
Arti�ial Intelligene IDr Sean HoldenComputer Laboratory, Room FC06Telephone extension 63725Email: sbh11�l.am.a.ukwww.l.am.a.uk/∼sbh11/

Copyright Sean Holden 2002-2010.1

Introdution: what's AI for?What is the purpose of Arti�ial Intelligene (AI)?If you're a philosopher or a psyhologist then:� To understand intelligene .� To understand ourselves .However, we're neither|we're sientists/engineers, so while we might havesome interest in suh pursuits...
2

Introdution: what's AI for?From our perspetive:� To understand why our brain is small and (arguably) slow, but in-redibly good at some tasks|we want to understand a spei� form ofomputation .� To onstrut intelligent systems.� To make and sell ool stu�.This view seems to be the more suessful .AI is entering our lives almost without us being aware of it.

3

Introdution: now is a fantasti time to investigate AIIn many ways this is a young �eld, having only really got under way in1956 with the Dartmouth Conferene .

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html� This means we an atually do things.� Also, we know what we're trying to do is possible .Philosophy has addressed similar problems for at least 2000 years.� Can we do AI? Should we do AI?� Is AI impossible? (Note: I didn't write possible here, for a good rea-son...)Arguably, philosophy has had relatively little suess.
4

Aside I: philosophy (428 B.C. to present)� Sorates wanted an algorithm (!) for \piety". The rules governingrational thought. Syllogisms .� Mehanial reasoning : Ramon Lull's onept wheels (approx. 1315).Further attempts at mehanial alulators.� Mind as a physial system : Rene Desartes (1596-1650). Dualism .� The opposing position of materialism : Wilhelm Leibnitz (1646-1716).� An intermediate position: mind is physial but unknowable .� Where does knowledge ome from?� Franis Baon (1561-1626): empiriism . Leading to John Loke (1632-1704): \Nothing is in the understanding, whih was not �rst in thesenses".� David Hume (1711-1776). Indution : we obtain rules by repeated ex-posure. Further developed by Bertrand Russel (1872-1970) and in theon�rmation theory of Carnap and Hempel.
5

Aside I: philosophy (428 B.C. to present)Finally: what is the onnetion between knowledge and ation? How areations justi�ed?Aristotle: don't onentrate on the end but the means .If to ahieve the end you need to ahieve something intermediate, onsiderhow to ahieve that, and so on.This approah was implemented in Newell and Simon's 1957General Prob-lem Solver (GPS).

6

Further readingWhy do people like to argue that AI is impossible?Why do people dislike the idea that humanity might not be speial .An exellent artile on why this view is muh more problemati than itmight seem is:\Why people think omputers an't," Marvin Minsky. AI Magazine,volume 3 number 4, 1982.
7

Introdution: what's happened sine 1956?What's made the di�erene? We have a huge advantage in having reahed apoint where tehnology has matured suÆiently to allow us to build things .� Pereption (vision, speeh proessing...)� Logial reasoning (prolog, expert systems, CYC...)� Playing games (hess, bakgammon, go...)� Diagnosis of illness (in various ontexts...)� Theorem proving (Robbin's onjeture...)� Literature and musi (automated writing and omposition...)� And many more...The simple ability to try things out has led to huge advanes in a relativelyshort time. So: don't believe the ritis...
8

Aside II: omputer engineering (1940 to present)To have AI, you need a means of implementing the intelligene. Com-puters are (at present) the only devies in the rae. (Although quantumomputation is looking interesting...)AI has had a major e�et on omputer siene:� Time sharing� Interative interpreters� Linked lists� Storage management� Some fundamental ideas in objet-oriented programming� and so on...When AI has a suess, the ideas in question tend to stop being alled AI .

9

The nature of the pursuitWhat is AI? This is not neessarily a straightforward question.It depends on who you ask...We an �nd many de�nitions and a rough ategorisation an be madedepending on whether we are interested in:� The way in whih a system ats or the way in whih it thinks .� Whether we want it to do this in a human way or a rational way.Here, the word rational has a speial meaning: it means doing the orretthing in given irumstanes .
10

Ating like a humanWhat is AI, version one: ating like a humanAlan Turing proposed what is now known as the Turing Test .� A human judge is allowed to interat with an AI program via a terminal.� This is the only method of interation.� If the judge an't deide whether the interation is produed by a ma-hine or another human then the program passes the test.In the unrestrited Turing test the AI program may also have a ameraattahed, so that objets an be shown to it, and so on.

11

Ating like a humanThe Turing test is informative, and (very!) hard to pass.� It requires many abilities that seem neessary for AI, suh as learning.BUT : a human hild would probably not pass the test.� Sometimes an AI system needs human-like ating abilities|for exampleexpert systems often have to produe explanations|but not always .See the Loebner Prize in Arti�ial Intelligene :
www.loebner.net/Prizef/loebner-prize.html

12

Thinking like a humanWhat is AI, version two: thinking like a humanThere is always the possibility that a mahine ating like a human doesnot atually think . The ognitive modelling approah to AI has tried to:� Dedue how humans think|for example by introspetion or psyho-logial experiments .� Copy the proess by mimiking it within a program.An early example of this approah is the General Problem Solver pro-dued by Newell and Simon in 1957. They were onerned with whetheror not the program reasoned in the same manner that a human did.Computer Siene + Psyhology = Cognitive Siene

13

Aside III: psyhology (1879 to present)� Begins with the study of the human visual system. Hermann vonHelmholtz (1821-1894).� The �rst experimental psyhology founded by Wilhelm Wundt (1832-1920).

– The lab onduted areful, ontrolled experiments on human sub-jets.

– The idea was for the subjet to perform some task and introspetabout their thought proesses.Other labs followed this lead. BUT: a strange|and fatal|e�et ap-peared.For eah lab, the introspetions of the subjets turned out to onformto the preferred theories of the lab.

14

Aside III: psyhology (1879 to present)The main response to this e�et was behaviourism .Watson (1878-1958)Thorndike (1874-1949).� They regarded evidene based on introspetion as fundamentally unre-liable, so they simply rejeted all theories based on any form of mentalproess.� They onsidered only objetive measures of stimulus and response .They learnt a LOT of interesting things about rats and pigeons!The more sophistiated view of the brain as an information proess-ing devie|the view of ognitive psyhology|was steamrollered by be-haviourism until Craik's The Nature of Explanation (1943).The idea that onepts suh as reasoning, beliefs, goals et are importantis re-stated.Critially: the system ontains a model of the world and of the way itsations a�et the world. 15

Aside III: psyhology (1879 to present)stimuli onverted to internal representation
↓ognitive proesses manipulate internal representations
↓internal representations onverted into ations

16

Thinking rationally: the \laws of thought"What is AI, version three: thinking rationallyThe idea that intelligene redues to rational thinking is a very old one,going at least as far bak as Aristotle as we've already seen.The general �eld of logi made major progress in the 19th and 20th en-turies, allowing it to be applied to AI.� We an represent and reason about many di�erent things.� The logiist approah to AI.This is a very appealing idea. However...
17

Thinking rationally: the \laws of thought"Unfortunately there are obstales to any naive appliation of logi. It ishard to:� Represent ommonsense knowledge .� Deal with unertainty .� Reason without being tripped up by omputational omplexity .These will be reurring themes in this ourse, and in AI II.Logi alone also falls short beause:� Sometimes it's neessary to at when there's no logial ourse of ation.� Sometimes inferene is unneessary (reex ations).

18

Further readingThe Fifth Generation Computer System projet has most ertainly earnedthe badge of \heroi failure".It is an example of how muh harder the logiist approah is than you mightthink:\Overview of the Fifth Generation Computer Projet," TohruMoto-oka. ACM SIGARCH Computer Arhiteture News, volume 11,number 3, 1983.
19

Aside III: mathematis (800 to present)� To be sienti� about AI we need omputation, logi, and probability.� Aristotle knew about logi, but as a philosophial rather than mathe-matial pursuit.� George Boole (1815-1864) made it into mathematis.� Gottlob Frege (1848-1925) founded all the essential parts of �rst-orderlogi.� Alfred Tarski (1902-1983). The theory of referene: what is the rela-tionship between real and logial objets.� Computation begins with algorithms : Arab mathematiian al-Khowarazmi .� The limits of algorithms: David Hilbert (1862-1943). The entshei-dungsproblem .� Solved by Turing, who (with others) formulated preisely what an al-gorithm is . Intratability .� Kurt Godel (1906-1978): theorems on ompleteness and inompleteness.

20

Aside III: mathematis (800 to present)Probability:� Gerolamo Cardano (1501-1576): gambling outomes.� Further developed by Fermat, Pasal, Bernoulli, Laplae...� Bernoulli (1654-1705): probability as a measure of degree of belief .� Bayes (1702-1761): updating a degree of belief when new evidene isavailable.� Probability forms the basis for the modern treatment of unertainty .� Deision theory . Von Neumann and Morgenstern (1944): ombineunertainty with ation.
21

Ating rationallyWhat is AI, version four: ating rationallyBasing AI on the idea of ating rationally means attempting to designsystems that at to ahieve their goals given their beliefs .What might be needed?� To make good deisions in many di�erent situations we need to rep-resent and reason with knowledge .� We need to deal with natural language .� We need to be able to plan .� We need vision .� We need learning .And so on, so all the usual AI bases seem to be overed.

22

Ating rationallyThe idea of ating rationally has several advantages:� The onepts of ation , goal and belief an be de�ned preisely makingthe �eld suitable for sienti� study.This is important: if we try to model AI systems on humans, we an't evenpropose any sensible de�nition of what a belief or goal is .In addition, humans are a system that is still hanging and adapted to avery spei� environment.Rational ating does not have these limitations.
23

Ating rationallyRational ating also seems to inlude two of the alternative approahes:� All of the things needed to pass a Turing test seem neessary for rationalating, so this seems preferable to the ating like a human approah.� The logiist approah an learly form part of what's required to atrationally, so this seems preferable to the thinking rationally approahalone.As a result, we will fous on the idea of designing systems that at ratio-nally .

24

Other ontributionsLinguistis (1957 to present)� Skinner's Verbal Behaviour (1951). The approah to language devel-oped by the behaviourists.� Noam Chomsky showed it ould not explain understanding or produ-tion of sentenes not previously heard .� Chomsky's own theory|based on syntati models|did not su�er inthis way. It was also formal, and ould be programmed.This overall problem is onsiderably harder than was realised in 1957.It requires knowledge representation, and the �elds have informed one an-other.A lassi example: \Time ies like an arrow" and \Fruit ies like abanana"

25

Other ontributionsEonomis (1776 to present)� How should I at, perhaps in the presene of adversaries, to obtainsomething nie in the future?� When we say \something nie," how an the \degree of nieness" bemeasured?� This leads to the idea of utility as a mathematial onept. Walras(1834-1910), Ramsey (1931) and Von Neumann and Morgenstern (1944).� Large eonomies: Probability theory + utility theory = deision theory� Game theory is more appliable to small eonomies. Sometimes it'srational to at (apparently) randomly.� Future gains resulting from a sequene of ations. Operations researh.Bellman (1957): Markov deision proesses .� Unfortunately it is omputationally hard to at rationally.� Herbert Simon (1916-2001): Nobel Prize for Eonomis. Satis�ing isa better way of desribing the atual behaviour of humans.26

Other ontributionsNeurosiene (1861 to present)Nasty bumps on the head
↓We know that the brain has something to do with onsiousnessExperiments by Paul Broa (1824-1880) led to the understanding that lo-alised regions have di�erent tasks.Around that time the presene of neurons was understood but there werestill major problems.For example, even now there is no omplete understanding of how ourbrains store a single memory.More reently: EEG, MRI and the study of single ells.

27

Other ontributionsCybernetis and ontrol theory (1948 to present)� Ktesibios of Alexandria (250 BC). First mahine able to modify its ownbehaviour. (Water lok ontaining a mehanism for ontrolling the owof water.)� James Watt (1736-1819): governor for steam engines.� Cornelius Drebbel (1572-1633): thermostat.� Control theory as a mathematial subjet: Norbert Wiener (1894-1964)and others.� Interesting behaviour aused by a ontrol system minimising error =di�erene between goal and urrent situation .� More reently: stohasti optimal ontrol . Maximisation over time ofan objetive funtion .� Conneted diretly to AI, but the latter moves away from linear , on-tinuous senarios.
28

What's in this ourse?This ourse introdues some of the fundamental areas that make up AI:� An outline of the bakground to the subjet.� An introdution to the idea of an agent .� Solving problems in an intelligent way by searh .� Solving problems represented as onstraint satisfation problems.� Playing games .� Knowledge representation, and reasoning .� Planning .� Learning using neural networks .Stritly speaking, AI I overs what is often referred to as \Good Old-Fashioned AI".The nature of the subjet hanged a great deal when the importane of un-ertainty beame fully appreiated. AI II overs this more reent material.29

What's not in this ourse?� The lassial AI programming languages prolog and lisp.� A great deal of all the areas on the last slide!� Pereption: vision , hearing and speeh proessing , touh (fore sens-ing, knowing where your limbs are, knowing when something is bad),taste , smell .� Natural language proessing.� Ating on and in the world: robotis (e�etors, loomotion, manipula-tion), ontrol engineering , mehanial engineering , navigation .� Areas suh as geneti algorithms/programming , swarm intelligene ,arti�ial immune systems and fuzzy logi, for reasons that I will ex-pand upon during the letures.� Unertainty and muh further probabilisti material. (You'll have towait until next year.)
30

Text bookThe ourse is based on the relevant parts of:Arti�ial Intelligene: A Modern Approah , Seond Edition (2003).Stuart Russell and Peter Norvig, Prentie Hall International Editions.NOTE: the 3rd edition has reently beome available. This is also �ne.

31

Interesting things on the webA few interesting web starting points:The Honda Asimo robot: world.honda.com/ASIMOAI at Nasa Ames: www.nasa.gov/centers/ames/research/exploringtheuniverse/spiffy.htmlDARPAGrand Challenge: ai.stanford.edu/∼dstavens/aaai06/montemerlo etal aaai06.pdf2007 DARPA Urban Challenge: cs.stanford.edu/group/roadrunnerThe Cy projet: www.cyc.comHuman-like robots: www.ai.mit.edu/projects/humanoid-robotics-groupSony robots: support.sony-europe.com/aiboNEC \PaPeRo": www.nec.co.jp/products/robot/en

32

PrerequisitesThe prerequisites for the ourse are: �rst order logi, some algorithms anddata strutures, disrete and ontinuous mathematis, basi omputationalomplexity.DIRE WARNING:In the letures on mahine learning I will be talking about neural net-works .This means you will need to be able to di�erentiate and also handle vetorsand matries .If you've forgotten how to do this you WILL get lost|I guarantee it!!!

33

PrerequisitesSelf test:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are onstants. Can you ompute ∂f/∂xj where 1 ≤ j ≤ n?2. Let f(x1, . . . , xn) be a funtion. Now assume xi = gi(y1, . . . , ym) for eah

xi and some olletion of funtions gi. Assuming all requirements fordi�erentiability and so on are met, an you write down an expressionfor ∂f/∂yj where 1 ≤ j ≤ m?If the answer to either of these questions is \no" then it's time for somerevision. (You have about three weeks notie, so I'll assume you know it!)

34

Arti�ial Intelligene IDr Sean Holden

An introdution to Agents

Copyright Sean Holden 2002-2010.35

AgentsThere are many di�erent de�nitions for the term agent within AI.Allow me to introdue EVIL ROBOT.
ENVIRONMENT

At
SenseGLORIOUS LEADER!!!!DR HOLDEN WILL BE OURMUST ENSLAVE EARTH!!!

We will use the following simple de�nition: an agent is any devie thatan sense and at upon its environment .
36

AgentsThis de�nition an be very widely applied: to humans, robots, piees ofsoftware, and so on.We are taking quite an applied perspetive. We want to make thingsrather than opy humans , so to be sienti� there are some issues to beaddressed:� How an we judge an agent's performane?� How an an agent's environment a�et its design?� Are there sensible ways in whih to think about the struture of anagent?Reall that we are interested in devies that at rationally , where `rational'means doing the orret thing under given irumstanes .Reading: Russell and Norvig, hapter 2.
37

Measuring performaneHow an we judge an agent's performane? Any measure of performaneis likely to be problem-spei�.Example: For a hess playing agent, we might use its rating.Example: For a mail-�ltering agent, we might devise a measure of howwell it bloks spam, but allows interesting email to be read.Example: For a ar driving agent the measure needs onsiderable sophis-tiation: we need to take aount of omfort, journey time, safety et.So: the hoie of a performane measure is itself worthy of areful onsid-eration.

38

Measuring performaneWe're usually interested in expeted, long-term performane .� Expeted performane beause usually agents are not omnisient|they don't infallibly know the outome of their ations.� It is rational for you to enter this leture theatre even if the roof fallsin today.An agent apable of deteting and proteting itself from a falling roof mightbe more suessful than you, but not more rational .� Long-term performane beause it tends to lead to better approxima-tions to what we'd onsider rational behaviour.� We probably don't want our ar driving agent to be outstandinglysmooth and safe for most of the time, but have episodes of drivingthrough the loal orphanage at 150 mph.
39

EnvironmentsHow an an agent's environment a�et its design? Example: the environ-ment for a hess program is vastly di�erent to that for an autonomousdeep-spae vehile . Some ommon attributes of an environment have aonsiderable inuene on agent design.� Aessible/inaessible: do perepts tell you everything you need toknow about the world?� Deterministi/non-deterministi: does the future depend preditablyon the present and your ations?� Episodi/non-episodi is the agent run in independent episodes.� Stati/dynami: an the world hange while the agent is deiding whatto do?� Disrete/ontinuous: an environment is disrete if the sets of allowableperepts and ations are �nite.
40

EnvironmentsAll of this assumes there is only one agent.When multiple agents are involved we need to onsider:� Whether the situation is ompetitive or ooperative .� Whether ommuniation required?An example of multiple agents:news.bb.o.uk/1/hi/tehnology/3486335.stm

41

Basi strutures for intelligent agentsAre there sensible ways in whih to think about the struture of an agent?Again, this is likely to be problem-spei�, although perhaps to a lesserextent.So far, an agent is based on perepts, ations and goals.Example: Airraft piloting agent.Perepts: sensor information regarding height, speed, engines et, audioand video inputs, and so on.Ations: manipulation of the airraft's ontrols.Also, perhaps talking to the passengers et.Goals: get to the neessary destination as quikly as possible with minimaluse of fuel, without rashing et.
42

Programming agentsA basi agent an be thought of as working on a straightforward underlyingproess:� Gather pereptions .� Update working memory to take aount of them.� On the basis of what's in the working memory, hoose an ation toperform.� Update the working memory to take aount of this ation.� Do the hosen ation.Obviously, this hides a great deal of omplexity.Also, it ignores subtleties suh as the fat that a perept might arrive whilean ation is being hosen.
43

Programming agentsWe'll initially look at two hopelessly limited approahes, beause they dosuggest a ouple of important points.Hopelessly limited approah number 1: use a table to map perept se-quenes to ations. This an quikly be rejeted.� The table will be huge for any problem of interest. About 35100 entriesfor a hess player.� We don't usually know how to �ll the table.� Even if we allow table entries to be learned it will take too long.� The system would have no autonomy .We an attempt to overome these problems by allowing agents to reason .Autonomy is an interesting issue though...
44

AutonomyIf an agent's behaviour depends in some manner on its own experiene ofthe world via its perept sequene, we say it is autonomous .� An agent using only built-in knowledge would seem not to be suess-ful at AI in any meaningful sense: its behaviour is prede�ned by itsdesigner.� On the other hand some built-in knowledge seems essential, even tohumans.Not all animals are entirely autonomous.For example: dung beetles.
45

Reex agentsHopelessly limited approah number 2: try extrating pertinent informa-tion and using rules based on this.Condition-ation rules: if a ertain state is observed then perform someationSome points immediately present themselves regarding why reex agentsare unsatisfatory:� We an't always deide what to do based on the urrent perept .� However storing all past perepts might be undesirable (for examplerequiring too muh memory) or just unneessary.� Reex agents don't maintain a desription of the state of their envi-ronment ...� ...however this seems neessary for any meaningful AI. (Consider au-tomating the task of driving.)This is all the more important as usually perepts don't tell you everythingabout the state . 46

Keeping trak of the environmentIt seems reasonable that an agent should maintain:� A desription of the urrent state of its environment .� Knowledge of how the environment hanges independently of the agent .� Knowledge of how the agent's ations a�et its environment .This requires us to do knowledge representation and reasoning .

47

Goal-based agentsIt seems reasonable that an agent should hoose a rational ourse of ationdepending on its goal .� If an agent has knowledge of how its ations a�et the environment,then it has a basis for hoosing ations to ahieve goals.� To obtain a sequene of ations we need to be able to searh and toplan .This is fundamentally di�erent from a reex agent.For example: by hanging the goal you an hange the entire behaviour.

48

Goal-based agentsWe now have a basi design that looks something like this:

Desription of Goal
Infer

UpdatePerept
Desription: urrent environmentDesription: e�et of ationsDesription: behaviour of environment

Update

Ation/Ation sequene
49

Utility-based agentsIntroduing goals is still not the end of the story.There may be many sequenes of ations that lead to a given goal, andsome may be preferable to others .A utility funtion maps a state to a number representing the desirabilityof that state.� We an trade-o� oniting goals , for example speed and safety.� If an agent has several goals and is not ertain of ahieving any of them,then it an trade-o� likelihood of reahing a goal against the desirabilityof getting there.Maximising expeted utility over time forms a fundamental model for thedesign of agents. However we don't get as far as that until AI II.

50

Learning agentsIt seems reasonable that an agent should learn from experiene .

Learner Desription of GoalFeedbak

Infer
UpdatePerept

Desription: urrent environmentDesription: e�et of ationsDesription: behaviour of environment
Update

Ation/Ation sequene

Update
51

Learning agentsThis requires two additions:� The learner needs some form of feedbak on the agent's performane.This an ome in several di�erent forms.� In general, we also need a means of generating new behaviour in orderto �nd out about the world.This in turn implies a trade-o�: should the agent spend time exploitingwhat it's learned so far, or exploring the environment on the basis that itmight learn something really useful?
52

What have we learned? (No pun intended...)The ruial things that should be taken away from this leture are:� The nature of an agent depends on its environment and performanemeasure .� We're usually interested in expeted, long-term performane .� Autonomy requires that an agent in some way behaves depending onits experiene of the world .� There is a natural basi struture on whih agent design an be based.� Consideration of that struture leads naturally to the basi areas overedin this ourse.Those basi areas are: knowledge representation and reasoning, searh,planning and learning . Oh, and �nally, we've learned NOT TO MESS WITH EVIL ROBOT... he's a VERY BADROBOT!

53

Arti�ial Intelligene IDr Sean Holden

Notes on problem solving by searh

Copyright Sean Holden 2002-2010.54

Problem solving by searhWe begin with what is perhaps the simplest olletion of AI tehniques:those allowing an agent existing within an environment to searh for asequene of ations that ahieves a goal .The algorithms an, rudely, be divided into two kinds: uninformed andinformed .Not surprisingly, the latter are more e�etive and so we'll look at those inmore detail.Reading: Russell and Norvig, hapters 3 and 4.
55

Problem solving by searhAs with any area of omputer siene, some degree of abstration is ne-essary when designing AI algorithms.Searh algorithms apply to a partiularly simple lass of problems|weneed to identify:� An initial state : what is the agent's situation to start with?� A set of ations : these are modelled by speifying what state will resulton performing any available ation from any known state.� A goal test : we an tell whether or not the state we're in orrespondsto a goal.Note that the goal may be desribed by a property rather than an expliitstate or set of states, for example hekmate .
56

Problem solving by searhA simple example: the 8-puzzle .

3 5

1 4 2

7 8 6

3 5

4 2

7 8 6

1

3 5

2

7 8 6

1

4

7 8

4 5 6

2 31

−→

−→

−→ · · · −→

Ation Ation

Start State

Goal StateFurther ations

(A good way of keeping kids quiet...)
57

Problem solving by searhStart state: a randomly-seleted on�guration of the numbers 1 to 8 ar-ranged on a 3 × 3 square grid, with one square empty.Goal state: the numbers in asending order with the bottom right squareempty.Ations: left, right, up, down. We an move any square adjaent to theempty square into the empty square. (It's not always possible to hoosefrom all four ations.)Path ost: 1 per move.The 8-puzzle is very simple. However general sliding blok puzzles are agood test ase. The general problem is NP-omplete. The 5×5 version hasabout 1025 states, and a random instane is in fat quite a hallenge.

58

Problem solving by basi searhEVIL ROBOT has found himself in an unfamiliar building:
ODIN

Evil Robot Teleport

He wants the ODIN (Oblivion Devie of Indesribable Nastiness).

59

Problem solving by searhStart state: EVIL ROBOT is in the top left orner.Goal state: EVIL ROBOT is in the area ontaining the ODIN.Ations: left, right, up, down. We an move as long as there's no wall inthe way. (Again, it's not always possible to hoose from all four ations.)Path ost: 1 per move. If you step on a teleport then you move to theother one with a ost of 0.
60

Problem solving by searhProblems of this kind are very simple, but a surprisingly large number ofappliations have appeared:� route-�nding/tour-�nding� layout of VLSI systems� navigation systems for robots� sequening for automati assembly� searhing the internet� design of proteinsand many others...Problems of this kind ontinue to form an ative researh area.

61

Problem solving by searhIt's worth emphasising that a lot of abstration has taken plae here:� Can the agent know it's urrent state in full?� Can the agent know the outome of its ations in full?Single-state problems: the state is always known preisely, as is the e�etof any ation. There is therefore a single outome state.Multiple-state problems: The e�ets of ations are known, but the statean not reliably be inferred, or the state is known but not the e�ets of theations.

62

Problem solving by searhSingle and multiple state problems an be handled using these searh teh-niques.In the latter, we must reason about the set of states that we ould be in:� In this ase we have an initial set of states.� Eah ation leads to a further set of states.� The goal is a set of states all of whih are valid goals.

63

Problem solving by searhContingeny problemsIn some situations it is neessary to perform sensing while the ations arebeing arried out in order to guarantee reahing a goal.(It's good to keep your eyes open while you ross the road!)This kind of problem requires planning and will be dealt with later.Sometimes it is atively bene�ial to at and see what happens, rather thanto try to onsider all possibilities in advane in order to obtain a perfetplan.

64

Problem solving by searhExploration problemsSometimes you have no knowledge of the e�et that your ations have onthe environment.Babies in partiular have this experiene.This means you need to experiment to �nd out what happens when youat.This kind of problem requires reinforement learning for a solution. Wewill not over reinforement learning in this ourse. (Although it is in AIII.)

65

Searh treesThe basi idea should be familiar from your (urrent) Algorithms I ourse,and also from Foundations of Computer Siene .� We build a tree with the start state as root node.� A node is expanded by applying ations to it to generate new states.� A path is a sequene of ations that lead from state to state.� The aim is to �nd a goal state within the tree.� A solution is a path beginning with the initial state and ending in agoal state.We may also be interested in the path ost as some solutions might bebetter than others.Path ost will be denoted by p.
66

2 58

6

7 3 4

1 7

2 58

6

3 4

1

2 58

6

7 3 4

1

5

6

3

18

7 4

2

7

3

2 58

6

4

1 7

2 58

6

3 4

1

6

2 58

7 3 4

1

6

6

6

2

1

3

2 5

6

7 3 4

18Start State

2 58

7 4

1

2 58

7 3 4

1

58

7 3 4

1

2 58

7 3 4

6

Further statesUpDown
Left

DownLeft
UpLeftDown

Right Up Left
67

Searh trees versus searh graphsWe need to make an important distintion between searh trees and searhgraphs . For the time being we assume that it's a tree as opposed to a graphthat we're dealing with.
as opposed to

(There is a good reason for this, whih we'll get to in a moment...)In a tree only one path an lead to a given state. In a graph a state anbe reahed via possibly multiple paths .
68

Searh treesBasi approah:� Test the root to see if it is a goal.� If not then expand it by generating all possible suessor states aord-ing to the available ations.� If there is only one outome state then move to it. Otherwise hooseone of the outomes and expand it.� The way in whih this hoie is made de�nes a searh strategy .� Repeat until you �nd a goal.The olletion of states generated but not yet expanded is alled the fringeor frontier and is generally stored as a queue .
69

The basi tree-searh algorithmIn pseudo-ode, the algorithm looks like this:

function treeSearch {

fringe = queue containing only the start state;

while() {

if (empty(fringe))

return fail;

node = head(fringe);

if (goal(node))

return solution(node);

fringe = insert(expand(node), fringe);

}

}The searh strategy is set by using a priority queue .The de�nition of priority then sets the way in whih the tree is searhed.

70

The basi tree-searh algorithm
Not yet investigated

In the fringe, but not expanded

Expanded

71

The basi tree-searh algorithmWe an immediately de�ne some familiar tree searh algorithms:� New nodes are added to the head of the queue . This is depth-�rstsearh .� New nodes are added to the tail of the queue . This is breadth-�rstsearh .We will not dwell on these, as they are both ompletely hopeless in pra-tie.Why is that?

72

The performane of searh tehniquesHow might we judge the performane of a searh tehnique?We are interested in:� Whether a solution is found.� Whether the solution found is a good one in terms of path ost.� The ost of the searh in terms of time and memory.

the total ost = path ost+ searh ostIf a problem is highly omplex it may be worth settling for a sub-optimalsolution obtained in a short time .
73

Evaluation of searh strategiesWe are also interested in:Completeness: does the strategy guarantee a solution is found?Optimality: does the strategy guarantee that the best solution is found?One we start to onsider these, things get a lot more interesting...

74

Breadth-�rst searhWhy is breadth-�rst searh hopeless?� The proedure is omplete : it is guaranteed to �nd a solution if oneexists.� The proedure is optimal if the path ost is a non-dereasing funtionof node-depth. (Exerise: why is this?)� The proedure has exponential omplexity for both memory and time .A branhing fator b requires
1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1nodes if the shortest path has depth d.In pratie it is the memory requirement that is problemati.

75

Depth-�rst searhWith depth-�rst searh: for a given branhing fator b and depth d thememory requirement is O(bd).

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

This is beause we need to store nodes on the urrent path and the otherunexpanded nodes .The time omplexity is O(bd). Despite this, if there aremany solutions westand a hane of �nding one quikly, ompared with breadth-�rst searh.

76

Baktraking searhWe an sometimes improve on depth-�rst searh by using baktrakingsearh .� If eah node knows how to generate the next possibility then memoryis improved to O(d).� Even better, if we an work by making modi�ations to a state de-sription then the memory requirement is:
– One full state desription, plus...
– ... O(d) ations (in order to be able to undo ations).How does this work?

77

2 58

7 3 4

1

2 58

6

3 4

17

6

Trying: up, down, left, right:No baktraking

+ [up, up]

we an undo this to obtain
+ [up]

and apply down to get
+ [up, down]

and so on...
up

2 58

6

7 3 4

1

2 5

6

7 3 4

18

2 58

6

3 4

17

up
down

left

With baktrakingIf we have:
2 5

6

7 3 4

18

2 58

7 3 4

1

2 58

6

3 4

17

6

78

Depth-�rst, depth-limited, and iterative deepening searhDepth-�rst searh is learly dangerous if the tree is very deep or in�nite .Depth-limited searh simply imposes a limit on depth. For example ifwe're searhing for a route on a map with n ities we know that the maxi-mum depth will be n. However:� We still risk �nding a suboptimal solution.� The proedure beomes problemati if we impose a depth limit that istoo small.Usually we do not know a reasonable depth limit in advane.Iterative deepening searh repeatedly runs depth-limited searh for in-reasing depth limits 0, 1, 2, . . .

79

Iterative deepening searhIterative deepening searh :� Essentially ombines the advantages of depth-�rst and breadth-�rstsearh.� It is omplete and optimal.� It has a memory requirement similar to that of depth-�rst searh.Importantly, the fat that you're repeating a searh proess several timesis less signi�ant than it might seem.It's still not a good pratial method, but it does point us in the diretionof one...

80

Iterative deepening searhIterative deepening depends on the fat that the vast majority of thenodes in a tree are in the bottom level :� In a tree with branhing fator b and depth d the number of nodes is
f1(b, d) = 1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1� A omplete iterative deepening searh of this tree generates the �nallayer one, the penultimate layer twie, and so on down to the root,whih is generated d + 1 times. The total number of nodes generated istherefore

f2(b, d) = (d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · · + 2bd−1 + bd

81

Iterative deepening searhExample:� For b = 20 and d = 5 we have

f1(b, d) = 3, 368, 421

f2(b, d) = 3, 545, 706whih represents a 5 perent inrease with iterative deepening searh.� The overhead gets smaller as b inreases. However the time omplexityis still exponential.For problems where the searh spae is large and the solution depth is notknown, this an be a good method.
82

Iterative deepening searhFurther insight an be gained if we note that

f2(b, d) = f1(b, 0) + f1(b, 1) + · · · + f1(b, d)as we generate the root, then the tree to depth 1, and so on. Thus
f2(b, d) =

d∑

i=0

f1(b, i) =

d∑

i=0

bi+1 − 1

b − 1

=
1

b − 1

d∑

i=0

bi+1 − 1 =
1

b − 1

[(

d∑

i=0

bi+1

)

− (d + 1)

]

Noting that

bf1(b, d) = b + b2 + · · · + bd+1 =

d∑

i=0

bi+1we have

f2(b, d) =
b

b − 1
f1(b, d) −

d + 1

b − 1so f2(b, d) is about equal to f1(b, d) for large b.
83

Bidiretional searhIn some problems we an simultaneously searh:forward from the start statebakward from the goal stateuntil the searhes meet.This is potentially a very good idea:� If the searh methods have omplexity O(bd) then...� ...we are onverting this to O(2bd/2) = O(bd/2).(Here, we are assuming the branhing fator is b in both diretions.)

84

Bidiretional searh - beware!� It is not always possible to generate eÆiently predeessors as well assuessors.� If we only have the desription of a goal, not an expliit goal , thengenerating predeessors an be hard. (For example, onsider the oneptof hekmate .)� We need a way of heking whether or not a node appears in the othersearh ...� ... and the �gure of O(bd/2) hides the assumption that we an do on-stant time heking for intersetion of the frontiers. (This may bepossible using a hash table).� We need to deide what kind of searh to use in eah half. For example,would depth-�rst searh be sensible? Possibly not...� ...to guarantee that the searhes meet, we need to store all the nodes ofat least one of the searhes. Consequently the memory requirement is

O(bd/2).

85

Uniform-ost searhBreadth-�rst searh �nds the shallowest solution, but this is not neessarilythe best one.Uniform-ost searh is a variant. It uses the path ost p(n) as the priorityfor the priority queue.Thus, the paths that are apparently best are explored �rst, and the bestsolution will always be found if

∀n (∀n ′ ∈ suessors(n) . p(n ′) ≥ p(n))Although this is still not a good pratial algorithm, it does point the wayforward to informed searh...
86

Repeated statesWith many problems it is easy to waste time by expanding nodes that haveappeared elsewhere in the tree. For example:
.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC

The sliding bloks puzzle for example su�ers this way.

87

Repeated statesFor example, in a problem suh as �nding a route in a map, where all ofthe operators are reversible , this is inevitable.There are three basi ways to avoid this, depending on how you trade o�e�etiveness against overhead.� Never return to the state you ame from .� Avoid yles: never proeed to a state idential to one of your anes-tors .� Do not expand any state that has previously appeared .Graph searh is a standard approah to dealing with the situation. It usesthe last of these possibilities.
88

Graph searhIn pseudoode:

function graphSearch() {

closed = {};

fringe = queue containing only the start state;

while () {

if (empty(fringe))

return fail;

node = head(fringe);

if goal(node)

return solution(node);

if (node not a member of closed) {

closed = closed + node;

fringe = insert(expand(node), fringe);

}

}

}

89

Graph searhThere are several points to note regarding graph searh:1. The losed list ontains all the expanded nodes.2. The losed list an be implemented using a hash table.3. Both worst ase time and spae are now proportional to the size of thestate spae.4.Memory: depth �rst and iterative deepening searh are no longer linearspae as we need to store the losed list.5. Optimality: when a repeat is found we are disarding the new possi-bility even if it is better than the �rst one.� This never happens for uniform-ost or breadth-�rst searh with on-stant step osts, so these remain optimal.� Iterative deepening searh needs to hek whih solution is betterand if neessary modify path osts and depths for desendants of therepeated state.
90

Searh treesEverything we've seen so far is an example of uninformed or blind searh|we only distinguish goal states from non-goal states.(Uniform ost searh is a slight anomaly as it uses the path ost as a guide.)To perform well in pratie we need to employ informed or heuristisearh.This involves exploiting knowledge of the distane between the urrentstate and a goal .

91

Problem solving by informed searhBasi searh methods make limited use of any problem-spei� knowledgewe might have.� We have already seen the onept of path ost p(n)

p(n) = ost of path (sequene of ations) from the start state to n� We an now introdue an evaluation funtion . This is a funtion thatattempts to measure the desirability of eah node .The evaluation funtion will learly not be perfet. (If it is, there is noneed to searh.)Best-�rst searh simply expands nodes using the ordering given by theevaluation funtion.

92

Greedy searhWe've already seen path ost used for this purpose.� This is misguided as path ost is not in general direted in any sensetoward the goal .� A heuristi funtion , usually denoted h(n) is one that estimates theost of the best path from any node n to a goal.� If n is a goal then h(n) = 0.Using a heuristi funtion along with best-�rst searh gives us the greedysearh algorithm.

93

Example: route-�ndingExample: for route �nding a reasonable heuristi funtion is
h(n) = straight line distane from n to the nearest goal

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√

5

h(n2) =
√

2

n3

Goal
n1 n2

Auray here obviously depends on what the roads are really like.

94

Example: route-�ndingGreedy searh su�ers from some problems:� Its time omplexity is O(bd).� Its spae-omplexity is O(bd).� It is not optimal or omplete.BUT: greedy searh an be e�etive, provided we have a good h(n).Wouldn't it be nie if we ould improve it to make it optimal and omplete?

95

A⋆ searhWell, we an.

A⋆ searh ombines the good points of:� Greedy searh|by making use of h(n).� Uniform-ost searh|by being optimal and omplete.It does this in a very simple manner: it uses path ost p(n) and also theheuristi funtion h(n) by forming
f(n) = p(n) + h(n)where

p(n) = ost of path to nand

h(n) = estimated ost of best path from nSo: f(n) is the estimated ost of a path through n.
96

A⋆ searh

A⋆ searh:� A best-�rst searh using f(n).� It is both omplete and optimal...� ...provided that h obeys some simple onditions.De�nition: an admissible heuristi h(n) is one that never overestimatesthe ost of the best path from n to a goal.If h(n) is admissible then tree-searh A⋆ is optimal.
97

A⋆ tree-searh is optimal for admissible h(n)To see that A⋆ searh is optimal we reason as follows.Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt(beause h(Goalopt) = 0). Let Goal2 be a suboptimal goal state with
f(Goal2) = p(Goal2) = f2 > foptWe need to demonstrate that the searh an never selet Goal2.

98

A⋆ tree-searh is optimal for admissible h(n)

Goalopt
n

Goal2 At some point Goal2 is in the fringe.Can it be seleted before n?

99

A⋆ tree-searh is optimal for admissible h(n)Let n be a leaf node in the fringe on an optimal path to Goalopt. So
fopt ≥ p(n) + h(n) = f(n)beause h is admissible.Now say Goal2 is hosen for expansion before n. This means that

f(n) ≥ f2so we've established that

fopt ≥ f2 = p(Goal2).But this means that Goalopt is not optimal: a ontradition.

100

A⋆ graph searhOf ourse, we will generally be dealing with graph searh .Unfortunately the proof breaks in this ase.� Graph searh an disard an optimal route if that route is not the �rstone generated.� We ould keep only the least expensive path . This means updating,whih is extra work, not to mention messy, but suÆient to insure op-timality.� Alternatively, we an impose a further ondition on h(n) whih foresthe best path to a repeated state to be generated �rst .The required ondition is alled monotoniity . Asmonotoniity −→ admissibilitythis is an important property.
101

MonotoniityAssume h is admissible. Remember that f(n) = p(n)+h(n) so if n ′ follows
n

p(n ′) ≥ p(n)and we expet that h(n ′) ≤ h(n) although this does not have to be thease.

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

Here f(n) = 9 and f(n ′) = 7 so f(n ′) < f(n).
102

MonotoniityMonotoniity:� If it is always the ase that f(n ′) ≥ f(n) then h(n) is alled monotoni.� h(n) is monotoni if and only if it obeys the triangle inequality .
h(n) ≤ ost(n a

−→ n ′) + h(n ′)If h(n) is not monotoni we an make a simple alteration and use
f(n ′) = max{f(n), p(n ′) + h(n ′)}This is alled the pathmax equation.

103

The pathmax equationWhy does the pathmax equation make sense?

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

The fat that f(n) = 9 tells us the ost of a path through n is at least 9(beause h(n) is admissible).But n ′ is on a path through n. So to say that f(n ′) = 7 makes no sense.

104

A⋆ graph searh is optimal for monotoni heuristis
A⋆ graph searh is optimal for monotoni heuristis.The ruial fat from whih optimality follows is that if h(n) is monotonithen the values of f(n) along any path are non-dereasing.Assume we move from n to n ′ using ation a. Then

∀a . p(n ′) = p(n) + ost(n a
−→ n ′)and using the triangle inequality

h(n) ≤ ost(n a
−→ n ′) + h(n ′) (1)Thus

f(n ′) = p(n ′) + h(n ′)

= p(n) + ost(n a
−→ n ′) + h(n ′)

≥ p(n) + h(n)

= f(n)where the inequality follows from equation 1.
105

A⋆ graph searh is optimal for monotoni heuristisWe therefore have the following situation:

f(n)
f(n ′′) < f(n ′) has been dealt with.

f(n ′)

You an't deal with n ′ until everything with

Consequently everything with f(n ′′) < fopt gets explored. Then one ormore things with fopt get found (not neessarily all goals).

106

A⋆ searh is omplete

A⋆ searh is omplete provided:1. The graph has �nite branhing fator.2. There is a �nite, positive onstant c suh that eah operator has ost atleast c.Why is this?

107

A⋆ searh is ompleteThe searh expands nodes aording to inreasing f(n). So: the only wayit an fail to �nd a goal is if there are in�nitely many nodes with f(n) <

f(Goal).There are two ways this an happen:1. There is a node with an in�nite number of desendants.2. There is a path with an in�nite number of nodes but a �nite path ost.

108

Complexity� A⋆ searh has a further desirable property: it is optimally eÆient .� This means that no other optimal algorithm that works by onstrutingpaths from the root an guarantee to examine fewer nodes.� BUT: despite its good properties we're not done yet...� ...A⋆ searh unfortunately still has exponential time omplexity in mostases unless h(n) satis�es a very stringent ondition that is generallyunrealisti:

|h(n) − h ′(n)| ≤ O(log h ′(n))where h ′(n) denotes the real ost from n to the goal.� As A⋆ searh also stores all the nodes it generates, one again it isgenerally memory that beomes a problem before time .

109

IDA⋆ - iterative deepening A⋆ searhHow might we improve the way in whih A⋆ searh uses memory?� Iterative deepening searh used depth-�rst searh with a limit on depththat gradually inreased.� IDA⋆ does the same thing with a limit on f ost .
ActionSequence ida() {

float fLimit = f(root);

root = root node for problem;

while() {

(sequence, fLimit) = contour(root,fLimit,emptySequence);

if (sequence != emptySequence)

return sequence;

if (fLimit == infinity)

return emptySequence;

}

}

110

IDA⋆ - iterative deepening A⋆ searhThe funtion contour searhes from a given node, as far as the spei�ed
f limit . It returns either a solution, or the next biggest value of f to try.
(ActionSequence,float) contour(Node node, float fLimit, ActionSequence s) {

float nextF = infinity;

if (f(node) > fLimit)

return (emptySequence,f(node));

ActionSequence s’ = addToSequence(node,s);

if (goalTest(node))

return (s’,fLimit);

for (each successor n’ of node) {

(sequence,newF) = contour(n’,fLimit,s’);

if (sequence != emptySequence)

return (sequence,fLimit);

nextF = minimum(nextF,newF);

}

return (emptySequence,nextF);

}

111

IDA⋆ - iterative deepening A⋆ searhThis is a little triky to unravel, so here is an example:
37 4 5

Initially, the algorithm looks ahead and �nds the smallest f ost that isgreater than its urrent f ost limit. The new limit is 4.

112

IDA⋆ - iterative deepening A⋆ searhIt now does the same again:
37 4 55 9 10

Anything with f ost at most equal to the urrent limit gets explored, andthe algorithm keeps trak of the smallest f ost that is greater than itsurrent limit. The new limit is 5.
113

IDA⋆ - iterative deepening A⋆ searhAnd again:

37 4 55 9 10 19 12 78 12 7

The new limit is 7, so at the next iteration the three arrowed nodes will beexplored.

114

IDA⋆ - iterative deepening A⋆ searhProperties of IDA⋆:� It is omplete and optimal under the same onditions as A⋆.� It is often good if we have step osts equal to 1.� It does not require us to maintain a sorted queue of nodes.� It only requires spae proportional to the longest path .� The time taken depends on the number of values h an take.If h takes enough values to be problemati we an inrease f by a �xed ǫat eah stage, guaranteeing a solution at most ǫ worse than the optimum.

115

Reursive best-�rst searh (RBFS)Another method by whih we an attempt to overome memory limitationsis the Reursive best-�rst searh (RBFS).Idea: try to do a best-�rst searh, but only use linear spae by doing adepth-�rst searh with a few modi�ations:1. We remember the f(n ′) for the best alternative node n ′ we've seen sofar on the way to the node n we're urrently onsidering.2. If n has f(n) > f(n ′):� We go bak and explore the best alternative...� ...and as we retrae our steps we replae the f ost of every nodewe've seen in the urrent path with f(n).The replaement of f values as we retrae our steps provides a means ofremembering how good a disarded path might be, so that we an easilyreturn to it later.

116

Reursive best-�rst searh (RBFS)Note: for simpliity a parameter for the path has been omitted.
function RBFS(Node n, Float fLimit) {

if (goaltest(n))

return n;

if (n has no successors)

return (fail, infinity);

for (each successor n’ of n)

f(n’) = maximum(f(n’), f(n));

while() {

best = successor of n that has the smallest f(n’);

if (f(best) > fLimit)

return (fail, f(best));

nextBest = second smallest f(n’) value for successors of n;

(result, f’) = RBFS(best, minimum(fLimit, nextBest));

f(best) = f’;

if (result != fail)

return result;

}

}IMPORTANT: f(best) is modi�ed when RBFS produes a result.

117

Reursive best-�rst searh (RBFS): an exampleThis funtion is alled using RBFS(startState, infinity) to begin theproess.Funtion all number 1:

37 4 5best1 fLimit1 =∞ nextBest1 = 5

Now perform the reursive funtion all (result2, f ′) = RBFS(best1, 5)so f(best1) takes the returned value f ′

118

Reursive best-�rst searh (RBFS): an exampleFuntion all number 2:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 10best2 nextBest2 = 9

Now perform the reursive funtion all (result3, f ′) = RBFS(best2, 5)so f(best2) takes the returned value f ′

119

Reursive best-�rst searh (RBFS): an exampleFuntion all number 3:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 10best211 12 10best3
5 replaed by 10 nextBest2 = 9

fLimit3 = 5

nextBest3 = 11Now f(best3) > fLimit3 so the funtion all returns (fail, 10) into (result3, f ′)and f(best2) = 10.

120

Reursive best-�rst searh (RBFS): an exampleThe while loop for funtion all 2 now repeats:
37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 1011 12 10

5 replaed by 10 best2
4 replaed by 9

Now f(best2) > fLimit2 so the funtion all returns (fail, 9) into (result2, f ′)and f(best1) = 9.

121

Reursive best-�rst searh (RBFS): an exampleThe while loop for funtion all 1 now repeats:
37 4 5fLimit1 =∞

5 9 1011 12 10

5 replaed by 10

4 replaed by 9 best1nextBest1 = 7

We do a further funtion all to expand the new best node, and so on...

122

Reursive best-�rst searh (RBFS)Some nie properties:� If h is admissible then RBFS is optimal.� Memory requirement is O(bd)� Generally more eÆient than IDA⋆.And some less nie ones:� Time omplexity is hard to analyse, but an be exponential.� Can spend a lot of time re-generating nodes .
123

Other methods for getting around the memory problemTo some extent IDA⋆ and RBFS throw the baby out with the bathwater.� They limit memory too harshly, so...� ...we an try to use all available memory .MA⋆ and SMA⋆ will not be overed in this ourse...
124

Arti�ial Intelligene IDr Sean Holden

Notes on games (adversarial searh)

Copyright Sean Holden 2002-2010.125

Solving problems by searh: playing gamesHow might an agent at when the outomes of its ations are not knownbeause an adversary is trying to hinder it?� This is essentially a more realisti kind of searh problem beause wedo not know the exat outome of an ation.� This is a ommon situation when playing games : in hess, draughts,and so on an opponent responds to our moves.� We don't know what their response will be, and so the outome of ourmoves is not lear.Game playing has been of interest in AI beause it provides an idealisationof a world in whih two agents at to redue eah other's well-being.

126

Playing games: searh against an adversaryDespite the fat that games are an idealisation, game playing an be anexellent soure of hard problems. For instane with hess:� The average branhing fator is roughly 35.� Games an reah 50 moves per player.� So a rough alulation gives the searh tree 35100 nodes.� Even if only di�erent, legal positions are onsidered it's about 1040.So: in addition to the unertainty due to the opponent:� We an't make a omplete searh to �nd the best move...� ... so we have to at even though we're not sure about the best thingto do.

127

Playing games: searh against an adversaryAnd hess isn't even very hard:� Go is muh harder than hess.� The branhing fator is about 360.Until very reently it has resisted all attempts to produe a good AI player.See:

senseis.xmp.net/?MoGoand others.

128

Playing games: searh against an adversaryIt seems that games are a step loser to the omplexities inherent in theworld around us than are the standard searh problems onsidered so far.The study of games has led to some of the most elebrated appliationsand tehniques in AI.We now look at:� How game-playing an be modelled as searh .� The minimax algorithm for game-playing.� Some problems inherent in the use of minimax.� The onept of α − β pruning .Reading: Russell and Norvig hapter 6.
129

Perfet deisions in a two-person gameSay we have two players. Traditionally, they are alled Max and Min forreasons that will beome lear.� We'll use noughts and rosses as an initial example.� Max moves �rst.� The players alternate until the game ends.� At the end of the game, prizes are awarded. (Or punishments administered|EVIL ROBOT is starting up his favourite hainsaw...)This is exatly the same game format as hess, Go, draughts and so on.

130

Perfet deisions in a two-person gameGames like this an be modelled as searh problems as follows:� There is an initial state .

Max to move

� There is a set of operators . Here, Max an plae a ross in any emptysquare, or Min a nought.� There is a terminal test . Here, the game ends when three noughts orthree rosses are in a row, or there are no unused spaes.� There is a utility or payo� funtion. This tells us, numerially, whatthe outome of the game is.This is enough to model the entire game.
131

Perfet deisions in a two-person gameWe an onstrut a tree to represent a game. From the initial state Maxan make nine possible moves:

. . .

Then it's Min's turn...
132

Perfet deisions in a two-person gameFor eah of Max's opening moves Min has eight replies:
. . .

. . .

And so on...This an be ontinued to represent all possibilities for the game.

133

Perfet deisions in a two-person game
. . .

. . .

+1
0

−1

At the leaves a player has won or there are no spaes. Leaves are labelledusing the utility funtion.
134

Perfet deisions in a two-person gameHow an Max use this tree to deide on a move? Consider a muh simplertree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4
Labels on the leaves denote utility.High values are preferred by Max.Low values are preferred by Min.

If Max is rational he will play to reah a position with the biggest utilitypossibleBut if Min is rational she will play to minimise the utility available toMax.

135

The minimax algorithmThere are two moves: Max then Min. Game theorists would all this onemove, or two ply deep.The minimax algorithm allows us to infer the best move that the urrentplayer an make, given the utility funtion, by working bakward from theleaves.

4 5 20 20 15 7 4 10 9 5 8 52
2

6
6

1
1

4
4

As Min plays the last move, she minimises the utility available to Max.

136

The minimax algorithmMin takes the �nal move:� If Min is in game position 1, her best hoie is move 3. So from Max'spoint of view this node has a utility of 2.� If Min is in game position 2, her best hoie is move 3. So from Max'spoint of view this node has a utility of 6.� If Min is in game position 3, her best hoie is move 1. So from Max'spoint of view this node has a utility of 1.� If Min is in game position 4, her best hoie is move 4. So from Max'spoint of view this node has a utility of 4.
137

The minimax algorithmMoving one further step up the tree:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6 6

We an see that Max's best opening move is move 2, as this leads to thenode with highest utility.
138

The minimax algorithmIn general:� Generate the omplete tree and label the leaves aording to the utilityfuntion.� Working from the leaves of the tree upward, label the nodes dependingon whether Max or Min is to move.� If Min is to move label the urrent node with the minimum utility ofany desendant.� If Max is to move label the urrent node with the maximum utility ofany desendant.If the game is p ply and at eah point there are q available moves then thisproess has (surprise, surprise) O(qp) time omplexity and spae omplex-ity linear in p and q.
139

Making imperfet deisionsWe need to avoid searhing all the way to the end of the tree. So:� We generate only part of the tree: instead of testing whether a node isa leaf we introdue a ut-o� test telling us when to stop.� Instead of a utility funtion we introdue an evaluation funtion forthe evaluation of positions for an inomplete game.The evaluation funtion attempts to measure the expeted utility of theurrent game position.
140

Making imperfet deisionsHow an this be justi�ed?� This is a strategy that humans learly sometimes make use of.� For example, when using the onept of material value in hess.� The e�etiveness of the evaluation funtion is ritial ...� ... but it must be omputable in a reasonable time.� (In priniple it ould just be done using minimax.)The importane of the evaluation funtion an not be understated|it isprobably the most important part of the design.
141

The evaluation funtionDesigning a good evaluation funtion an be extremely triky:� Let's say we want to design one for hess by giving eah piee its materialvalue: pawn = 1, knight/bishop = 3, rook = 5 and so on.� De�ne the evaluation of a position to be the di�erene between thematerial value of blak's and white's pieeseval(position) =
∑blak's piees pi

value of pi −
∑white's piees qi

value of qi

This seems like a reasonable �rst attempt. Why might it go wrong?

142

The evaluation funtionConsider what happens at the start of a game:� Until the �rst apture the evaluation funtion gives 0, so in fat wehave a ategory ontaining many di�erent game positions with equalestimated utility.� For example, all positions where white is one pawn ahead.� The evaluation funtion for suh a ategory should perhaps representthe probability that a position hosen at random from it leads to a win.So in fat this seems highly naive...
143

The evaluation funtionIdeally, we should onsider individual positions .If on the basis of past experiene a position has 50% hane of winning,10% hane of losing and 40% hane of reahing a draw, we might give itan evaluation ofeval(position) = (0.5 × 1) + (0.1 × −1) + (0.4 × 0) = 0.4.Extending this to the evaluation of ategories, we should then weight thepositions in the ategory aording to their likelihood of ourring.Of ourse, we don't know what any of these likelihoods are...

144

The evaluation funtionUsing material value an be thought of as giving us a weighted linearevaluation funtion eval(position) =

n∑

i=1

wifiwhere the wi are weights and the fi represent features of the position. Inthis example

fi = value of the ith piee
wi = number of ith piees on the boardwhere blak and white piees are regarded as di�erent and the fi are positivefor one and negative for the other.

145

The evaluation funtionEvaluation funtions of this type are very ommon in game playing.There is no systemati method for their design.Weights an be hosen by allowing the game to play itself and using learn-ing tehniques to adjust the weights to improve performane.By using more arefully rafted features we an give di�erent evaluationsto individual positions .
146

α − β pruningEven with a good evaluation funtion and ut-o� test, the time omplexityof the minimax algorithm makes it impossible to write a good hess programwithout some further improvement.� Assuming we have 150 seonds to make eah move, for hess we wouldbe limited to a searh of about 3 to 4 ply whereas...� ...even an average human player an manage 6 to 8.Lukily, it is possible to prune the searh tree without a�eting the out-ome and without having to examine all of it .
147

α − β pruningReturning for a moment to the earlier, simpli�ed example:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4The searh is depth-�rst and left to right.

148

α − β pruningThe searh ontinues as previously for the �rst 8 leaves.
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

Then we note: if Max plays move 3 then Min an reah a leaf with utilityat most 1.So: we don't need to searh any further under Max's opening move 3.This is beause the searh has already established thatMax an do betterby making opening move 2.
149

α − β pruning in general

m

Tree= Player= Opponent

nm ′

then this node will never be reahed.If n < m or n < m ′ here

So: one you've established that n is suÆiently small, you don't need toexplore any more of the orresponding node's hildren.

150

α − β pruning in general

m

Tree= Player= Opponent

nm ′

then this node will never be reahed.If n > m or n > m ′ here

So: one you've established that n is suÆiently large, you don't need toexplore any more of the orresponding node's hildren.

151

α − β pruning in generalThe searh is depth-�rst, so we're only ever looking at one path throughthe tree .We need to keep trak of the values α and β where
α = the highest utility seen so far on the path for Max
β = the lowest utility seen so far on the path for MinAssume Max begins . Initial values for α and β are

α = −∞and

β = +∞.

152

α − β pruning in generalSo: we start with the funtion all

max(−∞, +∞, root)where max is the funtion

max(alpha,beta,node) {

if (node is at cut-off)

return evaluation(node);

else {

for (each successor n’ of node) {

alpha = maximum(alpha,min(alpha,beta,n’));

if (alpha >= beta)

return beta; // pruning happens here.

}

return alpha;

}

}

153

α − β pruning in generalThe funtion min is

min(alpha,beta,node) {

if (node is at cut-off)

return evaluation(node);

else {

for (each successor n’ of node) {

beta = minimum(beta,max(alpha,beta,n’));

if (beta <= alpha)

return alpha; // pruning happens here.

}

return beta;

}

}
154

α − β pruning in generalApplying this to the earlier example and keeping trak of the values for αand β you should obtain:

4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

β = +∞ = 1

Return 6

155

How e�etive is α − β pruning?(Warning: the theoretial results that follow are somewhat idealised.)A quik inspetion should onvine you that the order in whih moves arearranged in the tree is ritial.So, it seems sensible to try good moves �rst:� If you were to have a perfet move-ordering tehnique then α−β pruningwould be O(qp/2) as opposed to O(qp).� so the branhing fator would e�etively be √
q instead of q.� We would therefore expet to be able to searh ahead twie as manymoves as before .However, this is not realisti: if you had suh an ordering tehnique you'dbe able to play perfet games!

156

How e�etive is α − β pruning?If moves are arranged at random then α − β pruning is:� O((q/ log q)p) asymptotially when q > 1000 or...� ...about O(q3p/4) for reasonable values of q.In pratie simple ordering tehniques an get lose to the best ase. Forexample, if we try aptures, then threats, then moves forward et.Alternatively, we an implement an iterative deepening approah and usethe order obtained at one iteration to drive the next.
157

A further optimisation: the transposition tableFinally, note that many games orrespond to graphs rather than treesbeause the same state an be arrived at in di�erent ways.� This is essentially the same e�et we saw in heuristi searh: reallgraph searh versus tree searh .� It an be addressed in a similar way: store a state with its evaluationin a hash table|generally alled a transposition table|the �rst timeit is seen.The transposition table is essentially equivalent to the losed list intro-dued as part of graph searh.This an vastly inrease the e�etiveness of the searh proess, beause wedon't have to evaluate a single state multiple times.
158

Arti�ial Intelligene IDr Sean Holden

Notes on onstraint satisfation problems (CSPs)

Copyright Sean Holden 2002-2010.159

Constraint satisfation problems (CSPs)The searh senarios examined so far seem in some ways unsatisfatory.� States were represented using an arbitrary and problem-spei� datastruture.� Heuristis were also problem-spei�.� It would be nie to be able to transform general searh problems intoa standard format .CSPs standardise the manner in whih states and goal tests are repre-sented...

160

Constraint satisfation problems (CSPs)By standardising like this we bene�t in several ways:� We an devise general purpose algorithms and heuristis.� We an look at general methods for exploring the struture of the prob-lem.� Consequently it is possible to introdue tehniques for deomposingproblems.� We an try to understand the relationship between the struture of aproblem and the diÆulty of solving it .Note: another method of interest in AI that allows us to do similar thingsinvolves transforming to a propositional satis�ability problem. We'll seean example of this in AI II.
161

Introdution to onstraint satisfation problemsWe now return to the idea of problem solving by searh and examine itfrom this new perspetive.Aims:� To introdue the idea of a onstraint satisfation problem (CSP) as ageneral means of representing and solving problems by searh.� To look at a baktraking algorithm for solving CSPs.� To look at some general heuristis for solving CSPs.� To look at more intelligent ways of baktraking .Reading: Russell and Norvig, hapter 5.
162

Constraint satisfation problemsWe have:� A set of n variables V1, V2, . . . , Vn.� For eah Vi a domain Di speifying the values that Vi an take.� A set of m onstraints C1, C2, . . . , Cm.Eah onstraint Ci involves a set of variables and spei�es an allowableolletion of values .� A state is an assignment of spei� values to some or all of the variables.� An assignment is onsistent if it violates no onstraints.� An assignment is omplete if it gives a value to every variable.A solution is a onsistent and omplete assignment.
163

ExampleWe will use the problem of olouring the nodes of a graph as a runningexample.
1 2 8

653 4
7 7

5 643
1 2 8

Eah node orresponds to a variable . We have three olours and diretlyonneted nodes should have di�erent olours.
164

ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for eah variable ontains the values blak, red and yan
Di = {B, R, C}� The onstraints enfore the idea that diretly onneted nodes musthave di�erent olours. For example, for variables V1 and V2 the on-straints speify

(B, R), (B,C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is unonstrained.
165

Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is disrete with �nitedomains . We will onentrate on these.We will also onentrate on binary onstraints ; that is, onstraints be-tween pairs of variables .� Constraints on single variables|unary onstraints|an be handled byadjusting the variable's domain. For example, if we don't want Vi to bered , then we just remove that possibility from Di.� Higher-order onstraints applying to three or more variables an er-tainly be onsidered, but...� ...when dealing with �nite domains they an always be onverted to setsof binary onstraints by introduing extra auxiliary variables .How does that work?
166

Auxiliary variablesExample: three variables eah with domain {B, R,C}.A single onstraint

(C,C, C), (R, B, B), (B, R, B), (B, B, R)

V1 V1V2

V3The original onstraint onnets allthree variables.

V2

V3

A = 3

New, binary onstraints:
(A = 1, V1 = C), (A = 1, V2 = C), (A = 1, V3 = C)
(A = 2, V1 = R), (A = 2, V2 = B), (A = 2, V3 = B)
(A = 3, V1 = B), (A = 3, V2 = R), (A = 3, V3 = B)
(A = 4, V1 = B), (A = 4, V2 = B), (A = 4, V3 = R)

Introduing auxiliary variable A with domain {1, 2, 3, 4} allows us to onvertthis to a set of binary onstraints.
167

Baktraking searhConsider what happens if we try to solve a CSP using a simple tehniquesuh as breadth-�rst searh .The branhing fator is nd at the �rst step, for n variables eah with dpossible values.Step 2: (n − 1)dStep 3: (n − 2)d...Step n: d

Number of leaves = nd × (n − 1)d × · · · × 1

= n!dn

BUT: only dn assignments are possible.The order of assignment doesn't matter, and we should assign to one vari-able at a time.

168

Baktraking searhUsing the graph olouring example:The searh now looks something like this...
1=B1=B1=B

2=R 2=R2=R
3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B
2=B 2=R 2=C

...and new possibilities appear.
169

Baktraking searhBaktraking searh searhes depth-�rst, assigning a single variable at atime, and baktraking if no valid assignment is available.
1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-spei� heuristis to try to improve searhing,we an now explore heuristis appliable to general CSPs.

170

Baktraking searh

Result backTrack(problem) {

return bt ([], problem);

}

Result bt(assignmentList, problem) {

if (assignmentList is complete)

return assignmentList;

nextVar = getNextVar(assignmentList, problem);

for (all v in orderVariables(nextVar, assignmentList, problem)) {

if (v is consistent with assignmentList) {

add "nextVar = v" to assignmentList;

solution = bt(assignmentList, problem);

if (solution is not "fail")

return solution;

remove "nextVar = v" from assignmentList;

}

}

return "fail";

} 171

Baktraking searh: possible heuristisThere are several points we an examine in an attempt to obtain generalCSP-based heuristis:� In what order should we try to assign variables?� In what order should we try to assign possible values to a variable?Or being a little more subtle:� What e�et might the values assigned so far have on later attemptedassignments?� When fored to baktrak, is it possible to avoid the same failure lateron?

172

Heuristis I: Choosing the order of variable assignments and valuesSay we have 1 = B and 2 = R

1

2

3
4

5
6

8

?

7

At this point there is only one possible assignmentfor 3, whereas the others have more exibility.

Assigning suh variables �rst is alled the minimum remaining values(MRV) heuristi.(Alternatively, the most onstrained variable or fail �rst heuristi.)

173

Heuristis I: Choosing the order of variable assignments and valuesHow do we hoose a variable to begin with?The degree heuristi hooses the variable involved in the most onstraintson as yet unassigned variables.
1

2

3
4

5
6

8

Start with 3, 5 or 7.

7

MRV is usually better but the degree heuristi is a good tie breaker.

174

Heuristis I: Choosing the order of variable assignments and valuesOne a variable is hosen, in what order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing 1 = C is bad as it removesthe �nal possibility for 3.

The least onstraining value heuristi hooses �rst the value that leavesthe maximum possible freedom in hoosing assignments for the variable'sneighbours.

175

Heuristis II: forward heking and onstraint propagationContinuing the previous slide's progress, now add 1 = C.
3

4

5
6

8

2 and 3.

7

C is ruled out as an assignment to

2

1Eah time we assign a value to a variable, it makes sense to delete thatvalue from the olletion of possible assignments to its neighbours .This is alled forward heking . It works niely in onjuntion with MRV.

176

Heuristis II: forward heking and onstraint propagationWe an visualise this proess as follows:1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRCAt the fourth step 7 has no possible assignments left .However, we ould have deteted a problem a little earlier...

177

Heuristis II: forward heking and onstraint propagation...by looking at step three.1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC� At step three, 5 an be C only and 7 an be C only.� But 5 and 7 are onneted.� So we an't progress, but this hasn't been deteted.� Ideally we want to do onstraint propagation .Trade-o�: time to do the searh, against time to explore onstraints.

178

Constraint propagationAr onsisteny:Consider a onstraint as being direted . For example 4→ 5.In general, say we have a onstraint i→ j and urrently the domain of i is
Di and the domain of j is Dj.

i→ j is onsistent if

∀d ∈ Di,∃d ′ ∈ Dj suh that i→ j is valid

179

Constraint propagationExample:In step three of the table, D4 = {R, C} and D5 = {C}.� 5→ 4 in step three of the table is onsistent .� 4→ 5 in step three of the table is not onsistent .
4→ 5 an be made onsistent by deleting C from D4.Or in other words, regardless of what you assign to i you'll be able to �ndsomething valid to assign to j.

180

Enforing ar onsistenyWe an enfore ar onsisteny eah time a variable i is assigned.� We need to maintain a olletion of ars to be heked .� Eah time we alter a domain, we may have to inlude further ars inthe olletion.This is beause if i → j is inonsistent resulting in a deletion from Di wemay as a onsequene make some ar k→ i inonsistent.Why is this?

181

Enforing ar onsisteny
with i = R.{R} kK→ i is no longer onsistent

i→ j is now onsistent.i→ j is not onsistent sodelete B from the domainof i.

{R} kK→ i is onsistent but

kK = R an only be pairedwith i = B. beause kK = R an not be paired{B}{R}{R, B} {B}
ji

...

k1

k2

kK

ji

...

k1

k2

kK

� i→ j inonsistent means removing a value from Di.� ∃d ∈ Di suh that there is no valid d ′ ∈ Dj so delete d ∈ Di.However some d ′′ ∈ Dk may only have been pairable with d.We need to ontinue until all onsequenes are taken are of.

182

The AC-3 algorithm

NewDomains AC-3 (problem) {

Queue toCheck = all arcs i->j;

while (toCheck is not empty) {

i->j = next(toCheck);

if (removeInconsistencies(Di,Dj)) {

for (each k that is a neighbour of i)

add k->i to toCheck;

}

}

}

Bool removeInconsistencies (domain1, domain2) {

Bool result = false;

for (each d in domain1) {

if (no d’ in domain2 valid with d) {

remove d from domain1;

result = true;

}

}

return result;

} 183

Enforing ar onsistenyComplexity:� A binary CSP with n variables an have O(n2) diretional onstraints
i→ j.� Any i → j an be onsidered at most d times where d = maxk |Dk|beause only d things an be removed from Di.� Cheking any single ar for onsisteny an be done in O(d2).So the omplexity is O(n2d3).Note: this setup inludes 3SAT.Consequene: we an't hek for onsisteny in polynomial time, whihsuggests this doesn't guarantee to �nd all inonsistenies.

184

A more powerful form of onsistenyWe an de�ne a stronger notion of onsisteny as follows:� Given: any k − 1 variables and any onsistent assignment to these.� Then: We an �nd a onsistent assignment to any kth variable.This is known as k-onsisteny .Strong k-onsisteny requires the we be k-onsistent, k − 1-onsistent etas far down as 1-onsistent.If we an demonstrate strong n-onsisteny (where as usual n is the numberof variables) then an assignment an be found in O(nd).Unfortunately, demonstrating strong n-onsisteny will be worst-ase ex-ponential .

185

BakjumpingThe basi baktraking algorithm baktraks to the most reent assign-ment . This is known as hronologial baktraking . It is not always thebest poliy:

2

3
4

5
6

8

7

1

3

5

7

4

1

???

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now we wantto assign something to 7. This isn't possible so we baktrak, howeverre-assigning 4 learly doesn't help.
186

BakjumpingWith some areful bookkeeping it is often possible to jump bak multiplelevels without sari�ing the ability to �nd a solution.We need some de�nitions:� When we set a variable Vi to some value d ∈ Di we refer to this as theassignment Ai = (Vi ← d).� A partial instantiation Ik = {A1, A2, . . . , Ak} is a onsistent set ofassignments to the �rst k variables...� ... where onsistent means that no onstraints are violated.Heneforth we shall assume that variables are assigned in the order V1, V2, . . . , Vnwhen formally presenting algorithms.
187

Gashnig's algorithmGashnig's algorithm works as follows. Say we have a partial instantiation
Ik:� When hoosing a value for Vk+1 we need to hek that any andidatevalue d ∈ Dk+1, is onsistent with Ik.� When testing potential values for d, we will generally disard one ormore possibilities, beause they onit with some member of Ik� We keep trak of the most reent assignment Aj for whih this hashappened.Finally, if no value for Vk+1 is onsistent with Ik then we baktrak to Vj.If there are no possible values left to try for Vj then we baktrak hrono-logially .

188

Gashnig's algorithmExample:

2

3
4

5
6

8

7

1

1

3

5

4

7

Baktrak to 5
7 = 7 = 7 =

82
???

If there's no value left to try for 5 then baktrak to 3 and so on.

189

Graph-based bakjumpingThis allows us to jump bak multiple levels when we initially detet aonit .Can we do better than hronologial baktraking thereafter?Some more de�nitions:� We assume an ordering V1, V2, . . . , Vn for the variables.� Given V ′ = {V1, V2, . . . , Vk} where k < n the anestors of Vk+1 are themembers of V ′ onneted to Vk+1 by a onstraint.� The parent P(V) of Vk+1 is its most reent anestor.The anestors for eah variable an be aumulated as assignments aremade.Graph-based bakjumping baktraks to the parent of Vk+1.

190

Graph-based bakjumping
2

3
4

5
6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

82
???

At this point, bakjump to the parent for 7, whih is 5.

191

Bakjumping and forward hekingIf we use forward heking : say we're assigning to Vk+1 by making Vk+1 =

d:� Forward heking removes d from the Di of all Vi onneted to Vk+1 bya onstraint.� When doing graph-based bakjumping, we'd also add Vk+1 to the an-estors of Vi.In fat, use of forward heking an make some forms of bakjumping re-dundant .Note: there are in fat many ways of ombining onstraint propagationwith bakjumping , and we will not explore them in further detail here.

192

Bakjumping and forward heking
2

3
4

5
6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − { }

6 − { }
7 − {1, , }5

5
5 − { }3

5

32 − {1, , 4}

Anestors???

1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

1 = B = B RC RC BRC BRC BRC RC BRC

3 = R = B C = R BRC BC BRC C BRC

5 = C = B C = R BR = C BR ! BRC

4 = B = B C = R BR = C BR ! BRCForward heking �nds the problem before baktraking does .

193

Graph-based bakjumpingWe're not quite done yet though. What happens when there are no as-signments left for the parent we just bakjumped to?
V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

???
???

Bakjumping from V7 to V4 is �ne. However we shouldn't then just bak-jump to V2, beause hanging V3 ould �x the problem at V7.

194

Graph-based bakjumpingTo desribe an algorithm in this ase is a little involved.

Leaf dead-end

I6.
Leaf dead-end variable V7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

Given an instantiation Ik and Vk+1, if there is no onsistent d ∈ Dk+1 weall Ik a leaf dead-end and Vk+1 a leaf dead-end variable .

195

Graph-based bakjumpingAlso
Leaf dead-end Internal dead-end

I4.

I6.
Leaf dead-end variable V7

Internal dead-end variable V4V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

If Vi was baktraked to from a later leaf dead-end and there are no morevalues to try for Vi then we refer to it as an internal dead-end variableand all Ii−1 an internal dead-end .
196

Graph-based bakjumpingTo keep trak of exatly where to jump to we also need the de�nitions:� The session of a variable V begins when the searh algorithm visits itand ends when it baktraks through it to an earlier variable.� The urrent session of a variable V is the set of all variables visitingduring its session.� In partiular, the urrent session for any V ontains V.� The relevant dead-ends for the urrent session R(V) for a variable Vare:1. If V is a leaf dead-end variable then R(V) = {V}.2. If V was baktraked to from a dead-end V ′ then R(V) = R(V)∪R(V ′).And we're not done yet...
197

Graph-based bakjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Session starts
Session starts

Session of V7 = {V7}.

R(V7) = {V7}

R(V4) = {V7}

As expeted, the relevant dead-end for V4 is {V7}.
198

Graph-based bakjumpingOne more bunh of de�nitions before the pain stops. Say Vk is a dead-end:� The indued anestors ind(Vk) of Vk are de�ned as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩

⋃

V∈R(Vk)

anestors(V)

� The ulprit for Vk is the most reent V ′ ∈ ind(Vk).Note that these de�nitions depend on R(Vk).FINALLY: graph-based bakjumping bakjumps to the ulprit .

199

Graph-based bakjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Bakjump from V7to V4.

R(V4) = {V7}ind(V4) = {V3}

Nothing left to try!

As expeted, we bak jump to V3 instead of V2. Hooray!

200

Conit-direted bakjumpingGashnig's algorithm and graph-based bakjumping an be ombined toprodue onit-direted bakjumping .We will not explore onit-direted bakjumping in this ourse.For onsiderable further detail on algorithms for CSPs see:\Constraint Proessing," Rina Dehter. Morgan Kaufmann, 2003.

201

Varieties of CSPWe have only looked at disrete CSPs with �nite domains . These are thesimplest. We ould also onsider:1. Disrete CSPs with in�nite domains :� We need a onstraint language . For example
V3 ≤ V10 + 5� Algorithms are available for integer variables and linear onstraints.� There is no algorithm for integer variables and nonlinear onstraints.2. Continuous domains|using linear onstraints de�ning onvex regionswe have linear programming . This is solvable in polynomial time in n.3. We an introdue preferene onstraints in addition to absolute on-straints , and in some ases an objetive funtion .

202

Arti�ial Intelligene IDr Sean Holden

Notes on knowledge representation and reasoning using �rst-orderlogi (FOL)
Copyright Sean Holden 2002-2010.203

Knowledge representation and reasoning using FOLWe now look at how an agent might represent knowledge about its envi-ronment using �rst order logi (FOL), and reason with this knowledge toahieve its goals.Aims:� To show how FOL an be used to represent knowledge about an en-vironment in the form of both bakground knowledge and knowledgederived from perepts .� To show how this knowledge an be used to derive non-pereivedknowledge about the environment using a theorem prover .� To introdue the situation alulus and demonstrate its appliation ina simple environment as a means by whih an agent an work out whatto do next.

204

Interesting readingReading: Russell and Norvig, hapters 7 to 10.Knowledge representation based on logi is a vast subjet and an't beovered in full in the letures.In partiular:� Tehniques for representing further kinds of knowledge .� Tehniques for moving beyond the idea of a situation .� Reasoning systems based on ategories .� Reasoning systems using default information .� Truth maintenane systems .Happy reading :-)

205

Knowledge representation and reasoningEarlier in the ourse we looked at what an agent should be able to do.It seems that all of us|and all intelligent agents|should use logial rea-soning to help us interat suessfully with the world.Any intelligent agent should:� Possess knowledge about the environment and about how its ationsa�et the environment .� Use some form of logial reasoning to maintain its knowledge as per-epts arrive.� Use some form of logial reasoning to dedue ations to perform inorder to ahieve goals .
206

Knowledge representation and reasoningThis raises some important questions:� How do we desribe the urrent state of the world?� How do we infer from our perepts, knowledge of unseen parts of theworld?� How does the world hange as time passes?� How does the world stay the same as time passes? (The frame prob-lem .)� How do we know the e�ets of our ations? (The quali�ation andrami�ation problems .)We'll now look at one way of answering some of these questions.

207

Logi for knowledge representationFOL (arguably?) seems to provide a good way in whih to represent therequired kinds of knowledge:� It is expressive|anything you an program an be expressed.� It is onise .� It is unambiguous� It an be adapted to di�erent ontexts .� It has an inferene proedure , although a semideidable one.In addition is has a well-de�ned syntax and semantis .

208

Logi for knowledge representationProblem: it's quite easy to talk about things like set theory using FOL.For example, we an easily write axioms like

∀S . ∀S ′ . ((∀x . (x ∈ S⇔ x ∈ S ′))⇒ S = S ′)But how would we go about representing the proposition that if you havea buket of water and throw it at your friend they will get wet, havea bump on their head from being hit by a buket, and the buket willnow be empty and dented?More importantly, how ould this be represented within a wider frameworkfor reasoning about the world?It's time to introdue my friend, The Wumpus ...
209

Wumpus worldAs a simple test senario for a knowledge-based agent we will make use ofthe Wumpus World .
Evil Robot

Wumpus

The Wumpus World is a 4 by 4 grid-based ave.EVIL ROBOT wants to enter the ave, �nd some gold, and get out againun-sathed.

210

Wumpus worldThe rules of Wumpus World :� Unfortunately the ave ontains a number of pits, whih EVIL ROBOTan fall into. Eventually his batteries will fail, and that's the end ofhim.� The ave also ontains the Wumpus, who is armed with state of the artEvil Robot Obliteration Tehnology .� The Wumpus itself knows where the pits are and never falls into one.

211

Wumpus worldEVIL ROBOT an move around the ave at will and an pereive thefollowing:� In a position adjaent to the Wumpus, a stenh is pereived. (Wumpusesare famed for their lak of personal hygiene .)� In a position adjaent to a pit, a breeze is pereived.� In the position where the gold is, a glitter is pereived.� On trying to move into a wall, a bump is pereived.� On killing the Wumpus a sream is pereived.In addition, EVIL ROBOT has a single arrow, with whih to try to kill theWumpus.\Adjaent" in the following does not inlude diagonals.

212

Wumpus worldSo we have:Perepts: stench, breeze, glitter, bump, scream.Ations: forward, turnLeft, turnRight, grab, release, shoot, climb.Of ourse, our aim now is not just to design an agent that an performwell in a single ave layout.We want to design an agent that an usually perform well regardless ofthe layout of the ave.
213

Some nomenlatureThe hoie of knowledge representation language tends to lead to two im-portant ommitments:� Ontologial ommitments : what does the world onsist of?� Epistemologial ommitments : what are the allowable states of knowl-edge?Propositional logi is useful for introduing some fundamental ideas, butits ontologial ommitment|that the world onsists of fats|sometimesmakes it too limited for further use.FOL has a di�erent ontologial ommitment|the world onsists of fats ,objets and relations .
214

Logi for knowledge representationThe fundamental aim is to onstrut a knowledge base KB ontaining aolletion of statements about the world|expressed in FOL|suh thatuseful things an be derived from it.Our entral aim is to generate sentenes that are true , if the sentenes inthe KB are true .This proess is based on onepts familiar from your introdutory logiourses:� Entailment: KB |= α means that the KB entails α.� Proof: KB ⊢i α means that α is derived from the KB using i. If i is soundthen we have a proof .� i is sound if it an generate only entailed α.� i is omplete if it an �nd a proof for any entailed α.

215

Example: PrologYou have by now learned a little about programming in Prolog . For exam-ple:

concat([],L,L).

concat([H|T],L,[H|L2]) :- concat(T,L,L2).is a program to onatenate two lists. The query
concat([1,2,3],[4,5],X).results in

X = [1, 2, 3, 4, 5].What's happening here? Well, Prolog is just a more limited form of FOLso...

216

Example: Prolog... we are in fat doing inferene from a KB:� The Prolog programme itself is the KB. It expresses some knowledgeabout lists .� The query is expressed in suh a way as to derive some new knowledge .How does this relate to full FOL? First of all the list notation is nothingbut syntati sugar . It an be removed: we de�ne a onstant alled emptyand a funtion alled cons.Now [1,2,3] just means cons(1, cons(2, cons(3, empty)))) whih isa term in FOL.I will assume the use of the syntati sugar for lists from now on.

217

Prolog and FOLThe program when expressed in FOL, says

∀x . concat(empty, x, x)∧

∀h, t, l1, l2 . concat(t, l1, l2) =⇒ concat(cons(h, t), l1, cons(h, l2))The rule is simple|given a Prolog program:� Universally quantify all the unbound variables in eah line of theprogram and ...� ... form the onjuntion of the results .If the universally quanti�ed lines are L1, L2, . . . , Ln then the Prolog pro-gramme orresponds to the KB
KB = L1 ∧ L2 ∧ · · · ∧ LnNow, what does the query mean?

218

Prolog and FOLWhen you give the query

concat([1,2,3],[4,5],X).to Prolog it responds by trying to prove the following statement
KB =⇒ ∃x . concat([1, 2, 3], [4, 5], x)So: it tries to prove that the KB implies the query , and variables in thequery are existentially quanti�ed.When a proof is found, it supplies a value for x that makes the inferenetrue .

219

Prolog and FOLProlog di�ers from FOL in that, amongst other things:� It restrits you to using Horn lauses .� Its inferene proedure is not a full-blown proof proedure .� It does not deal with negation orretly.However the entral idea also works for full-blown theorem provers .If you want to experiment, you an obtain Prover9 from
http://www.cs.unm.edu/∼mccune/mace4/We'll see a brief example now, and a more extensive example of its uselater, time permitting...

220

Prolog and FOLExpressed in Prover9, the above Prolog program and query look like this:
set(prolog_style_variables).

% This is the translated Prolog program for list concatenation.

% Prover9 has its own syntactic sugar for lists.

formulas(assumptions).

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).

end_of_list.

% This is the query.

formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).

end_of_list.Note: it is assumed that unbound variables are universally quanti�ed .

221

Prolog and FOLYou an try to infer a proof using

prover9 -f file.inand the result is (in addition to a lot of other information):
1 concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].

2 (exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goal].

3 concat([],A,A). [assumption].

4 -concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].

5 -concat([1,2,3],[4,5],A). [deny(2)].

6 concat([A],B,[A:B]). [ur(4,a,3,a)].

7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].

8 concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

9 $F. [resolve(8,a,7,a)].This shows that a proof is found but doesn't expliitly give a value for

X|we'll see how to extrat that later...
222

The fundamental ideaSo the basi idea is: build a KB that enodes knowledge about the world ,the e�ets of ations and so on.The KB is a onjuntion of piees of knowledge, suh that:� A query regarding what our agent should do an be posed in the form
∃actionList . Goal(... actionList ...)� Proving that

KB =⇒ ∃actionList . Goal(... actionList ...)instantiates actionList to an atual list of ations that will ahievea goal represented by the Goal prediate.We sometimes use the notation ask and tell to refer to querying andadding to the KB.

223

Using FOL in AI: the triumphant return of the WumpusWe want to be able to speulate about the past and about possible futures .So:

Evil Robot

Wumpus

� We inlude situations in the logial language used by our KB.� We inlude axioms in our KB that relate to situations.This gives rise to situation alulus .
224

Situation alulusIn situation alulus :� The world onsists of sequenes of situations .� Over time, an agent moves from one situation to another.� Situations are hanged as a result of ations .In Wumpus World the ations are: forward, shoot, grab, climb, release,

turnRight, turnLeft.� A situation argument is added to items that an hange over time. Forexample At(loation, s)Items that an hange over time are alled uents .� A situation argument is not needed for things that don't hange. Theseare sometimes referred to as eternal or atemporal .

225

Representing hange as a result of ationsSituation alulus uses a funtionresult(action, s)to denote the new situation arising as a result of performing the spei�edation in the spei�ed situation.result(grab, s0) = s1result(turnLeft, s1) = s2result(shoot, s2) = s3result(forward, s3) = s4...
226

Axioms I: possibility axiomsThe �rst kind of axiom we need in a KB spei�es when partiular ationsare possible .We introdue a prediate Poss(action, s)denoting that an ation an be performed in situation s.We then need a possibility axiom for eah ation. For example:At(l, s) ∧Available(gold, l, s) =⇒ Poss(grab, s)Remember that unbound variables are universally quanti�ed .

227

Axioms II: e�et axiomsGiven that an ation results in a new situation, we an introdue e�etaxioms to speify the properties of the new situation.For example, to keep trak of whether EVIL ROBOT has the gold we neede�et axioms to desribe the e�et of piking it up:Poss(grab, s) =⇒ Have(gold, result(grab, s))E�et axioms desribe the way in whih the world hanges .We would probably also inlude
¬Have(gold, s0)in the KB, where s0 is the starting state .Important : we are desribing what is true in the situation that resultsfrom performing an ation in a given situation .

228

Axioms III: frame axiomsWe need frame axioms to desribe the way in whih the world stays thesame .Example:Have(o, s) ∧

¬(a = release∧ o = gold) ∧ ¬(a = shoot∧ o = arrow)

=⇒ Have(o, result(a, s))desribes the e�et of having something and not disarding it .In a more general setting suh an axiom might well look di�erent. Forexample

¬Have(o, s) ∧

(a 6= grab(o) ∨ ¬(Available(o, s) ∧ Portable(o)))

=⇒ ¬Have(o, result(a, s))desribes the e�et of not having something and not piking it up.

229

The frame problemThe frame problem has historially been a major issue.Representational frame problem : a large number of frame axioms arerequired to represent the many things in the world whih will not hangeas the result of an ation.We will see how to solve this in a moment.Inferential frame problem : when reasoning about a sequene of situations,all the unhanged properties still need to be arried through all the steps.This an be alleviated using planning systems that allow us to reasoneÆiently when ations hange only a small part of the world. There arealso other remedies, whih we will not over.
230

Suessor-state axiomsE�et axioms and frame axioms an be ombined into suessor-state ax-ioms .One is needed for eah prediate that an hange over time.Ation a is possible =⇒
(true in new situation ⇐⇒
(you did something to make it true ∨it was already true and you didn't make it false))For examplePoss(a, s) =⇒

(Have(o, result(a, s)) ⇐⇒ ((a = grab ∧ Available(o,s)) ∨

(Have(o, s) ∧ ¬(a = release ∧ o = gold) ∧

¬(a = shoot ∧ o = arrow))))
231

Knowing where you areIf s0 is the initial situation we know thatAt((1, 1), s0)I am assuming that we've added axioms allowing us to deal with thenumbers 0 to 5 and pairs of suh numbers. (Exerise: do this.)We need to keep trak of what way we're faing. Say north is 0, south is

2, east is 1 and west is 3. faing(s0) = 0We need to know how motion a�ets loationforwardResult((x, y), north) = (x, y + 1)forwardResult((x, y), east) = (x + 1, y)...and At(l, s) =⇒ goForward(s) = forwardResult(l, faing(s))
232

Knowing where you areThe onept of adjaeny is very important in the Wumpus worldAdjaent(l1, l2) ⇐⇒ ∃d forwardResult(l1, d) = l2We also know that the ave is 4 by 4 and surrounded by wallsWallHere((x, y)) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)It is only possible to hange loation by moving, and this only works ifyou're not faing a wall. So......we need a suessor-state axiom:Poss(a, s) =⇒At(l, result(a, s)) ⇐⇒ (l = goForward(s)

∧ a = forward

∧ ¬WallHere(l))
∨ (At(l, s) ∧ a 6= forward)

233

Knowing where you areIt is only possible to hange orientation by turning. Again, we need asuessor-state axiomPoss(a, s) =⇒faing(result(a, s)) = d ⇐⇒
(a = turnRight∧ d = mod(faing(s) + 1, 4))

∨ (a = turnLeft∧ d = mod(faing(s) − 1, 4))

∨ (faing(s) = d ∧ a 6= turnRight∧ a 6= turnLeft)and so on...

234

The quali�ation and rami�ation problemsQuali�ation problem : we are in general never ompletely ertain whatonditions are required for an ation to be e�etive.Consider for example turning the key to start your ar.This will lead to problems if important onditions are omitted from axioms.Rami�ation problem : ations tend to have impliit onsequenes thatare large in number.For example, if I pik up a sandwih in a dodgy sandwih shop, I willalso be piking up all the bugs that live in it. I don't want to model thisexpliitly.

235

Solving the rami�ation problemThe rami�ation problem an be solved by modifying suessor-state ax-ioms .For example: Poss(a, s) =⇒
(At(o, l, result(a, s)) ⇐⇒

(a = go(l ′, l) ∧

[o = robot ∨ Has(robot, o, s)]) ∨

(At(o, l, s) ∧

[¬∃l ′′ . a = go(l, l ′′) ∧ l 6= l ′′ ∧

{o = robot ∨ Has(robot, o, s)}]))desribes the fat that anything EVIL ROBOT is arrying moves aroundwith him.

236

Deduing properties of the world: ausal rulesIf you know where you are, then you an think about plaes rather thanjust situations .Synhroni rules relate properties shared by a single state of the world.There are two kinds: ausal and diagnosti.Causal rules : some properties of the world will produe perepts.WumpusAt(l1) ∧ Adjaent(l1, l2) =⇒ StenhAt(l2)PitAt(l1) ∧ Adjaent(l1, l2) =⇒ BreezeAt(l2)Systems reasoning with suh rules are known as model-based reasoningsystems.

237

Deduing properties of the world: diagnosti rulesDiagnosti rules : infer properties of the world from perepts.For example: At(l, s) ∧ Breeze(s) =⇒ BreezeAt(l)At(l, s) ∧ Stench(s) =⇒ StenchAt(l)These may not be very strong.The di�erene between model-based and diagnosti reasoning an be im-portant. For example, medial diagnosis an be done based on symptomsor based on a model of disease.
238

General axioms for situations and objetsNote : in FOL, if we have two onstants robot and gold then an interpre-tation is free to assign them to be the same thing.This is not something we want to allow.Unique names axioms state that eah pair of distint items in our modelof the world must be di�erent

robot 6= gold

robot 6= arrow

robot 6= wumpus...
wumpus 6= gold...

239

General axioms for situations and objetsUnique ations axioms state that ations must share this property, so foreah pair of ations

go(l, l ′) 6= grab

go(l, l ′) 6= drop(o)...

drop(o) 6= shoot...and in addition we need to de�ne equality for ations, so for eah ation

go(l, l ′) = go(l ′′, l ′′′) ⇐⇒ l = l ′′ ∧ l ′ = l ′′′

drop(o) = drop(o ′) ⇐⇒ o = o ′...
240

General axioms for situations and objetsThe situations are ordered so

s0 6= result(a, s)and situations are distint soresult(a, s) = result(a ′, s ′) ⇐⇒ a = a ′ ∧ s = s ′Stritly speaking we should be using a many-sorted version of FOL.In suh a system variables an be divided into sorts whih are impliitlyseparate from one another.
241

The start stateFinally, we're going to need to speify what's true in the start state .For example At(robot, [1, 1], s0)At(wumpus, [3, 4], s0)Has(robot, arrow, s0)...and so on.

242

Sequenes of situationsWe know that the funtion result tells us about the situation resulting fromperforming an ation in an earlier situation.How an this help us �nd sequenes of ations to get things done?De�ne Sequene([], s, s ′) = s ′ = sSequene([a], s, s ′) = Poss(a, s) ∧ s ′ = result(a, s)Sequene(a :: as, s, s ′) = ∃t . Sequene([a], s, t) ∧ Sequene(as, t, s ′)To obtain a sequene of ations that ahieves Goal(s) we an use thequery

∃a ∃s . Sequene(a, s0, s) ∧ Goal(s)
243

Knowledge representation and reasoningIt should be lear that generating sequenes of ations by inferene in FOLis highly non-trivial.Ideally we'd like to maintain an expressive language while restriting itenough to be able to do inferene eÆiently .Further aims :� To give a brief introdution to semanti networks and frames forknowledge representation.� To see how inheritane an be applied as a reasoning method.� To look at the use of rules for knowledge representation, along withforward haining and bakward haining for reasoning.Further reading : The Essene of Arti�ial Intelligene , Alison Cawsey.Prentie Hall, 1998.

244

Frames and semanti networksFrames and semanti networks represent knowledge in the form of lassesof objets and relationships between them :� The sublass and instane relationships are emphasised.� We form lass hierarhies in whih inheritane is supported and pro-vides the main inferene mehanism .As a result inferene is quite limited.We also need to be extremely areful about semantis .The only major di�erene between the two ideas is notational .

245

Example of a semanti network
has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician

246

FramesFrames one again support inheritane through the sublass relationship.
volume: loud

has: ear problems
hairlength: long

subclass: Musician

Rock musician

subclass: Person
has: instrument

Musician

has, hairlength, volume et are slots .
long, loud, instrument et are slot values .These are a diret predeessor of objet-oriented programming languages .

247

DefaultsBoth approahes to knowledge representation are able to inorporate de-faults :

has: ear problems
* hairlength: long

subclass: Musician

* volume: loud

subclass: Rock musician
hairlength: short
image: gothic

Rock musician
Dementia Evilperson

Starred slots are typial values assoiated with sublasses and instanes,but an be overridden .
248

Multiple inheritaneBoth approahes an inorporate multiple inheritane , at a ost:
instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

� What is hairlength for Cornelius if we're trying to use inheritane toestablish it?� This an be overome initially by speifying whih lass is inheritedfrom in preferene when there's a onit.� But the problem is still not entirely solved|what if we want to preferinheritane of some things from one lass, but inheritane of others froma di�erent one?

249

Other issues� Slots and slot values an themselves be frames. For example Dementiamay have an instrument slot with the value Electric harp, whih itselfmay have properties desribed in a frame.� Slots an have spei�ed attributes . For example, we might speify that
instrument an have multiple values, that eah value an only be aninstane of Instrument, that eah value has a slot alled owned by andso on.� Slots may ontain arbitrary piees of program. This is known as proe-dural attahment . The fragment might be exeuted to return the slot'svalue, or update the values in other slots et.

250

Rule-based systemsA rule-based system requires three things:1. A set of if-then rules . These denote spei� piees of knowledge aboutthe world.They should be interpreted similarly to logial impliation.Suh rules denote what to do or what an be inferred under givenirumstanes.2. A olletion of fats denoting what the system regards as urrently trueabout the world.3. An interpreter able to apply the urrent rules in the light of the urrentfats.

251

Forward hainingThe �rst of two basi kinds of interpreter begins with established fatsand then applies rules to them .This is a data-driven proess. It is appropriate if we know the initial fatsbut not the required onlusion.Example: XCON|used for on�guring VAX omputers.In addition:� We maintain a working memory , typially of what has been inferredso far.� Rules are often ondition-ation rules , where the right-hand side spei-�es an ation suh as adding or removing something from working mem-ory, printing a message et.� In some ases ations might be entire program fragments.

252

Forward hainingThe basi algorithm is:1. Find all the rules that an �re, based on the urrent working memory.2. Selet a rule to �re. This requires a onit resolution strategy .3. Carry out the ation spei�ed, possibly updating the working memory.Repeat this proess until either no rules an be used or a halt appears inthe working memory.
253

Example
dry_mouth
working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working
working −> ADD no_work
get_drink AND no_work −> ADD go_bar
thirsty −> ADD get_drink
dry_mouth −> ADD thirsty

254

ExampleProgress is as follows:1. The rule

dry mouth =⇒ ADD thirsty�res adding thirsty to working memory.2. The rule

thirsty =⇒ ADD get drink�res adding get drink to working memory.3. The rule

working =⇒ ADD no work�res adding no work to working memory.4. The rule

get drink AND no work =⇒ ADD go bar�res, and we establish that it's time to go to the bar.

255

Conit resolutionClearly in any more realisti system we expet to have to deal with asenario where two or more rules an be �red at any one time :� Whih rule we hoose an learly a�et the outome.� We might also want to attempt to avoid inferring an abundane of use-less information.We therefore need a means of resolving suh onits .

256

Conit resolutionCommon onit resolution strategies are:� Prefer rules involving more reently added fats.� Prefer rules that are more spei�. For example
patient coughing =⇒ ADD lung problemis more general than

patient coughing AND patient smoker =⇒ ADD lung cancer.This allows us to de�ne exeptions to general rules.� Allow the designer of the rules to speify priorities.� Fire all rules simultaneously|this essentially involves following allhains of inferene at one.
257

Reason maintenaneSome systems will allow information to be removed from the working mem-ory if it is no longer justi�ed .For example, we might �nd that

patient coughingand

patient smokerare in working memory, and hene �re
patient coughing AND patient smoker =⇒ ADD lung cancerbut later infer something that auses patient coughing to be withdrawnfrom working memory.The justi�ation for lung cancer has been removed, and so it should per-haps be removed also.

258

Pattern mathingIn general rules may be expressed in a slightly more exible form involvingvariables whih an work in onjuntion with pattern mathing .For example the rule

coughs(X) AND smoker(X) =⇒ ADD lung cancer(X)ontains the variable X.If the working memory ontains coughs(neddy) and smoker(neddy) then

X = neddyprovides a math and

lung cancer(neddy)is added to the working memory.
259

Bakward hainingThe seond basi kind of interpreter begins with a goal and �nds a rulethat would ahieve it.It then works bakwards , trying to ahieve the resulting earlier goals inthe suession of inferenes.Example: MYCIN|medial diagnosis with a small number of onditions.This is a goal-driven proess. If you want to test a hypothesis or youhave some idea of a likely onlusion it an be more eÆient than forwardhaining.

260

Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try �rst to establish get drink. This

so we're done.

Working memory Goal

go bar

an be done by establishing thirsty.

These are the new goals.establish get drink and no work.To establish go bar we have to
thirsty an be established by establishing

dry mouth. This is in the working memoryFinally, we an establish no work byestablishing working. This is in the workingmemory so the proess has �nished.

261

Example with baktrakingIf at some point more than one rule has the required onlusion then wean baktrak .Example: Prolog baktraks, and inorporates pattern mathing. It ordersattempts aording to the order in whih rules appear in the program.Example: having added

up early =⇒ ADD tiredand

tired AND lazy =⇒ ADD go barto the rules, and up early to the working memory:
262

Example with baktraking
thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Proess proeeds as before
go bar

lazy

lazy
up early

lazy
tired

di�erent approah.
by establishing tired andAttempt to establish go bar

lazy.This an be done by establishing
up early and lazy.so we're done.up early is in the working memoryWe an not establisg lazyand so we baktrak and try a

GoalWorking memory

263

Arti�ial Intelligene IDr Sean Holden
Notes on planning

Copyright Sean Holden 2002-2010.264

Problem solving is di�erent to planningIn searh problems we:� Represent states : and a state representation ontains everything that'srelevant about the environment.� Represent ations : by desribing a new state obtained from a urrentstate.� Represent goals : all we know is how to test a state either to see if it'sa goal, or using a heuristi.� A sequene of ations is a `plan' : but we only onsider sequenes ofonseutive ations .Searh algorithms are good for solving problems that �t this framework.However for more omplex problems they may fail ompletely...

265

Problem solving is di�erent to planningRepresenting a problem suh as: `go out and buy some pies' is hopeless:� There are too many possible ations at eah step.� A heuristi an only help you rank states. In partiular it does not helpyou ignore useless ations.� We are fored to start at the initial state, but you have to work out howto get the pies|that is, go to town and buy them, get online and �nda web site that sells pies et|before you an start to do it .Knowledge representation and reasoning might not help either: althoughwe end up with a sequene of ations|a plan|there is so muh exibilitythat omplexity might well beome an issue.
266

Introdution to planningWe now look at how an agent might onstrut a plan enabling it to ahievea goal.Aims :� To look at how we might update our onept of knowledge represen-tation and reasoning to apply more spei�ally to planning tasks.� To look in detail at the basi partial-order planning algorithm .Reading : Russell and Norvig, hapter 11.
267

Planning algorithms work di�erentlyDi�erene 1 :� Planning algorithms use a speial purpose language|often based onFOL or a subset| to represent states, goals, and ations.� States and goals are desribed by sentenes, as might be expeted, but...� ...ations are desribed by stating their preonditions and their e�ets .So if you know the goal inludes (maybe among other things)Have(pie)and ation Buy(x) has an e�et Have(x) then you know that a plan inlud-ing Buy(pie)might be reasonable.
268

Planning algorithms work di�erentlyDi�erene 2 :� Planners an add ations at any relevant point at all between thestart and the goal , not just at the end of a sequene starting at thestart state.� This makes sense: I may determine that Have(carKeys) is a good stateto be in without worrying about what happens before or after �ndingthem.� By making an important deision like requiring Have(carKeys) early onwe may redue branhing and baktraking.� State desriptions are not omplete|Have(carKeys) desribes a lassof states|and this adds exibility.So: you have the potential to searh both forwards and bakwards withinthe same problem.

269

Planning algorithms work di�erentlyDi�erene 3 :It is assumed that most elements of the environment are independent ofmost other elements .� A goal inluding several requirements an be attaked with a divide-and-onquer approah.� Eah individual requirement an be ful�lled using a subplan...� ...and the subplans then ombined.This works provided there is not signi�ant interation between the sub-plans.Remember: the frame problem .
270

Running example: gorilla-based mishiefWe will use the following simple example problem, whih as based on asimilar one due to Russell and Norvig.The intrepid little samps in the Cambridge University Roof-ClimbingSoiety wish to attah an inatable gorilla to the spire of a FamousCollege . To do this they need to leave home and obtain:� An inatable gorilla : these an be purhased from all good joke shops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly esapade?

271

The STRIPS languageSTRIPS: \Stanford Researh Institute Problem Solver" (1970).States : are onjuntions of ground literals . They must not inlude fun-tion symbols . At(home) ∧ ¬Have(gorilla)
∧ ¬Have(rope)
∧ ¬Have(kit)Goals : are onjuntions of literals where variables are assumed existen-tially quanti�ed . At(x) ∧ Sells(x, gorilla)A planner �nds a sequene of ations that when performed makes the goaltrue. We are no longer employing a full theorem-prover.

272

The STRIPS languageSTRIPS represents ations using operators . For example

At(y), ¬At(x)

At(x),Path(x, y)Go(y)

Op(Ation: Go(y),Pre: At(x) ∧ Path(x, y),E�et: At(y) ∧ ¬At(x))All variables are impliitly universally quanti�ed. An operator has:� An ation desription : what the ation does.� A preondition : what must be true before the operator an be used. Aonjuntion of positive literals .� An e�et : what is true after the operator has been used. A onjuntionof literals .

273

The spae of plansWe now make a hange in perspetive|we searh in plan spae :� Start with an empty plan .� Operate on it to obtain new plans. Inomplete plans are alled partialplans . Re�nement operators add onstraints to a partial plan. Allother operators are alled modi�ation operators .� Continue until we obtain a plan that solves the problem.Operations on plans an be:� Adding a step.� Instantiating a variable .� Imposing an ordering that plaes a step in front of another.� and so on...

274

Representing a plan: partial order plannersWhen putting on your shoes and soks:� It does not matter whether you deal with your left or right foot �rst.� It does matter that you plae a sok on before a shoe, for any givenfoot.It makes sense in onstruting a plan not to make any ommitment towhih side is done �rst if you don't have to.Priniple of least ommitment : do not ommit to any spei� hoiesuntil you have to. This an be applied both to ordering and to instantiationof variables. A partial order planner allows plans to speify that somesteps must ome before others but others have no ordering. A linearisationof suh a plan imposes a spei� sequene on the ations therein.

275

Representing a plan: partial order plannersA plan onsists of:1. A set {S1, S2, . . . , Sn} of steps . Eah of these is one of the availableoperators .2. A set of ordering onstraints . An ordering onstraint Si < Sj denotesthe fat that step Si must happen before step Sj. Si < Sj < Sk andso on has the obvious meaning. Si < Sj does not mean that Si mustimmediately preede Sj.3. A set of variable bindings v = x where v is a variable and x is either avariable or a onstant.4. A set of ausal links or protetion intervals Si
c→ Sj. This denotes thefat that the purpose of Si is to ahieve the preondition c for Sj.A ausal link is always paired with an equivalent ordering onstraint.

276

Representing a plan: partial order plannersThe initial plan has:� Two steps, alled Start and Finish.� a single ordering onstraint Start < Finish.� No variable bindings .� No ausal links .In addition to this:� The step Start has no preonditions, and its e�et is the start state forthe problem.� The step Finish has no e�et, and its preondition is the goal.� Neither Start or Finish has an assoiated ation.We now need to onsider what onstitutes a solution ...

277

Solutions to planning problemsA solution to a planning problem is any omplete and onsistent partiallyordered plan.Complete : eah preondition of eah step is ahieved by another step inthe solution.A preondition c for S is ahieved by a step S ′ if:1. The preondition is an e�et of the step
S ′ < S and c ∈ E�ets(S ′)and...2. ... there is no other step that an anel the preondition:no S ′′ exists where S ′ < S ′′ < S and ¬c ∈ E�ets(S ′′)

278

Solutions to planning problemsConsistent : no ontraditions exist in the binding onstraints or in theproposed ordering. That is:1. For binding onstraints, we never have v = X and v = Y for distintonstants X and Y.2. For the ordering, we never have S < S ′ and S ′ < S.Returning to the roof-limber's shopping expedition, here is the basi ap-proah:� Begin with only the Start and Finish steps in the plan.� At eah stage add a new step.� Always add a new step suh that a urrently non-ahieved preondi-tion is ahieved .� Baktrak when neessary.
279

An example of partial-order planningHere is the initial plan :

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.
280

An example of partial-order planningThere are two ations available :

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding a Buy(G) ation in order toahieve the Have(G) preondition of Finish.Note : the following order of events is by no means the only one availableto a planner.It has been hosen for illustrative purposes.
281

An example of partial-order planningInorporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

At(x), Sells(x, G)

Thik arrows denote ausal links. They always have a thin arrow under-neath.Here the new Buy step ahieves the Have(G) preondition of Finish.

282

An example of partial-order planningThe planner an now introdue a seond ausal link from Start to ahievethe Sells(x, G) preondition of Buy(G).

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(JS), Sells(JS,G)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

283

An example of partial-order planningThe planner's next obvious move is to introdue a Go step to ahieve theAt(JS) preondition of Buy(G).

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(x)

Go(JS)

Start

At(JS), Sells(JS,G)

And we ontinue...

284

An example of partial-order planningInitially the planner an ontinue quite easily in this manner:� Add a ausal link from Start to Go(JS) to ahieve the At(x) preondi-tion.� Add the step Buy(R) with an assoiated ausal link to the Have(R)preondition of Finish.� Add a ausal link from Start to Buy(R) to ahieve the Sells(HS, R) pre-ondition.But then things get more interesting...
285

An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

At(HS), Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get triky...The At(HS) preondition in Buy(R) is not ahieved.
286

An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(Home)

The At(HS) preondition is easy to ahieve. But if we introdue a ausallink from Start to Go(HS) then we risk invalidating the preondition forGo(JS).

287

An example of partial-order planningA step that might invalidate (sometimes the word lobber is employed) apreviously ahieved preondition is alled a threat .
Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner an try to �x a threat by introduing an ordering onstraint.

288

An example of partial-order planningThe planner ould baktrak and try to ahieve the At(x) preonditionusing the existing Go(JS) step.

Start

At(JS), Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

This involves a threat, but one that an be �xed using promotion.

289

The algorithmSimplifying slightly to the ase where there are no variables .Say we have a partially ompleted plan and a set of the preonditions thathave yet to be ahieved.� Selet a preondition p that has not yet been ahieved and is assoiatedwith an ation B.� At eah stage the partially omplete plan is expanded into a newolletion of plans .� To expand a plan, we an try to ahieve p either by using an ationthat's already in the plan or by adding a new ation to the plan. Ineither ase, all the ation A.We then try to onstrut onsistent plans where A ahieves p.

290

The algorithmThis works as follows:� For eah possible way of ahieving p:

– Add Start < A, A < Finish, A < B and the ausal link A
p→ B to theplan.

– If the resulting plan is onsistent we're done, otherwise generate allpossible ways of removing inonsistenies by promotion or demo-tion and keep any resulting onsistent plans .At this stage:� If you have no further preonditions that haven't been ahieved thenany plan obtained is valid .
291

The algorithmBut how do we try to enfore onsisteny?When you attempt to ahieve p using A:� Find all the existing ausal links A ′ ¬p→ B ′ that are lobbered by A.� For eah of those you an try adding A < A ′ or B ′ < A to the plan.� Find all existing ations C in the plan that lobber the new ausal link

A
p→ B.� For eah of those you an try adding C < A or B < C to the plan.� Generate every possible ombination in this way and retain any on-sistent plans that result.

292

Possible threatsWhat about dealing with variables?If at any stage an e�et ¬At(x) appears, is it a threat to At(JS)?Suh an ourrene is alled a possible threat and we an deal with it byintroduing inequality onstraints : in this ase x 6= JS.� Eah partially omplete plan now has a set I of inequality onstraintsassoiated with it.� An inequality onstraint has the form v 6= X where v is a variable and

X is a variable or a onstant.� Whenever we try to make a substitution we hek I to make sure wewon't introdue a onit.If we would introdue a onit then we disard the partially ompletedplan as inonsistent.
293

Arti�ial Intelligene IDr Sean Holden

Notes on mahine learning using neural networks

Copyright Sean Holden 2002-2010.294

Did you heed the DIRE WARNING?At the beginning of the ourse I suggested making sure you an answerthe following two questions:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are onstants. Compute ∂f/∂xj where 1 ≤ j ≤ n?Answer: As

f(x1, . . . , xn) = a1x
2
1 + · · · + ajx

2
j + · · · + anx2

nonly one term in the sum depends on xj, so all the other terms di�er-entiate to give 0 and
∂f

∂xj

= 2ajxj
295

Did you heed the DIRE WARNING?2. Let f(x1, . . . , xn) be a funtion. Now assume xi = gi(y1, . . . , ym) for eah
xi and some olletion of funtions gi. Assuming all requirements fordi�erentiability and so on are met, an you write down an expressionfor ∂f/∂yj where 1 ≤ j ≤ m?Answer: this is just the hain rule for partial di�erentiation

∂f

∂yj

=

n∑

i=1

∂f

∂gi

∂gi

∂yj

296

Supervised learning with neural networksWe now look at how an agent might learn to solve a general problem byseeing examples .Aims :� To present an outline of supervised learning as part of AI.� To introdue muh of the notation and terminology used.� To introdue the lassial pereptron .� To introdue multilayer pereptrons and the bakpropagation algo-rithm for training them.Reading : Russell and Norvig hapter 20.
297

An exampleA ommon soure of problems in AI is medial diagnosis .Imagine that we want to automate the diagnosis of an Embarrassing Disease(all it D) by onstruting a mahine:

0 otherwise1 if the patient su�ers from DMeasurements taken from thepatient: heart rate, blood pressure,presene of green spots et. Mahine

Could we do this by expliitly writing a program that examines the mea-surements and outputs a diagnosis?Experiene suggests that this is unlikely.
298

An example, ontinued...An alternative approah: eah olletion of measurements an be writtenas a vetor,

x
T = (x1 x2 · · · xn)where,

x1 = heart rate

x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise... and so on

(Note : it's a ommon onvention that vetors are olumn vetors by de-fault. This is why the above is written as a transpose .)

299

An example, ontinued...A vetor of this kind ontains all the measurements for a single patient andis alled a feature vetor or instane .The measurements are attributes or features .Attributes or features generally appear as one of three basi types:� Continuous : xi ∈ [xmin, xmax] where xmin, xmax ∈ R.� Binary : xi ∈ {0, 1} or xi ∈ {−1, +1}.� Disrete : xi an take one of a �nite number of values, say xi ∈ {X1, . . . , Xp}.

300

An example, ontinued...Now imagine that we have a large olletion of patient histories (m in total)and for eah of these we know whether or not the patient su�ered from D.� The ith patient history gives us an instane xi.� This an be paired with a single bit|0 or 1|denoting whether or notthe ith patient su�ers from D. The resulting pair is alled an exampleor a labelled example .� Colleting all the examples together we obtain a training sequene

s = ((x1, 0), (x2, 1), . . . , (xm, 0))

301

An example, ontinued...In supervised mahine learning we aim to design a learning algorithmwhih takes s and produes a hypothesis h.
Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new patients.This is IMPORTANT : we want to diagnose patients that the system hasnever seen .The ability to do this suessfully is alled generalisation .

302

An example, ontinued...In fat, a hypothesis is just a funtion that maps instanes to labels .
x

Classi�er

h(x) LabelAttribute vetor

As h is a funtion it assigns a label to any x and not just the ones thatwere in the training sequene .What we mean by a label here depends on whether we're doing lassi�a-tion or regression .

303

Supervised learning: lassi�ationIn lassi�ation we're assigning x to one of a set {ω1, . . . , ωc} of c lasses .For example, if x ontains measurements taken from a patient then theremight be three lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a omputer!The binary ase above also �ts into this framework, and we'll often spe-ialise to the ase of two lasses, denoted C1 and C2.

304

Supervised learning: regressionIn regression we're assigning x to a real number h(x) ∈ R.For example, if x ontains measurements taken regarding today's weatherthen we might have

h(x) = estimate of amount of rainfall expeted tomorrowFor the two-lass lassi�ation problem we will also refer to a situationsomewhat between the two, where

h(x) = Pr(x is in C1)and so we would typially assign x to lass C1 if h(x) > 1/2.

305

SummaryWe don't want to design h expliitly.
Training sequene

h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute vetor

x

So we use a learner L to infer it on the basis of a sequene s of trainingexamples .

306

Neural networksThere is generally a set H of hypotheses from whih L is allowed to selet
h

L(s) = h ∈ H
H is alled the hypothesis spae .The learner an output a hypothesis expliitly or|as in the ase of a neuralnetwork|it an output a vetor

w
T =

(

w1 w2 · · · wW

)of weights whih in turn speify h

h(x) = f(w;x)where w = L(s).

307

Types of learningThe form of mahine learning desribed is alled supervised learning .This introdution will onentrate on this kind of learning. In partiular,the literature also disusses:1. Unsupervised learning .2. Learning using membership queries and equivalene queries .3. Reinforement learning .Some of this further material will be overed in AI 2.
308

Some further examples� Speeh reognition .� Deiding whether or not to give redit .� Deteting redit ard fraud .� Deiding whether to buy or sell a stok option .� Deiding whether a tumour is benign .� Data mining : extrating interesting but hidden knowledge from ex-isting, large databases. For example, databases ontaining �nanialtransations or loan appliations .� Deiding whether driving onditions are dangerous .� Automati driving . (See Pomerleau, 1989, in whih a ar is driven for90 miles at 70 miles per hour, on a publi road with other ars present,but with no assistane from humans.)
309

This is very similar to urve �ttingThis proess is in fat very similar to urve �tting .Think of the proess as follows:� Nature piks an h ′ ∈ H but doesn't reveal it to us.� Nature then shows us a training sequene s where eah xi is labelled as
h ′(xi) + ǫi where ǫi is noise of some kind.Our job is to try to infer what h ′ is on the basis of s only .This is easy to visualise in one dimension: it's just �tting a urve to somepoints .

310

Curve �ttingExample : if H is the set of all polynomials of degree 3 then nature mightpik

h ′(x) =
1

3
x3 −

3

2
x2 + 2x −

1

2

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

The line is dashed to emphasise the fat that we don't get to see it .

311

Curve �ttingWe an now use h ′ to obtain a training sequene s in the manner suggested..

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Here we have,

s
T = ((x1, y1), (x2, y2), . . . , (xm, ym))where eah xi and yi is a real number.

312

Curve �ttingWe'll use a learning algorithm L that operates in a reasonable-lookingway: it piks an h ∈ H minimising the following quantity,
E =

m∑

i=1

(h(xi) − yi)
2

In other words

h = L(s) = argmin
h∈H

m∑

i=1

(h(xi) − yi)
2Why is this sensible?1. Eah term in the sum is 0 if h(xi) is exatly yi.2. Eah term inreases as the di�erene between h(xi) and yi inreases.3. We add the terms for all examples.
313

Curve �ttingIf we pik h using this method then we get:
0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The hosen h is lose to the target h ′, even though it was hosen usingonly a small number of noisy examples .It is not quite idential to the target onept.However if we were given a new point x
′ and asked to guess the value h ′(x ′)then guessing h(x ′) might be expeted to do quite well.

314

Curve �ttingProblem : we don't know what H nature is using . What if the one wehoose doesn't math? We an make our H `bigger' by de�ning it as
H = {h : h is a polynomial of degree at most 5}If we use the same learning algorithm then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The result in this ase is similar to the previous one: h is again quite loseto h ′, but not quite idential.
315

Curve �ttingSo what's the problem? Repeating the proess with,
H = {h : h is a polynomial of degree at most 1}gives the following:

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

In e�et, we have made our H too `small'. It does not in fat ontain anyhypothesis similar to h ′.
316

Curve �ttingSo we have to make H huge, right? WRONG!!! With
H = {h : h is a polynomial of degree at most 25}we get:

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!! This is known as over�tting .
317

Curve �ttingAn experiment to gain some further insight : using
h ′(x) =

1

10
x10 −

1

12
x8 +

1

15
x6 +

1

3
x3 −

3

2
x2 + 2x −

1

2
.as the unknown underlying funtion.We an look at how the degree of the polynomial the training algorithman output a�ets the generalisation ability of the resulting h.We use the same training algorithm, and we train using

H = {h : h is a polynomial of degree at most d}for values of d ranging from 1 to 30

318

Curve �tting� Eah time we obtain an h of a given degree|all it hd|we assess itsquality using a further 100 inputs x
′
i generated at random and al-ulating

q(d) =
1

100

100∑

i=1

(h ′(x ′
i) − hd(x

′
i))

2

� As the values q(d) are found using inputs that are not neessarily in-luded in the training sequene they measure generalisation .� To smooth out the e�ets of the random seletion of examples we repeatthis proess 100 times and average the values q(d).

319

Curve �ttingHere is the result:

5 10 15 20 25 30
d

5

10

15

20

25

30

Log of average q

Clearly: we need to hoose H sensibly if we want to obtain good generali-sation performane .
320

The pereptronThe example just given illustrates muh of what we want to do. Howeverin pratie we deal with more than a single dimension .The simplest form of hypothesis used is the linear disriminant , alsoknown as the pereptron . Here

h(w;x) = σ

(

w0 +

m∑

i=1

wixi

)

= σ (w0 + w1x1 + w2x2 + · · · + wnxn)So: we have a linear funtion modi�ed by the ativation funtion σ.The pereptron's inuene ontinues to be felt in the reent and ongoingdevelopment of support vetor mahines .
321

The pereptron ativation funtion IThere are three standard forms for the ativation funtion:1. Linear : for regression problems we often use
σ(z) = z2. Step: for two-lass lassi�ation problems we often use

σ(z) =

{
C1 if z > 0

C2 otherwise.3. Sigmoid/Logisti: for probabilisti lassi�ation we often usePr(x is in C1) = σ(z) =
1

1 + exp(−z)
.The step funtion is important but the algorithms involved are somewhatdi�erent to those we'll be seeing. We won't onsider it further.The sigmoid/logisti funtion plays a major role in what follows.

322

The sigmoid/logisti funtion
−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)

−10
−5

0
5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)

323

Gradient desentA method for training a basi pereptron works as follows. Assume we'redealing with a regression problem and using σ(z) = z.We de�ne a measure of error for a given olletion of weights. For example
E(w) =

m∑

i=1

(yi − h(w;xi))
2

Modifying our notation slightly so that
x

T = (1 x1 x2 · · · xn)

w
T = (w0 w1 w2 · · · wn)lets us write

E(w) =

m∑

i=1

(yi − w
T
xi)

2

324

Gradient desentWe want to minimise E(w).One way to approah this is to start with a random w0 and update it asfollows:

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtwhere

∂E(w)

∂w

=
(

∂E(w)

∂w0

∂E(w)

∂w1
· · · ∂E(w)

∂wn

)Tand η is some small positive number.The vetor

−
∂E(w)

∂wtells us the diretion of the steepest derease in E(w).

325

Gradient desentWith

E(w) =

m∑

i=1

(yi − w
T
xi)

2we have

∂E(w)

∂wj

=
∂

∂wj

(

m∑

i=1

(yi − w
T
xi)

2

)

=

m∑

i=1

(

∂

∂wj

(yi − w
T
xi)

2

)

=

m∑

i=1

(

2(yi − w
T
xi)

∂

∂wj

(

−w
T
xi

)

)

= −x
(j)

i

m∑

i=1

2
(

yi − w
T
xi

)

where x
(j)

i is the jth element of xi.
326

Gradient desentThe method therefore gives the algorithm

wt+1 = wt + 2η

m∑

i=1

(

yi − w
T
t xi

)

xiSome things to note:� In this ase E(w) is paraboli and has a unique global minimum andno loal minima so this works well.� Gradient desent in some form is a very ommon approah to this kindof problem.� We an perform a similar alulation for other ativation funtionsand for other de�nitions for E(w).� Suh alulations lead to di�erent algorithms .
327

Pereptrons aren't very powerful: the parity problemThere are many problems a pereptron an't solve.
−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

−1 0 1 2 −1

0

1

2

0

0.2

0.4

0.6

0.8

1

x2

x1

N
et

w
o
rk

o
u
tp

u
t

We need a network that omputes more interesting funtions .

328

The multilayer pereptronEah node in the network is itself a pereptron:
aj zj

σ(aj)

w0

w1

w2

wn

...
Node j

z1

z2

zn

∑n

i=0 wizi

z0 = 1

� Weights wi onnet nodes together.� aj is the weighted sum or ativation for node j.� σ is the ativation funtion .� The output is zj = σ(aj).
329

The multilayer pereptronReminder :We'll ontinue to use the notation

z
T = (1 z1 z2 · · · zn)

w
T = (w0 w1 w2 · · · wn)So that

n∑

i=0

wizi = w0 +

n∑

i=1

wizi

= w
T
z

330

The multilayer pereptronIn the general ase we have a ompletely unrestrited feedforward stru-ture : Feature vetor x Node i Node j
wi→j Output y = h(w;x)

x1

x2

xn

...

Eah node is a pereptron. No spei� layering is assumed.

wi→j onnets node i to node j. w0 for node j is denoted w0→j.

331

BakpropagationAs usual we have:� Instanes x
T = (x1, . . . , xn).� A training sequene s = ((x1, y1), . . . , (xm, ym)).We also de�ne a measure of training error

E(w) = measure of the error of the network on swhere w is the vetor of all the weights in the network .Our aim is to �nd a set of weights that minimises E(w) using gradientdesent .

332

Bakpropagation: the general aseThe entral task is therefore to alulate

∂E(w)

∂wTo do that we need to alulate the individual quantities
∂E(w)

∂wi→jfor every weight wi→j in the network .Often E(w) is the sum of separate omponents, one for eah example in s

E(w) =

m∑

p=1

Ep(w)in whih ase

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wWe an therefore onsider examples individually.
333

Bakpropagation: the general asePlae example p at the input and alulate aj and zj for all nodes inludingthe output y. This is forward propagation .We have

∂Ep(w)

∂wi→j

=
∂Ep(w)

∂aj

∂aj

∂wi→jwhere aj =
∑

k wk→jzk.Here the sum is over all the nodes onneted to node j. As
∂aj

∂wi→j

=
∂

∂wi→j

(

∑

k

wk→jzk

)

= ziwe an write

∂Ep(w)

∂wi→j

= δjziwhere we've de�ned
δj =

∂Ep(w)

∂aj

334

Bakpropagation: the general aseSo we now need to alulate the values for δj...When j is the output node|that is, the one produing the output y =

h(w;xp) of the network|this is easy as zj = y and
δj =

∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ ′(aj)using the fat that y = σ(aj).

335

Bakpropagation: the general aseThe �rst term is in general easy to alulate for a given E as the erroris generally just a measure of the distane between y and the label in thetraining sequene.Example: when

Ep(w) = (y − yp)
2we have

∂Ep(w)

∂y
= 2(y − yp)

= 2(h(w;xp) − yp)

336

Bakpropagation: the general aseWhen j is not an output node we need something di�erent:
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We're interested in

δj =
∂Ep(w)

∂ajAltering aj an a�et several other nodes k1, k2, . . . , kq eah of whih anin turn a�et Ep(w).
337

Bakpropagation: the general ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj

=
∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak

∂aj

=
∑

k∈{k1,k2,...,kq}

δk

∂ak

∂ajwhere k1, k2, . . . , kq are the nodes to whih node j sends a onnetion.

338

Bakpropagation: the general ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Beause we know how to ompute δj for the output node we an workbakwards omputing further δ values.We will always know all the values δk for nodes ahead of where we are .Hene the term bakpropagation .
339

Bakpropagation: the general ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak

∂aj

=
∂

∂aj

(

∑

i

wi→kσ(ai)

)

= wj→kσ
′(aj)and

δj =
∑

k∈{k1,k2,...,kq}

δkwj→kσ
′(aj) = σ ′(aj)

∑

k∈{k1,k2,...,kq}

δkwj→k

340

Bakpropagation: the general aseSummary : to alulate ∂Ep(w)

∂w

for the pth pattern:1. Forward propagation : apply xp and alulate outputs et for all thenodes in the network .2. Bakpropagation 1 : for the output node
∂Ep(w)

∂wi→j

= ziδj = ziσ
′(aj)

∂Ep(w)

∂ywhere y = h(w;xp).3. Bakpropagation 2 : For other nodes
∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kwhere the δk were alulated at an earlier step.
341

Bakpropagation: a spei� exampleHidden nodes reeiveinputs from all features
Output node reeivesinputs from all hiddennodes

y = h(w;x)......x2

x1

xn

For the output: σ(a) = a. For the hidden nodes σ(a) = 1
1+exp(−a)

.

342

Bakpropagation: a spei� exampleFor the output: σ(a) = a so σ ′(a) = 1.For the hidden nodes:

σ(a) =
1

1 + exp(−a)so

σ ′(a) = σ(a) [1 − σ(a)]We'll ontinue using the same de�nition for the error
E(w) =

m∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2

343

Bakpropagation: a spei� exampleFor the output : the equation is

∂Ep(w)

∂wi→output = ziδoutput = ziσ
′(aoutput)∂Ep(w)

∂ywhere y = h(w;xp). So as

∂Ep(w)

∂y
=

∂

∂y

(

(yp − y)2
)

= 2(y − yp)

= 2 [h(w;xp) − yp]and σ ′(a) = 1 so

δoutput = 2 [h(w;xp) − yp]and

∂Ep(w)

∂wi→output = 2zi(h(w;xp) − yp)
344

Bakpropagation: a spei� exampleFor the hidden nodes : the equation is

∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kHowever there is only one output so

∂Ep(w)

∂wi→j

= ziσ(aj) [1 − σ(aj)] δoutputwj→outputand we know that

δoutput = 2 [h(w;xp) − yp]so

∂Ep(w)

∂wi→j

= 2ziσ(aj) [1 − σ(aj)] [h(w;xp) − yp]wj→output

= 2xizj(1 − zj) [h(w;xp) − yp] wj→output

345

Putting it all togetherWe an then use the derivatives in one of two basi ways:Bath : (as desribed previously)

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wthen

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtSequential : using just one pattern at one
wt+1 = wt − η

∂Ep(w)

∂w

∣

∣

∣

∣

wtseleting patterns in sequene or at random .
346

Example: the parity problem revisitedAs an example we show the result of training a network with:� Two inputs.� One output.� One hidden layer ontaining 5 units.� η = 0.01.� All other details as above.The problem is the parity problem. There are 40 noisy examples.The sequential approah is used, with 1000 repetitions through the entiretraining sequene.

347

Example: the parity problem revisited
−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2
Before training

x1

x
2

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
After training

x1

x
2

348

Example: the parity problem revisited
−1

0
1

2

−1
0

1
2
0

0.5

1

x1

Before training

x2

N
et

w
o
rk

o
u
tp

u
t

−1
0

1
2 −1

0

1

2
0

0.5

1

x2

After training

x1

N
et

w
o
rk

o
u
tp

u
t

349

Example: the parity problem revisited
0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

10
Error during training

350

