ we just shift its mean, so
p(y|h,x) =

1√
2πσ2

exp(−
(y − h(x))2

2σ2

)

157

The likelihoodConsequently if the examples are independent then the likelihood of a train-ing sequen
e s is

p(y|h,X) =

m∏

i=1

p(yi|h,xi)

=

m∏

i=1

1√
2πσ2

exp(−
(yi − h(xi))

2

2σ2

)

=
1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)

where we've used the fa
t thatexp(a) exp(b) = exp(a + b)
158

Bayes' theorem appears on
e more...Right: we've take
are of the un
ertainty by introdu
ing the prior p(h)and the likelihood of the training sequen
e p(y|h,X).By this point you hopefully want to apply Bayes' theorem and write
p(h|y) =

p(y|h)p(h)

p(y)where

p(y) =
∑

h∈H
p(h,y) =

∑

h∈H
p(y|h)p(h)and to simplify the expression we have now dropped the mention of X asthe inputs are �xed. p(h|y) is
alled the posterior distribution .The denominator Z = p(y) is
alled the eviden
e and leads on to fas-
inating issues of its own. Unfortunately we won't have time to explorethem.

159

Bayes' theorem appears on
e more...The boxed equation on the last slide has a very simple interpretation:what's the probability that this spe
i�
 h was used to generate the train-ing sequen
e I've been given?Two natural learning algorithms now present themselves:1. The maximum likelihood hypothesis
hML = argmax

h∈H
p(y|h)2. The maximum a posteriori hypothesis

hMAP = argmax
h∈H

p(h|y)

= argmax
h∈H

p(y|h)p(h)Obviously hML
orresponds to the
ase where the prior p(h) is uniform.

160

Example: maximum likelihood learningWe derived an exa
t expression for the likelihood in the regression
aseabove:

p(y|h) =
1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)

Proposition: under the assumptions used, any learning algorithm thatworks by minimising the sum of squared errors on s �nds hML.This is
learly of interest: the notable example is the ba
kpropagationalgorithm .We now prove the proposition...
161

Example: maximum likelihood learningThe proposition holds be
ause:

hML = argmax

h∈H
p(y|h)

= argmax

h∈H

log p(y|h)

= argmax

h∈H

log [1

(2πσ2)m/2

exp(−
1

2σ2

m∑

i=1

(yi − h(xi))
2

)]

= argmax

h∈H

log [1

(2πσ2)m/2

]

−
1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmax

h∈H
−

1

2σ2

m∑

i=1

(yi − h(xi))
2

= argmin
h∈H

m∑

i=1

(yi − h(xi))
2

162

Example: maximum likelihood learningNote:� If the distribution of the noise is not Gaussian a di�erent result isobtained.� The use of log above to simplify a maximisation problem is a standardtri
k.� The Gaussian assumption is sometimes, but not always a good
hoi
e.(Beware the Central Limit Theorem!).
163

The next step...We have so far
on
entrated throughout our
overage of ma
hine learningon
hoosing a single hypothesis .Are we asking the right question though?Ultimately, we want to generalise.That means being presented with a new x and asking the question: whatis the most probable
lassi�
ation of x?Is it reasonable to expe
t a single hypothesis to provide the optimal answer?We need to look at what the optimal solution to this kind of problemmight be...

164

Bayesian de
ision theoryWhat is the optimal approa
h to this problem?Put another way: how should we make de
isions in su
h a way that theout
ome obtained is, on average, the best possible? Say we have:� Attribute ve
tors x ∈ R
d.� A set of
lasses {ω1, . . . ,ωc}.� Several possible a
tions {α1, . . . , αa}.The a
tions
an be thought of as saying \assign the ve
tor to
lass 1"and so on.There is also a loss λ(αi,ωj) asso
iated with taking a
tion αi when the
lass is ωj.The loss will sometimes be abbreviated to λ(αi, ωj) = λij.

165

Bayesian de
ision theorySay we
an also model the world as follows:� Classes have probabilities Pr(ω) of o

urring.� The probability of seeing x when the
lass is ω has density p(x|ω).Think of nature
hoosing
lasses at random (although not revealing them)and showing us a ve
tor sele
ted at random using p(x|ω).As usual Bayes rule tells us thatPr(ω|x) =
p(x|ω)Pr(ω)

p(x)and now the denominator is
p(x) =

c∑

i=1

p(x|ωi)Pr(ωi).
166

Bayesian de
ision theorySay nature shows us x and we take a
tion αi.If we always take a
tion αi when we see x then the average loss on seeing
x is

R(αi|x) = Eω∼p(ω|x) [λij|x] =

c∑

j=1

λ(αi,ωj)Pr(ωj|x).The quantity R(αi|x) is
alled the
onditional risk .Note that this parti
ular x is �xed .
167

Bayesian de
ision theoryNow say we have a de
ision rule α : R
d → {α1, . . . , αa} telling us whata
tion to take on seeing any x ∈ R

d.The average loss, or risk , is

R = E(x,ω)∼p(x,ω) [λ(α(x), ω)]

= Ex∼p(x)

[

Eω∼Pr(ω|x) [λ(α(x), ω)|x]
]

= Ex∼p(x) [R(α(x)|x)] (7)

=

∫
R(α(x)|x)p(x)dxwhere we have used the standard result from probability theory that

E [E [X|Y]] = E [X] .(See the supplementary notes for a proof.)
168

Bayesian de
ision theoryClearly the risk is minimised for the de
ision rule de�ned as follows:
α outputs the a
tion αi that minimises R(αi|x), for all x ∈ R

d.The provides us with the minimum possible risk, or Bayes risk R⋆.The rule spe
i�ed is
alled the Bayes de
ision rule .
169

Example: minimum error rate
lassi�
ationIn supervised learning our aim is often to work in su
h a way that weminimise the probability of error .What loss should we
onsider in these
ir
umstan
es? From basi
 proba-bility theory Pr(A) = E [I(A)]where

I(A) =

{
1 if A happens
0 otherwise(See the supplementary notes for a proof.)

170

Example: minimum error rate
lassi�
ationSo if we are addressing a supervised learning problem with c
lasses {ω1, . . . , ωc}and we interpret a
tion αi as meaning `the input is in
lass ωi', then a loss
λij =

{
1 if i 6= j

0 otherwisemeans that the risk R is

R = E [λ] = Pr(α(x) is in error)and the Bayes de
ision rule minimises the probability of error.

171

Example: minimum error rate
lassi�
ationNow, what is the Bayes de
ision rule?

R(αi|x) =

c∑

j=1

λ(αi,ωj)Pr(ωj|x)

=
∑

i6=j

Pr(ωj|x)

= 1 − Pr(ωi|x)so α(x) should be the
lass that maximises Pr(ωi|x).THE IMPORTANT SUMMARY : Given a new x to
lassify,
hoosing the
lass that maximises Pr(ωi|x) is the best strategy if your aim is to obtainthe minimum error rate!
172

Bayesian learning IIBayes de
ision theory tells us that in this
ontext we should
onsider thequantity Pr(ωi|s,x) where the involvement of the training sequen
e hasbeen made expli
it.Pr(ωi|s,x) =
∑

h∈H

Pr(ωi, h|s,x)

=
∑

h∈H

Pr(ωi|h, s,x)Pr(h|s,x)

=
∑

h∈H

Pr(ωi|h,x)Pr(h|s).Here we have re-introdu
ed H using marginalisation. In moving from line2 to line 3 we are assuming some independen
e properties.

173

Bayesian learning IISo our
lassi�
ation should be

ω = argmax

ω∈{ω1,...,ωc}

∑

h∈H

Pr(ω|h,x)Pr(h|s)If H is in�nite the sum be
omes an integral. So for example for a neuralnetwork

ω = argmax

ω∈{ω1,...,ωc}

∫

RW

Pr(ω|w,x)Pr(w|s)dwwhere W is the number of weights in w.
174

Bayesian learning IIWhy might this make any di�eren
e? (Aside from the fa
t that we nowknow it's optimal!)Example 1: Say |H| = 3 and h(x) = Pr(x is in
lass C1) for a 2
lass prob-lem. Pr(h1|s) = 0.4Pr(h2|s) = Pr(h3|s) = 0.3Now, say we have an x for whi
h
h1(x) = 1

h2(x) = h3(x) = 0so hMAP says that x is in
lass C1.
175

Bayesian learning IIHowever, Pr(
lass 1|s,x) = 1 × 0.4 + 0 × 0.3 + 0 × 0.3

= 0.4Pr(
lass 2|s,x) = 0 × 0.4 + 1 × 0.3 + 1 × 0.3

= 0.6so
lass C2 is the more probable!In this
ase the Bayes optimal approa
h in fa
t leads to a di�erentanswer .

176

A more in-depth exampleLet's take this a step further and work through something a little more
omplex in detail. For a two-
lass
lassi�
ation problem with h(x) denotingPr(C1|h, x) and x ∈ R:Hypotheses: We have three hypotheses

h1(x) = exp(−(x − 1)2)

h2(x) = exp(−(2x − 2)2)

h3(x) = exp(−(1/10)(x − 3)2)

Prior: The prior is Pr(h1) = 0.1, Pr(h2) = 0.05 and Pr(h3) = 0.85.

177

A more in-depth exampleWe see the examples (0.5, C1), (0.9, C1), (3.1, C2) and (3.4, C1).Likelihood: For the individual hypotheses the likelihoods are given byPr(s|h) = h(x1)h(x2)[1 − h(x3)]h(x4)Whi
h in this
ase tells usPr(s|h1) = 0.0024001365Pr(s|h2) = 0.0031069836Pr(s|h3) = 0.0003387476Posterior: Multiplying by the priors and normalising givesPr(h1|s) = 0.3512575000Pr(h2|s) = 0.2273519164Pr(h3|s) = 0.4213905836
178

A more in-depth exampleNow let's
lassify the point x ′ = 2.5.We needPr(C1|s, x
′) = Pr(C1|h1)Pr(h1|s) + Pr(C1|h2)Pr(h2|s) + Pr(C1|h3)Pr(h3|s)

= 0.6250705317So: it's most likely to be in
lass C1, but not with great
ertainty.

179

The Bayesian approa
h to neural networksLet's now see how this
an be applied to neural networks . We have:� A neural network
omputing a fun
tion f(w;x).� A training sequen
e s = ((x1, y1), . . . , (xm, ym)), split into
y = (y1 y2 · · · ym)and

X = (x1 x2 · · · xm)The prior distribution p(w) is now on the weight ve
tors and Bayes' the-orem tells us that

p(w|s) = p(w|X,y) =
p(y|w,X)p(w|X)

p(y|X)Nothing new so far...
180

The Bayesian approa
h to neural networksAs usual, we don't
onsider un
ertainty in x and so X will be omitted.Consequently

p(w|y) =
p(y|w)p(w)

p(y)where

p(y) =

∫

RW

p(y|w)p(w)dw

p(y|w) is a model of the noise
orrupting the labels and as previously isthe likelihood fun
tion .
181

The Bayesian approa
h to neural networks
p(w) is typi
ally a broad distribution to re
e
t the fa
t that in the absen
eof any data we have little idea of what w might be.When we see some data the above equation tells us how to obtain p(w|y).This will typi
ally be more lo
alised .

0

0.2

0.4

0.6

0.8

1

1.2

1.4

wMAP

p(
w
|y

)
a
n
d

p(
w

)

The posterior density p(w|y) becomes more localised

Prior
Posterior

To put this into pra
ti
e we need expressions for p(w) and p(y|w).182

Reminder: the general Gaussian densityReminder: we're going to be making a lot of use of the general Gaussiandensity N (µ, Σ) in d dimensions

p(z) = (2π)−d/2|Σ|−1/2 exp [−1

2

(

(z − µ)TΣ−1(z − µ)
)

]

where µ is the mean ve
tor and Σ is the
ovarian
e matrix .

−5

0

5

−5

0

5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

z1

Gaussian density, µ = [0 0], Σ = I

z2

p(
z
)

183

The Gaussian priorA
ommon
hoi
e for p(w) is the Gaussian prior with zero mean and
Σ = σ2Iso

p(w) = (2π)−W/2σ−W exp [−wTw

2σ2

]

Note that σ
ontrols the distribution of other parameters.� Su
h parameters are
alled hyperparameters .� Assume for now that they are both �xed and known.Hyperparameters
an be learnt using s through the appli
ation of moreadvan
ed te
hniques.
184

The Bayesian approa
h to neural networksPhysi
ists like to express quantities su
h as p(w) in terms of a measure of\energy". The expression is therefore usually re-written as
p(w) =

1

ZW(α)

exp(−α

2
||w||2

)

where

EW(w) =
1

2
||w||2

ZW(α) =

(

2π

α

)d/2

α =
1

σ2This is simply a re-arranged version of the more usual equation.

185

The Gaussian noise model for regressionWe've already seen that for a regression problem with zero mean Gaussiannoise having varian
e σ2
n

yi = f(xi) + ǫi

p(ǫi) =
1

√

2πσ2
n

exp(−
ǫ2

i

2σ2
n

)

where f
orresponds to some unknown network, the likelihood fun
tion is

p(y|w) =
1

(2πσ2
n)m/2

exp(−
1

2σ2
n

m∑

i=1

(yi − f(w;xi))
2

)

Note that there are now two varian
es: σ2 for the prior and σ2
n for thenoise.

186

The Bayesian approa
h to neural networksThis expression
an also be rewritten in physi
ist-friendly form
p(y|w) =

1

Zy(β)

exp (−βEy(w))where

β =
1

σ2
n

Zy(β) =

(

2π

β

)m/2

Ey(w) =
1

2

m∑

i=1

(yi − f(w;xi))
2

Here, β is a se
ond hyperparameter . Again, we assume it is �xed andknown, although it
an be learnt using s using more advan
ed te
hniques.

187

The Bayesian approa
h to neural networksCombining the two boxed equations gives

p(w|y) =
1

ZS(α, β)

exp(−S(w))where

S(w) = αEW(w) + βEy(w)The quantity

ZS(α, β) =

∫

RW

exp(−S(w))dwnormalises the density. Re
all that this is
alled the eviden
e .

188

Example I: gradient des
ent revisited...To �nd hMAP (in this s
enario by �nding wMAP) we therefore maximise
p(w|y) =

1

ZS(α, β)

exp(−(αEW(w) + βEy(w)))or equivalently �nd

wMAP = argmin

w

α

2
||w||2 +

β

2

m∑

i=1

(yi − f(w;xi))
2

This algorithm has also been used a lot in the neural network literatureand is
alled the weight de
ay te
hnique.
189

Example II: two-
lass
lassi�
ation in two dimensions
−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Examples

x1

x
2

−10
0

10

−10

0

10
0.5

1

1.5

2

x 10
−3

w1

Prior density p(w)

w2

−10
0

10

−10

0

10
0

0.02

0.04

0.06

w1

Likelihood p(y|w)

w2 −10
0

10

−10

0

10
0

0.5

1

x 10
−4

w1

Posterior density p(w|y)

w2

190

The Bayesian approa
h to neural networksWhat happens as the number m of examples in
reases?� The �rst term
orresponding to the prior remains �xed.� The se
ond term
orresponding to the likelihood in
reases.So for small training sequen
es the prior dominates, but for large ones hMLis a good approximation to hMAP.
191

The Bayesian approa
h to neural networksWhere have we got to...? We have obtained

p(w|y) =
1

ZS(α, β)

exp(−(αEW(w) + βEy(w)))

ZS(α, β) =

∫

RW

exp(−(αEW(w) + βEy(w)))dwTranslating the expression for the Bayes optimal solution given earlierinto the
urrent s
enario, we need to
ompute
p(Y|y,x) =

∫

RW

p(y|w,x)p(w|y)dwEasy huh? Unfortunately not...
192

The Bayesian approa
h to neural networksIn order to make further progress it's ne
essary to perform integrals of thegeneral form ∫

RW

F(w)p(w|y)dwfor various fun
tions F and this is generally not possible.There are two ways to get around this:1. We
an use an approximate form for p(w|y).2. We
an use Monte Carlo methods.
193

Method 1: approximation to p(w|y)The �rst approa
h introdu
es a Gaussian approximation to p(w|y) byusing a Taylor expansion of

S(w) = αEW(w) + βEy(w)at wMAP.This allows us to use a standard integral .The result will be approximate but we hope it's good!Let's re
all how Taylor series work...
194

Reminder: Taylor expansionIn one dimension the Taylor expansion about a point x0 ∈ R for a fun
tion
f : R→ R is

f(x) ≈ f(x0) +
1

1!
(x − x0)f

′(x0) +
1

2!
(x − x0)

2f ′′(x0) + · · · + 1

k!
(x − x0)

kfk(x0)What does this look like for the kinds of fun
tion we're interested in? We
an try to approximate exp (−f(x))where

f(x) = x4 −
1

2
x3 − 7x2 −

5

2
x + 22This has a form similar to S(w), but in one dimension.

195

Reminder: Taylor expansionThe fun
tions of interest look like this:
−5 0 5
0

100

200

300

400

500

600
The function f(x)

x

f
(x

)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The function exp(−f(x))

x

ex
p(
−f(

x
))

By repla
ing −f(x) with its Taylor expansion about its maximum, whi
his at

xmax = 2.1437we
an see what the approximation to exp(−f(x)) looks like. Note that theexp hugely emphasises peaks.
196

Reminder: Taylor expansionHere are the approximations for k = 1, k = 2 and k = 3.
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 1

x
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 2

x
−5 0 5

−600

−400

−200

0

Taylor expansion for k = 3

x

−5 0 5
0

0.2

0.4

0.6

0.8
exp(−f(x)) exact

x
−5 0 5
0

0.2

0.4

0.6

0.8
exp(−f(x)) using Taylor expansion for k = 2

xThe use of k = 2 looks promising...
197

Reminder: Taylor expansionIn multiple dimensions the Taylor expansion for k = 2 is
f(x) ≈ f(x0) +

1

1!
(x − x0)

T ∇f(x)|x0
+

1

2!
(x − x0)

T ∇2f(x0)
∣

∣

x0
(x − x0)where ∇ denotes gradient

∇f(x) =
(

∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

)

and ∇2f(x) is the matrix with elements
Mij =

∂2f(x)

∂xi∂xj(Although this looks
ompli
ated, it's just the obvious extension of the1-dimensional
ase.)
198

Method 1: approximation to p(w|y)Applying this to S(w) and expanding around wMAP

S(w) ≈ S(wMAP) + (w − wMAP)T ∇S(w)|wMAP

+
1

2
(w − wMAP)TA(w − wMAP)noti
e the following:� As wMAP minimises the fun
tion the �rst derivatives are zero and the
orresponding term in the Taylor expansion disappears .� The quantity A = ∇∇S(w)|wMAP
an be simpli�ed.This is be
ause

A = ∇∇(αEW(w) + βEy(w))|
wMAP

= αI + β∇∇Ey(wMAP)
199

Method 1: approximation to p(w|y)De�ning

∆w = w − wMAPwe now have

S(w) ≈ S(wMAP) +
1

2
∆wTA∆wThe ve
tor wMAP
an be obtained using any standard optimisation method(su
h as ba
kpropagation).The quantity ∇∇Ey(w)
an be evaluated using an extended form of ba
k-propagation .

200

A useful integralDropping for this slide only the spe
ial meanings usually given to ve
tors
x and y, here is a useful standard integral:If A ∈ R

n×n is symmetri
 then for b ∈ R
n and c ∈ R

∫

Rn

exp(−
1

2

(

xTAx + xTb + c
)

)

dx

= (2π)n/2|A|−1/2 exp(−
1

2

(

c −
bTA−1b

4

))

At the beginning of the
ourse, two exer
ises were set involving the eval-uation of this integral.To make this easy to refer to, let's
all it the BIG INTEGRAL.

201

Method 1: approximation to p(w|y)We now have

p(w|y) ≈
1

Z(α,β)

exp(−S(wMAP) −
1

2
∆wTA∆w

)

where ∆w = w − wMAP and using the BIG INTEGRAL
Z(α, β) = (2π)W/2|A|−1/2 exp(−S(wMAP))Our earlier dis
ussion tells us that given a new input x we should
al
ulate

p(Y|y,x) =

∫

RW

p(y|w,x)p(w|y)dw

p(y|w,x) is just the likelihood so...
202

Method 1: approximation to p(w|y)The likelihood we're using is

p(y|w,x) =
1√

2πσ2

exp(−
(y − f(w;x))2

2σ2

)

∝ exp(−
β

2
(y − f(w;x))2

)

and plugging it into the integral gives
p(y|x,y) ∝

∫

RW

exp(−
β

2
(y − f(w;x))2

) exp(−
1

2
∆wTA∆w

)

dwwhi
h has no solution!We need another approximation...
203

Method 1: approximation to p(w|y)If we assume that p(w|y) is narrow (this depends on A) then we
anintrodu
e a linear approximation of f(w;x) at wMAP:
f(w;x) ≈ f(wMAP;x) + gT∆wwhere g = ∇f(w;x)|wMAP.By linear approximation we just mean the Taylor expansion for k = 1.This leads to

p(Y|y,x) ∝
∫

RW

exp(−
β

2

(

y − f(wMAP;x) − gT∆w
)2

−
1

2
∆wTA∆w

)

dwand this integral
an be evaluated using the BIG INTEGRAL to give THEANSWER...

204

Method 1: approximation to p(w|y)Finally

p(Y|y,x) =
1

√

2πσ2
y

exp(−
(y − f(wMAP;x))2

2σ2
y

)

where

σ2
y =

1

β
+ gTA−1g.Hooray! But what does it mean?

205

Method 1: approximation to p(w|y)This is a Gaussian density , so we
an now see that p(Y|y,x) peaks at
f(wMAP;x). That is, the MAP solution .The varian
e σ2

y
an be interpreted as a measure of
ertainty .� The �rst term of σ2
y is 1/β and
orresponds to the noise.� The se
ond term of σ2

y is gTA−1g and
orresponds to the width of

p(w|y).Or interpreted graphi
ally...
206

Method 1: approximation to p(w|y)

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

3

4
Typical behaviour of the Bayesian solution

x

207

Method II: Markov
hain Monte Carlo (MCMC) methodsThe se
ond solution to the problem of performing integrals
I =

∫
F(w)p(w|y)dwis to use Monte Carlo methods. The basi
 approa
h is to make the ap-proximation

I ≈
1

N

N∑

i=1

F(wi)where the wi have distribution p(w|y). Unfortunately, generating wi witha given distribution
an be non-trivial.
208

MCMC methodsA simple te
hnique is to introdu
e a random walk, so
wi+1 = wi + ǫwhere ǫ is zero mean spheri
al Gaussian and has small varian
e. Obviouslythe sequen
e wi does not have the required distribution. However we
anuse the Metropolis algorithm , whi
h does not a

ept all the steps in therandom walk:1. If p(wi+1|y) > p(wi|y) then a

ept the step.2. Else a

ept the step with probability p(wi+1|y)

p(wi|y)
.In pra
ti
e, the Metropolis algorithm has several short
omings, and a greatdeal of resear
h exists on improved methods, see:R. Neal, \Probabilisti
 inferen
e using Markov
hain Monte Carlomethods," University of Toronto, Department of Computer S
ien
eTe
hni
al Report CRG-TR-93-1, 1993.Un
ertainty V: probabilisti
 reasoning through time209

We now examine:� How an agent might operate by keeping tra
k of the state of its envi-ronment in an un
ertain world, and how alterations in world state andun
ertainty in observing the world
an be modelled using probabilitydistributions.� How inferen
es
an be performed regarding the
urrent state, past stateand future states.� The Viterbi algorithm for
omputing the most likely sequen
e.� A slightly simpli�ed system within this framework
alled a hiddenMarkov model (HMM), and the way in whi
h some inferen
e tasks
an be simpli�ed in the HMM
ase.Reading: Russell and Norvig,
hapter 15.
210

Probabilisti
 reasoning through timeA fundamental idea throughout the AI
ourses has been that an agentshould keep tra
k of the state of the environment :� The environment's state
hanges over time .� The knowledge of how the state
hanges may be un
ertain .� The agent's per
eption of the state of the environment may be un
er-tain .For all the usual reasons related to un
ertainty , we need to move beyondlogi
, situation
al
ulus et
.
211

States and eviden
eWe model the (unobservable) state of the environment as follows:� We use a sequen
e

(S0, S1, S2, . . .)of sets of random variables (RVs).� Ea
h St is a set of RVs

St = {S
(1)
t , . . . , S

(n)
t }denoting the state of the environment at time t, where t = 0, 1, 2,Think of the state as
hanging over time.

S0 → S1→ S2 → · · ·
212

States and eviden
eAt ea
h time t there is also an observable set

Et = {E
(1)
t , . . . , E

(m)
t }of random variables denoting the eviden
e that an agent obtains aboutthe state at time t.As usual
apitals denote RVs and lower
ase denotes a
tual values. Soa
tual values for the assorted RVs are denoted

St = {s
(1)
t , . . . , s

(n)
t } = st

Et = {e
(1)
t , . . . , e

(m)
t } = et

213

Stationary and Markov pro
essesAs t
an in prin
iple in
rease without bound we now need some simplifyingassumptions.Assumption 1: We deal with stationary pro
esses : probability distribu-tions do not
hange over time.Assumption 2: We deal with Markov pro
essesPr(St|S0:t−1) = Pr(St|St−1) (8)where S0:t−1 = (S0, S1, . . . , St−1).(Stri
tly speaking this is a �rst order Markov Pro
ess , and we'll only
onsider these.)Pr(St|St−1) is
alled the transition model .

214

Stationary and Markov pro
essesAssumption 3: We assume that eviden
e only depends on the
urrent statePr(Et|S0:t, E1:t−1) = Pr(Et|St) (9)Then Pr(Et|St) is
alled the sensor model .

Pr(St|St−1)

Pr(Et|St)

Pr(S0) S0 S1 S2 S3

E1 E2 E3

· · ·

Pr(S0) is the prior probability of the starting state. We need this as therehas to be some way of getting the pro
ess started.215

The full joint distributionGiven:1. The prior Pr(S0).2. The transition model Pr(St|St−1).3. The sensor model Pr(Et|St).along with the assumptions of stationarity and the assumptions of inde-penden
e in equations 8 and 9 we have

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si) .

This follows from basi
 probability theory as for examplePr(S0, S1, S2, E1, E2) = Pr(E2|S0:2, E1)Pr(S2|S0:1, E1)Pr(E1|S0:1)Pr(S1|S0)Pr(S0)

= Pr(E2|S2)Pr(S2|S1)Pr(E1|S1)Pr(S1|S0)Pr(S0)

216

Example: two biased
oinsHere's a simple example with only two states and two observations .I have two biased
oins .I
ip one and tell you the out
ome .I then either stay with the same
oin, or swap them.This
ontinues, produ
ing a su

ession of out
omes:
0.2

0.2

head

0.90.1

head

0.80.8 coin1 coin2

217

Example: two biased
oinsWe'll use the following numbers:� The prior Pr(S0 = coin1) = 0.5.� The transition modelPr(St = coin1|St−1 = coin1) = Pr(St = coin2|St−1 = coin2) = 0.8Pr(St = coin1|St−1 = coin2) = Pr(St = coin2|St−1 = coin1) = 0.2� The sensor model Pr(Et = head|St = coin1) = 0.1Pr(Et = head|St = coin2) = 0.9

218

Example: two biased
oinsThis is straightforward to simulate.Here's an example of what happens:

[C2,C2,C1,C1,C1,C1,C1,C1,C1,C1,C1,C1,C2,C1,C1,C1,C1,C1,C1,C1,C1,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2,C2]

⇓

[Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Hd,Tl,Hd,Tl,Tl,Tl,Tl,Tl,Hd,Tl,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Hd,Tl,Hd]

As expe
ted, we tend to see runs of a single
oin, and might expe
t to beable to guess whi
h is being used as one favours heads and the other tails.

219

Example: 2008, paper 9, question 5A friend of mine likes to
limb on the roofs of Cambridge. To make a goodstart to the
oming week, he
limbs on a Sunday with probability 0.98.Being
on
erned for his own safety, he is less likely to
limb today if he
limbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not
limb yesterday then he is very unlikely to
limb today, soPr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good
limber, and is quite likely to injurehimself if he goes
limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1
220

Example: 2008, paper 9, question 5This has a similar
orresponding diagram:

0.1

0.10.8

0.4

0.6

0.9¬climbclimb

injury injuryWe'll look at the rest of this exam question later.
221

Performing inferen
eThere are four basi
 inferen
e tasks that we might want to perform.In ea
h of the following
ases, assume that we have observed the eviden
e
E1:t = e1:tTask 1: �lteringDedu
e what state we might now be in by
omputingPr(St|e1:t).In the
oin tossing question: \If you've seen all the out
omes so far,infer whi
h
oin was used last".In the exam question: \If you observed all the injuries so far, inferwhether my friend
limbed today".

222

Performing inferen
eTask 2: predi
tionDedu
e what state we might be in some time in the future by
omputingPr(St+T |e1:t) for some T > 0.In the
oin tossing question: \If you've seen all the out
omes so far,infer whi
h
oin will be tossed T steps in the future".In the exam question: \If you've observed all the injuries so far, inferwhether my friend will go
limbing T nights from now".

223

Performing inferen
eTask 3: SmoothingDedu
e what state we might have been in at some point in the past by
omputing Pr(St|e1:T) for 0 ≤ t < T.In the
oin tossing question: \If you've seen all the out
omes so far,infer whi
h
oin was tossed at time t in the past".In the exam question: \If you've observed all the injuries so far, inferwhether my friend
limbed on night t in the past".

224

Performing inferen
eTask 4: Find the most likely explanationDedu
e the most likely sequen
e of states so far by
omputingargmax

s1:t

Pr(s1:t|e1:t)In the
oin tossing question: \If you've seen all the out
omes so far,infer the most probable sequen
e of
oins used".In the exam question: \If you've observed all the injuries so far, inferthe most probable
olle
tion of nights on whi
h my friend
limbed".

225

FilteringWe want to
ompute Pr(St|e1:t). This is often
alled the forward messageand denoted

f1:t = Pr(St|e1:t)for reasons that are about to be
ome
lear.Remember that St is an RV and so f1:t is a probability distribution
on-taining a probability for ea
h possible value of St.It turns out that this
an be done in a simple manner with a re
ursiveestimation . Obtain the result at time t + 1:1. using the result from time t and...2. ...in
orporating new eviden
e et+1.
f1:t+1 = g(et+1, f1:t)for a suitable fun
tion g that we'll now derive.

226

FilteringStep 1:Proje
t the
urrent state distribution forwardPr(St+1|e1:t+1) = Pr(St+1|e1:t, et+1)

= cPr(et+1|St+1, e1:t)Pr(St+1|e1:t)

= cPr(et+1|St+1)︸ ︷︷ ︸Sensor model Pr(St+1|e1:t)︸ ︷︷ ︸Needs more workwhere as usual c is a
onstant that normalises the distribution. Here,� The �rst line does nothing but split e1:t+1 into et+1 and e1:t.� The se
ond line is an appli
ation of Bayes' theorem.� The third line uses assumption 3 regarding sensor models.

227

FilteringStep 2:To obtain Pr(St+1|e1:t)Pr(St+1|e1:t) =
∑

st

Pr(St+1, st|e1:t)

=
∑

st

Pr(St+1|st, e1:t)Pr(st|e1:t)

=
∑

st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸Available from previous stepHere,� The �rst line uses marginalisation.� The se
ond line uses the basi
 equation Pr(A,B) = Pr(A|B)Pr(B).� The third line uses assumption 2 regarding transition models.

228

FilteringPulling it all togetherPr(St+1|e1:t+1) = cPr(et+1|St+1)︸ ︷︷ ︸Sensor model ∑st

Pr(St+1|st)︸ ︷︷ ︸Transition model Pr(st|e1:t)︸ ︷︷ ︸From previous step (10)

This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)Here� f1:t is a shorthand for Pr(St|e1:t).� f1:t is often interpreted as a message being passed forward.� The pro
ess is started using the prior .
229

Predi
tionPredi
tion is somewhat simpler asPr(St+T+1|e1:t)︸ ︷︷ ︸Predi
tion at t+T+1

=
∑

st+T

Pr(St+T+1, st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T , e1:t)Pr(st+T |e1:t)

=
∑

st+T

Pr(St+T+1|st+T)︸ ︷︷ ︸Transition model Pr(st+T |e1:t)︸ ︷︷ ︸Predi
tion at t+THowever we do not get to make a

urate predi
tions arbitrarily far into thefuture!

230

SmoothingFor smoothing, we want to
al
ulate Pr(St|e1:T) for 0 ≤ t < T .Again, we
an do this in two steps.Step 1: Pr(St|e1:T) = Pr(St|e1:T , et+1:T)

= cPr(St|e1:t)Pr(et+1:T |St, e1:t)

= cPr(St|e1:t)Pr(et+1:T |St)

= cf1:tbt+1:THere� f1:t is the forward message de�ned earlier.� bt+1:T is a shorthand for Pr(et+1:T |St) to be regarded as a message beingpassed ba
kward .
231

SmoothingStep 2:

bt+1:T = Pr(et+1:T |St) =
∑

st+1

Pr(et+1:T , st+1|St)

=
∑

st+1

Pr(et+1:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1, et+2:T |st+1)Pr(st+1|St)

=
∑

st+1

Pr(et+1|st+1)︸ ︷︷ ︸Sensor model Pr(et+2:T |st+1)︸ ︷︷ ︸
bt+2:T

Pr(st+1|St)︸ ︷︷ ︸Transition model

= BACKWARD(et+1:T , bt+2:T)

(11)

This pro
ess is initialised with
bt+1:t = Pr(eT+1:T |ST) = (1, . . . , 1)

232

The forward-ba
kward algorithmSo: our original aim of
omputing Pr(St|e1:T)
an be a
hieved using:� A re
ursive pro
ess working from time 1 to time t (equation 10).� A re
ursive pro
ess working from time T to time t + 1 (equation 11).This results in a pro
ess that is O(T) given the eviden
e e1:T and smoothsfor a single point at time t.To smooth at all points 1 : T we
an easily repeat the pro
ess obtaining

O(T 2).Alternatively a very simple example of dynami
 programming allows usto smooth at all points in O(T) time.
233

The forward-ba
kward algorithm

DonePrior
Re
ursively
ompute all values bt+1:T and
ombine with stored values for f1:t.

Re
ursively
ompute all values for f1:t and store results

234

Computing the most likely sequen
e: the Viterbi algorithmIn
omputing the most likely sequen
e the aim is to obtainargmax

s1:t

Pr(s1:t|e1:t)Earlier we derived the joint distribution for all relevant variables

Pr(S0, S1, . . . , St, E1, E2, . . . , Et) = Pr(S0)

t∏

i=1

Pr(Si|Si−1)Pr(Ei|Si)

235

Computing the most likely sequen
e: the Viterbi algorithmWe therefore havemax

s1:t

Pr(s1:t, St+1|e1:t+1)

= cmax

s1:t

Pr(et+1|St+1)Pr(St+1|st)Pr(s1:t|e1:t)

= cPr(et+1|St+1)max

st




Pr(St+1|st) max
s1:t−1

Pr(s1:t−1, st|e1:t)




This looks a bit �er
e , despite the fa
t that:� The se
ond line is just Bayes' theorem applied to the joint distribution.� The last line is just a re-arrangement of the se
ond line.

236

Computing the most likely sequen
e: the Viterbi algorithmThere is however a way to visualise it that leads to a dynami
 programmingalgorithm
alled the Viterbi algorithm .Step 1: Simplify the notation.� Assume there are n states s1, . . . , sn and m possible observations e1, . . . , emat any given time.� Denote Pr(St = sj|St−1 = si) by pi,j(t).� Denote Pr(et|St = si) by qi(t).It's important to remember in what follows that the observations areknown but that we're maximising over all possible state sequen
es .

237

Computing the most likely sequen
e: the Viterbi algorithmThe equation we're interested in is now of the form
P =

T∏

t=1

pi,j(t)qi(t)

(The prior Pr(S0) has been dropped out for the sake of
larity, but is easyto put ba
k in in what follows.)The equation P will be referred to in what follows.It is in fa
t a fun
tion of any given sequen
e of states .

238

Computing the most likely sequen
e: the Viterbi algorithmStep 2: Make a grid:
olumns denote time and rows denote state.

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

239

Computing the most likely sequen
e: the Viterbi algorithmStep 3: Label the nodes:� Say at time t the a
tual observation was et. Then label the node for siin
olumn t with the value qi(t).� Any sequen
e of states through time is now a path through the grid. Sofor any transition from si at time t−1 to sj at time t label the transitionwith the value pi,j(t).In the following diagrams we
an often just write pi,j and qi be
ause thetime is
lear from the diagram.So for instan
e...

240

Computing the most likely sequen
e: the Viterbi algorithm

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1) p1,3(3)

q3(3)

pn,n−1(k + 1)

qn−1(k + 1)

241

Computing the most likely sequen
e: the Viterbi algorithm� The value of P =
∏T

t=1 pi,j(t)qi(t) for any path through the grid is justthe produ
t of the
orresponding labels that have been added.� But we don't want to �nd the maximum by looking at all the possiblepaths be
ause this would be time-
onsuming.� The Viterbi algorithm
omputes the maximum by moving from one
olumn to the next updating as it goes.� Say you're at
olumn k and for ea
h node m in that
olumn you knowthe highest value for the produ
t to this point over any possible path .Call this:

Wm(k) = max
s1:k

k∏

t=1

pi,j(t)qi(t)

242

Computing the most likely sequen
e: the Viterbi algorithm

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

Wn(k)

243

Computing the most likely sequen
e: the Viterbi algorithmHere is the key point: you only need to know� The values Wi(k) for i = 1, . . . , n at time k.� The numbers pi,j(k + 1).� The numbers qi(k + 1).to
ompute the values Wi(k + 1) for the next
olumn k + 1.This is be
ause

Wi(k + 1) = max
j

Wj(k)pj,i(k + 1)qi(k + 1)

244

Computing the most likely sequen
e: the Viterbi algorithmOn
e you get to the
olumn for time t:� The node with the largest value for Wi(t) tells you the largest possiblevalue of P.� Provided you stored the path taken to get there you
an work ba
k-wards to �nd the
orresponding sequen
e of states .This is the Viterbi algorithm .
245

Computing the most likely sequen
e: the Viterbi algorithm

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

W3(t) maximum

246

Hidden Markov modelsNow for a spe
i�

ase: hidden Markov models (HMMs). Here we have asingle , dis
rete state variable Si taking values s1, s2, . . . , sn. For example,with n = 3 we might have

s1

s2

s3

Pr(St+1|St = s1) Pr(St+1|St = s2)

0.3

0.6

0.1

0.2

0.6

0.2

Pr(St+1|St = s3)

0.2

0.3

0.5

s3

s2s1

247

Hidden Markov modelsIn this simpli�ed
ase the
onditional probabilities Pr(St+1|St)
an be rep-resented using the matrix

Sij = Pr(St+1 = sj|St = si)or for the example on the previous slide
S =





0.3 0.1 0.6

0.2 0.6 0.2

0.2 0.3 0.5





← Pr(S|s1)

← Pr(S|s2)

← Pr(S|s3)

=









Pr(s1|s1) Pr(s2|s1) · · · Pr(sn|s1)Pr(s1|s2) Pr(s2|s2) · · · Pr(sn|s2)...Pr(s1|sn) Pr(s2|sn) · · · Pr(sn|sn)









To save spa
e, I am abbreviating Pr(St+1 = si|St = sj) to Pr(si|sj).

248

Hidden Markov modelsThe
omputations we're making are always
onditional on some a
tualobservations e1:T .For ea
h t we
an therefore use the sensor model to de�ne a further matrix
Et:� Et is square and diagonal (all o�-diagonal elements are 0).� The ith element of the diagonal is Pr(et|St = si).So in our present example with 3 states, there will be a matrix

Et =





Pr(et|s1) 0 0

0 Pr(et|s2) 0

0 0 Pr(et|s3)





for ea
h t = 1, . . . , T .
249

Hidden Markov modelsIn the general
ase the equation for �ltering wasPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)and the message f1:t was introdu
ed as a representation of Pr(St|e1:t).In the present
ase we
an de�ne f1:t to be the ve
tor
f1:t =









Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)









Key point: the �ltering equation now redu
es to nothing but matrixmultipli
ation .

250

What does matrix multipli
ation do?What does matrix multipli
ation do? It
omputes weighted summations :
Ab =









a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m...

an,1 an,2 · · · an,m

















b1

b2...

bm









=









∑m
i=1 a1,ibi∑m
i=1 a2,ibi...∑m
i=1 an,ibi









So the point at the end of the last slide shouldn't
ome as a big surprise!

251

Hidden Markov modelsNow, note that if we have n states

STf1:t =











Pr(s1|s1) · · · Pr(s1|sn)Pr(s2|s1) · · · Pr(s2|sn)...Pr(sn|s1) · · · Pr(sn|sn)





















Pr(s1|e1:t)Pr(s2|e1:t)...Pr(sn|e1:t)











=











Pr(s1|s1)Pr(s1|e1:t) + · · · + Pr(s1|sn)Pr(sn|e1:t)Pr(s2|s1)Pr(s1|e1:t) + · · · + Pr(s2|sn)Pr(sn|e1:t)...Pr(sn|s1)Pr(s1|e1:t) + · · · + Pr(sn|sn)Pr(sn|e1:t)











=











∑
s Pr(s1|s)Pr(s|e1:t)∑
s Pr(s2|s)Pr(s|e1:t)...∑
s Pr(sn|s)Pr(s|e1:t)











252

Hidden Markov modelsAnd taking things one step further

Et+1S
Tf1:t =





Pr(et+1|s1) 0. . .

0 Pr(et+1|sn)













∑
sPr(s1|s)Pr(s|e1:t)∑
sPr(s2|s)Pr(s|e1:t)...∑
sPr(sn|s)Pr(s|e1:t)









=









Pr(et+1|s1)
∑

sPr(s1|s)Pr(s|e1:t)Pr(et+1|s2)
∑

sPr(s2|s)Pr(s|e1:t)...Pr(et+1|sn)
∑

sPr(sn|s)Pr(s|e1:t)









Compare this with the equation for �lteringPr(St+1|e1:t+1) = cPr(et+1|St+1)
∑

st

Pr(St+1|st)Pr(st|e1:t)

253

Hidden Markov modelsComparing the expression for Et+1S
Tf1:t with the equation for �ltering wesee that

f1:t+1 = cEt+1S
Tf1:tand a similar equation
an be found for b

bT+1:t = SET+1bT+2:tExer
ise: derive this.The fa
t that these
an be expressed simply using only multipli
ation ofve
tors and matri
es allows us to make an improvement to the forward-ba
kward algorithm.
254

Hidden Markov modelsThe forward-ba
kward algorithm works by:� Moving up the sequen
e from 1 to T ,
omputing and storing values for
f.� Moving down the sequen
e from T to 1
omputing values for b and
ombining them with the stored values for f using the equationPr(St|e1:T) = cf1:tbt+1:TNow in our simpli�ed HMM
ase we have

f1:t+1 = cEt+1S
Tf1:tor multiplying through by (Et+1S

T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1

255

Hidden Markov modelsSo as long as:� We know the �nal value for f.� ST has an inverse.� Every observation has non-zero probability in every state.We don't have to store T di�erent values for f|we just work through, dis-
arding intermediate values, to obtain the last value and then work ba
k-ward.

256

Example: 2008, paper 9, question 5A friend of mine likes to
limb on the roofs of Cambridge. To make a goodstart to the
oming week, he
limbs on a Sunday with probability 0.98.Being
on
erned for his own safety, he is less likely to
limb today if he
limbed yesterday, soPr(climb today|climb yesterday) = 0.4If he did not
limb yesterday then he is very unlikely to
limb today, soPr(climb today|¬climb yesterday) = 0.1Unfortunately, he is not a very good
limber, and is quite likely to injurehimself if he goes
limbing, soPr(injury|climb today) = 0.8whereas Pr(injury|¬climb today) = 0.1
257

Example: 2008, paper 9, question 5You learn that on Monday and Tuesday evening he obtains an injury,but on Wednesday evening he does not. Use the �ltering algorithm to
ompute the probability that he
limbed on Wednesday.Initially

f1:0 =

(

0.98

0.02

)

S =

(

0.4 0.6

0.1 0.9

)

E =

(

0.8 0

0 0.1

)

E ′ =

(

0.2 0

0 0.9

)

258

Example: 2008, paper 9, question 5The update equation is

f1:t+1 = cEt+1S
Tf1:tso

f1:1 =
c

10, 000

(

8 0

0 1

)(

4 1

6 9

)(

98

2

)

=

(

0.83874

0.16126

)

Repeating this twi
e more using E ′ rather than E the �nal time gives
f1:2 =

(

0.81268

0.18732

)

f1:3 =

(

0.10429

0.89571

)

so the answer is 0.1.
259

Example: 2008, paper 9, question 5Over the
ourse of the week, you also learn that he does not obtainan injury on Thursday or Friday. Use the smoothing algorithm to
ompute the probability that he
limbed on Thursday.The S, E and E ′ matri
es are the same. The ba
kward message starts as
b6:5 =

(

1

1

)

and the update equation is

bt:T = SEtbt+1:TThen working ba
kwards
b5:5 =

1

100

(

4 6

1 9

)(

2 0

0 9

)(

1

1

)

=

(

0.62

0.83

)

260

Example: 2008, paper 9, question 5We also need one more forward step, whi
h gives

f1:4 =

(

0.03249

0.96751

)

Finally

cf1:4b5:5 = c

(

0.03249 × 0.62

0.96751 × 0.83

)

=

(

0.02447

0.97553

)

giving the answer 0.02447.
261

Online smoothingSay we want to smooth at a �xed number of time steps . We
an alsoobtain a simple algorithm for updating the result ea
h time a new et+1appears.

1 2 TT − lag

· · · · · ·

1 2 TT − lag
· · · · · ·

New eT+1

Smooth here

Update to hereT + 1T − lag+ 1
262

Online smoothingAs usual we need to
al
ulate

cf1:T−lagbT−lag+1:Tto smooth at time (T − lag) if we've progressed to time T . So: assume
f1:T−lag and bT−lag+1:T are known.What
an we now do when eT+1 arrives to obtain f1:T−lag+1 and bT−lag+2:T+1?

f is easy to update be
ause as usual
f1:T−lag+1 = cET−lag+1S

T f1:T−lagKnown
263

Online smoothing

b is more tri
ky.We know that

bT−lag+1:T = SET−lag+1bT−lag+2:Tand
ontinuing this re
ursion up to the end of the sequen
e at T gives
bT−lag+1:T =

T∏

i=T−lag+1

SEi ×









1

1...
1









De�ne

βa:b =

b∏

i=a

SEiso

bT−lag+1:T = βT−lag+1:T ×









1

1...

1









264

Online smoothingNow when eT+1 arrives we have

bT−lag+2:T+1 =

T+1∏

i=T−lag+2

SEi ×









1

1...
1









= βT−lag+2:T+1 ×









1

1...
1









= E−1
T−lag+1S

−1βT−lag+1:TSET+1 ×









1

1...

1









265

Online smoothingThis leads to an easy way to update β

βa+1:b+1 = E−1
a S−1βa:bSEb+1Using this gives the required update for b.Reinfor
ement LearningWe now examine:� Some potential short
omings of hidden Markov models, and of super-vised learning.� An extension know as the Markov De
ision Pro
ess (MDP).� The way in whi
h we might learn from rewards gained as a result ofa
ting within an environment .� Spe
i�
, simple algorithms for performing su
h learning, and their
on-vergen
e properties.Reading: Russell and Norvig,
hapter 21. Mit
hell
hapter 13.266

Reinfor
ement learning and HMMsHidden Markov Models (HMMs) are appropriate when our agent modelsthe world as follows
Pr(S0) S0 S1 S2 S3

E1 E3

Pr(St|St−1)

Pr(Et|St)

E2

· · ·

and only wants to infer information about the state of the world on thebasis of observing the available eviden
e .This might be
riti
ised as un-ne
essarily restri
ted, although it is verye�e
tive for the right kind of problem.
267

Reinfor
ement learning and supervised learningSupervised learners learn from spe
i�
ally labelled
hunks of informa-tion :

x ???
(x1, 1)

(x2, 1)

(x3, 0)...

This might also be
riti
ised as un-ne
essarily restri
ted: there are otherways to learn.

268

Reinfor
ement learning: the basi

aseWe now begin to model the world in a more realisti
 way as follows:
S0 S1 S2 S3In any state:Perform an a
tion a to move to a new state. (There may be many possibilities.)Re
eive a reward r depending on the start state and a
tion.

· · ·

The agent
an perform a
tions in order to
hange the world's state .If the agent performs an a
tion in a parti
ular state, then it gains a
or-responding reward .

269

Deterministi
 Markov De
ision Pro
essesFormally, we have a set of states

S = {s1, s2, . . . , sn}and in ea
h state we
an perform one of a set of a
tions
A = {a1, a2, . . . , am}.We also have a fun
tion

S : S × A→ Ssu
h that S(s, a) is the new state resulting from performing a
tion a instate s, and a fun
tion

R : S × A→ Rsu
h that R(s, a) is the reward obtained by exe
uting a
tion a in state s.

270

Deterministi
 Markov De
ision Pro
essesFrom the point of view of the agent, there is a matter of
onsiderableimportan
e:The agent does not have a

ess to the fun
tions S and R .It therefore has to learn a poli
y , whi
h is a fun
tion
p : S→ Asu
h that p(s) provides the a
tion a that should be exe
uted in state s.What might the agent use as its
riterion for learning a poli
y?

271

Measuring the quality of a poli
ySay we start in a state at time t, denoted st, and we follow a poli
y p. Atea
h future step in time we get a reward. Denote the rewards rt, rt+1, . . .and so on.A
ommon measure of the quality of a poli
y p is the dis
ounted
umula-tive reward

Vp(st) =

∞∑

i=0

ǫirt+i

= rt + ǫrt+1 + ǫ2rt+2 + · · ·where 0 ≤ ǫ ≤ 1 is a
onstant, whi
h de�nes a trade-o� for how mu
h wevalue immediate rewards against future rewards.The intuition for this measure is that, on the whole, we should like ouragent to prefer rewards gained qui
kly.
272

Measuring the quality of a poli
yOther
ommon measures are the average rewardlim

T→∞

1

T

T∑

i=0

rt+iand the �nite horizon reward

T∑

i=0

rt+iIn these notes we will only address the dis
ounted
umulative reward.

273

Two important issuesNote that in this kind of problem we need to address two parti
ularlyrelevant issues:� The temporal
redit assignment problem: that is, how do we de
idewhi
h spe
i�
 a
tions are important in obtaining a reward?� The exploration/exploitation problem. How do we de
ide between ex-ploiting the knowledge we already have, and exploring the environmentin order to possibly obtain new (and more useful) knowledge?We will see later how to deal with these.
274

The optimal poli
yUltimately, our learner's aim is to learn the optimal poli
y
popt = argmax

p
Vp(s)for all s. We will denote the optimal dis
ounted
umulative reward as

Vopt(s) = Vpopt(s).How might we go about learning the optimal poli
y?
275

Learning the optimal poli
yThe only information we have during learning is the individual rewardsobtained from the environment.We
ould try to learn Vopt(s) dire
tly, so that states
an be
ompared:Consider s as better than s ′ if Vopt(s) > Vopt(s ′).However we a
tually want to
ompare a
tions , not states . Learning

Vopt(s) might help as

popt(s) = argmax

a
[R(s, a) + ǫVopt(S(s, a))]but only if we know S and R.As we are interested in the
ase where these fun
tions are not known, weneed something slightly di�erent.

276

The Q fun
tionThe tri
k is to de�ne the following fun
tion:

Q(s, a) = R(s, a) + ǫVopt(S(s, a))This fun
tion spe
i�es the dis
ounted
umulative reward obtained if youdo a
tion a in state s and then follow the optimal poli
y .As

popt(s) = argmax
a

Q(s, a)then provided one
an learn Q it is not ne
essary to have knowledge of

S and R to obtain the optimal poli
y .
277

The Q fun
tionNote also that

Vopt(s) = max

α
Q(s, α)and so

Q(s, a) = R(s, a) + ǫmax

α
Q(S(s, a), α)whi
h suggests a simple learning algorithm.Let Q ′ be our learner's estimate of what the exa
t Q fun
tion is.That is, in the
urrent s
enario Q ′ is a table
ontaining the estimated valuesof Q(s, a) for all pairs (s, a).

278

Q-learningStart with all entries in Q ′ set to 0. (In fa
t we will see in a moment thatrandom entries will do.)Repeat the following:1. Look at the
urrent state s and
hoose an a
tion a. (We will see howto do this in a moment.)2. Do the a
tion a and obtain some reward R(s, a).3. Observe the new state S(s, a).4. Perform the update

Q ′(s, a) = R(s, a) + ǫmax
α

Q ′(S(s, a), α)Note that this
an be done in episodes . For example, in learning to playgames, we
an play multiple games, ea
h being a single episode.

279

Convergen
e of Q-learningThis looks as though it might
onverge!Note that, if the rewards are at least 0 and we initialise Q ′ to 0 then,
∀n, s, a Q ′

n+1(s, a) ≥ Q ′
n(s, a)and

∀n, s, a Q(s, a) ≥ Q ′
n(s, a) ≥ 0However, we need to be a bit more rigorous than this...

280

Convergen
e of Q-learningIf:1. The agent is operating in an environment that is a deterministi
 MDP.2. Rewards are bounded in the sense that there is a
onstant δ > 0 su
hthat

∀s, a |R(s, a)| < δ3. All possible pairs s and a are visited in�nitely often.Then the Q-learning algorithm
onverges, in the sense that
∀a, s Q ′

n(s, a)→ Q(s, a)as n→∞.

281

Convergen
e of Q-learningThis is straightforward to demonstrate.Using
ondition 3, take two stret
hes of time in whi
h all s and a pairso

ur: All s, a o

ur All s, a o

ur

De�ne

ξ(n) = max

s,a
|Q ′

n(s, a) − Q(s, a)|the maximum error in Q ′ at n.What happens when Q ′
n(s, a) is updated to Q ′

n+1(s, a)?

282

Convergen
e of Q-learningWe have,

|Q ′
n+1(s, a) − Q(s, a)|

= |(R(s, a) − ǫmax

α
Q ′

n(S(s, a), α)) − (R(s, a) − ǫmax
α

Q(S(s, a), α))|

= ǫ|max

α
Q ′

n(S(s, a), α) − max

α
Q(S(s, a), α)|

≤ ǫmax

α
|Q ′

n(S(s, a), α) − Q(S(s, a), α)|

≤ ǫmax

s,a
|Q ′

n(s, a) − Q(s, a)|

= ǫξ(n).Convergen
e as des
ribed follows.
283

Choosing a
tions to performWe have not yet answered the question of how to
hoose a
tions to performduring learning.One approa
h is to
hoose a
tions based on our
urrent estimate Q ′. Forinstan
e a
tion
hosen in
urrent state s = argmax
a

Q ′(s, a).However we have already noted the trade-o� between exploration andexploitation. It makes more sense to:� Explore during the early stages of training.� Exploit during the later stages of training.This seems parti
ularly important in the light of
ondition 3 of the
onver-gen
e proof.

284

Choosing a
tions to performOne way in whi
h to
hoose a
tions that in
orporates these requirementsis to introdu
e a
onstant λ and
hoose a
tions probabilisti
ally a

ordingto Pr(a
tion a|state s) =
λQ ′(s,a)

∑
a λQ ′(s,a)Note that:� If λ is small this promotes exploration .� If λ is large this promotes exploitation .We
an vary λ as training progresses.

285

Improving the training pro
essThere are two simple ways in whi
h the pro
ess
an be improved:1. If training is episodi
, we
an store the rewards obtained during anepisode and update ba
kwards at the end.This allows better updating at the expense of requiring more memory.2. We
an remember information about rewards and o

asionally re-useit by re-training.

286

Nondeterministi
 MDPsThe Q-learning algorithm generalises easily to a more realisti
 situation,where the out
omes of a
tions are probabilisti
.Instead of the fun
tions S and R we have probability distributionsPr(new state|
urrent state, a
tion)and Pr(reward|
urrent state, a
tion).and we now use S(s, a) and R(s, a) to denote the
orresponding randomvariables.We now have

Vp = E

(∞∑

i=0

ǫirt+i

)

and the best poli
y popt maximises Vp.
287

Q-learning for nondeterministi
 MDPsWe now have

Q(s, a) = E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)Vopt(σ)

= E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)max
α

Q(σ,α)and the rule for learning be
omes

Q ′
n+1 = (1 − θn+1)Q

′
n(s, a) + θn+1

[

R(s, a) + max
α

Q ′
n(S(s, a), α)

]

with

θn+1 =
1

1 + vn+1(s, a)where vn+1(s, a) is the number of times the pair s and a has been visitedso far.

288

Convergen
e of Q-learning for nondeterministi
 MDPsIf:1. The agent is operating in an environment that is a nondeterministi
MDP.2. Rewards are bounded in the sense that there is a
onstant δ > 0 su
hthat

∀s, a |R(s, a)| < δ3. All possible pairs s and a are visited in�nitely often.4. ni(s, a) is the ith time that we do a
tion a in state s.and also...

289

Convergen
e of Q-learning for nondeterministi
 MDPs...we have

0 ≤θn < 1
∞∑

i=1

θni(s,a) =∞

∞∑

i=1

θ2
ni(s,a) <∞then with probability 1 the Q-learning algorithm
onverges, in the sensethat

∀a, s Q ′
n(s, a)→ Q(s, a)as n→∞.

290

Alternative representation for the Q ′ tableBut there's always a
at
h...We have to store the table for Q ′:� Even for quite straightforward problems it is HUGE!!! -
ertainly bigenough that it
an't be stored.� A standard approa
h to this problem is, for example, to represent it asa neural network .� One way might be to make s and a the inputs to the network and trainit to produ
e Q ′(s, a) as its output.This, of
ourse, introdu
es its own problems, although it has been usedvery su

essfully in pra
ti
e.It might be
overed in Arti�
ial Intelligen
e III , whi
h unfortunately doesnot yet exist.

291

