Prim MST: initialized the graph.
Priority queue $=\left[L_{-}+i n f, H_{-}+i n f, F_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $==0$

Marked the source node F .
Priority queue $=\left[F _0, L_{-}+i n f, H_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=0$

Extracted F and added it to the MST-so-far. Let's adjust its adjacent vertices (H, L, G). Priority queue $=\left[L_{-}+i n f, H_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $==0$

Adjusting the vertices adjacent to F. Considering edge (F, H), leading to H. Priority queue $=\left[L_{-}+i n f, H_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=0$

Using edge (F, H), vertex H can be reached in 3 from the MST-so-far (better than +inf).
Priority queue $=\left[H_{-} 3, L_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $==0$

So let's add edge (F, H) to the MST.
Priority queue $=\left[H_{-} 3, L_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3=3$

G_+inf
J_+inf

8
523

$$
\text { L_+inf } \quad K_{-}+i n f
$$

1

M_+inf

Adjusting the vertices adjacent to F. Considering edge (F, L), leading to L. Priority queue $=\left[H_{-} 3, L_{-}+i n f, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3=3$

Using edge (F, L), vertex L can be reached in 3 from the MST-so-far (better than +inf). Priority queue $=\left[H_{-} 3, L_{-} 3, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3=3$

So let's add edge (F, L) to the MST.
Priority queue $=\left[H_{-} 3, L_{-} 3, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3+3=6$

M_+inf

Adjusting the vertices adjacent to F. Considering edge (F, G), leading to G.
Priority queue $=\left[H _3, L_{-} 3, T_{-}+i n f, J_{-}+i n f, G_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3+3=6$

Using edge (F, G), vertex G can be reached in 5 from the MST-so-far (better than +inf).
Priority queue $=\left[H_{-} 3, L_{-} 3, G_{-} 5, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3+3=6$

So let's add edge (F, G) to the MST.
Priority queue $=\left[H_{-} 3, L_{-} 3, G_{-} 5, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3+3+5=11$

1
M_+inf

Finished with the adjacents of F.
Priority queue $=\left[H_{-} 3, L_{-} 3, G_{-} 5, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3+3+5=11$

Extracted H and added it to the MST-so-far. Let's adjust its adjacent vertices ($\mathrm{K}, \mathrm{J}, \mathrm{T}, \mathrm{F}, \mathrm{M}$). Priority queue $=\left[L_{-} 3, G_{-} 5, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$

Weight of red edges $=3+3+5=11$

Adjusting the vertices adjacent to H . Considering edge (H, K), leading to K . Priority queue $=\left[L_{-} 3, G_{-} 5, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f, K_{-}+i n f\right]$ Weight of red edges $=3+3+5=11$

Using edge (H, K), vertex K can be reached in 7 from the MST-so-far (better than +inf). Priority queue $=\left[L_{-} 3, G_{-} 5, K_{-} 7, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f\right]$ Weight of red edges $=3+3+5=11$

So let's add edge (H, K) to the MST.
Priority queue $=\left[L_{-} 3, G_{-} 5, K_{-} 7, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f\right]$
Weight of red edges $=3+3+5+7=18$

$M_{-}+i n f$

Adjusting the vertices adjacent to H . Considering edge (H, J), leading to J. Priority queue $=\left[L_{-} 3, G_{-} 5, K_{-} 7, T_{-}+i n f, J_{-}+i n f, M_{-}+i n f\right]$

Weight of red edges $=3+3+5+7=18$

Using edge (H, J), vertex J can be reached in 2 from the MST-so-far (better than +inf). Priority queue $=\left[J_{-} 2, L_{-} 3, G_{-} 5, K_{-} 7, T_{-}+i n f, M_{-}+i n f\right]$ Weight of red edges $=3+3+5+7=18$

So let's add edge (H, J) to the MST.
Priority queue = [J_2, L_3, G_5, K_7, T_+inf, M_+inf] Weight of red edges $=3+3+5+7+2=20$

M_+inf

Adjusting the vertices adjacent to H . Considering edge (H, T), leading to T . Priority queue = [J_2, L_3, G_5, K_7, T_+inf, M_+inf] Weight of red edges $=3+3+5+7+2=20$

Using edge (H, T), vertex T can be reached in 32 from the MST-so-far (better than +inf). Priority queue $=\left[J _2, L_{-} 3, G_{-} 5, K_{-} 7\right.$, T_32, M_+inf] Weight of red edges $=3+3+5+7+2=20$

So let's add edge (H, T) to the MST.
Priority queue = [J_2, L_3, G_5, K_7, T_32, M_+inf] Weight of red edges $=3+3+5+7+2+32=52$

1

M_+inf

Adjusting the vertices adjacent to H . Considering edge (F, H), leading to F . Priority queue = [J_2, L_3, G_5, K_7, T_32, M_+inf] Weight of red edges $=3+3+5+7+2+32=52$

Using edge (F, H), vertex F can be reached in 3 from the MST-so-far (not better than 0). Let's not use that edge.

$$
\text { Priority queue }=\left[J _2, L_{-} 3, G_{-} 5, K_{-} 7, T_{-} 32, M_{-}+\text {inf }\right]
$$

$$
\text { Weight of red edges }=3+3+5+7+2+32=52
$$

Adjusting the vertices adjacent to H . Considering edge (M, H), leading to M . Priority queue = [J_2, L_3, G_5, K_7, T_32, M_+inf] Weight of red edges $=3+3+5+7+2+32=52$

Using edge (M, H), vertex M can be reached in 6 from the MST-so-far (better than +inf).
Priority queue = [J_2, L_3, G_5, M_6, K_7, T_32]

$$
\text { Weight of red edges }=3+3+5+7+2+32=52
$$

So let's add edge (M, H) to the MST. Priority queue $=$ [J_2, L_3, G_5, M_6, K_7, T_32] Weight of red edges $=3+3+5+7+2+32+6=58$

Finished with the adjacents of H .
Priority queue = [J_2, L_3, G_5, M_6, K_7, T_32]
Weight of red edges $=3+3+5+7+2+32+6=58$

Extracted J and added it to the MST-so-far. Let's adjust its adjacent vertices (L, K, H, T). Priority queue $=\left[L_{-} 3, G_{-} 5, M_{-} 6, K_{-} 7, T_{3} 32\right]$
Weight of red edges $=3+3+5+\overline{7}+2+32+6=58$

Adjusting the vertices adjacent to J. Considering edge (J, L), leading to L. Priority queue $=\left[L_{-} 3, G_{-} 5, M_{-} 6, K_{-} 7, T_{-} 32\right]$ Weight of red edges $=3+3+5+7+2+32+6=58$

Using edge (J, L), vertex L can be reached in 5 from the MST-so-far (not better than 3). Let's not use that edge.

Adjusting the vertices adjacent to J. Considering edge (J, K), leading to K. Priority queue $=$ [L_3, G_5, M_6, K_7, T_32] Weight of red edges $=3+3+5+7+2+32+6=58$

Using edge (J, K), vertex K can be reached in 23 from the MST-so-far (not better than 7). Let's not use that edge.
Priority queue $=$ [L_3, G_5, M_6, K_7, T_32]
Weight of red edges $=3+3+5+\overline{7}+2+32+6=58$

Adjusting the vertices adjacent to J. Considering edge (H, J), leading to H . Priority queue = [L_3, G_5, M_6, K_7, T_32] Weight of red edges $=3+3+5+7+2+32+6=58$

Using edge (H, J), vertex H can be reached in 2 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=$ [L_3, G_5, M_6, K_7, T_32]
Weight of red edges $=3+3+5+\overline{7}+2+3 \overline{2}+6=58$

Adjusting the vertices adjacent to J. Considering edge (T, J), leading to T . Priority queue $=$ [L_3, G_5, M_6, K_7, T_32] Weight of red edges $=3+3+5+7+2+32+6=58$

Using edge (T, J), vertex T can be reached in 4 from the MST-so-far (better than 32).
Priority queue $=[$ L_3, T_4, G_5, M_6, K_7]
Weight of red edges $=3+3+5+7+2+32+6=58$

So let's add edge (T, J) to the MST, replacing (H, T). Priority queue $=\left[L_{-} 3, T_{-} 4, G_{-} 5, M_{-} 6, K_{-} 7\right]$ Weight of red edges $=3+3+5+7+2+6+4=30$

Finished with the adjacents of J. Priority queue $=\left[L_{-} 3, T_{-} 4, G_{-} 5, M_{-} 6, K_{-} 7\right]$ Weight of red edges $=3+3+5+7+2+6+4=30$

Extracted L and added it to the MST-so-far. Let's adjust its adjacent vertices (M, J, F).
Priority queue $=[$ T_4, G_5, M_6, K_7]
Weight of red edges $=3+3+5+7+2+6+4=30$

Adjusting the vertices adjacent to L. Considering edge (L, M), leading to M.
Priority queue $=$ [T_4, G_5, M_6, K_7] Weight of red edges $=3+3+5+7+2+6+4=30$

Using edge (L, M), vertex M can be reached in 1 from the MST-so-far (better than 6).
Priority queue $=\left[M_{-} 1\right.$, T_4, G_5, K_7] Weight of red edges $=3+3+5+7+2+6+4=30$

So let's add edge (L, M) to the MST, replacing (M, H). Priority queue $=\left[M_{-} 1, T_{-} 4, G_{-} 5, K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to L. Considering edge (J, L), leading to J. Priority queue $=\left[M_{-} 1, T_{-} 4, G_{-} 5, K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (J, L), vertex J can be reached in 5 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=\left[M_{-} 1, T_{-} 4, G_{-} 5, K_{-} 7\right]$ Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to L. Considering edge (F, L), leading to F.
Priority queue $=\left[M_{-} 1, T_{-} 4, G_{-} 5, K_{-} 7\right]$

$$
\text { Weight of red edges }=3+3+5+7+2+4+1=25
$$

Using edge (F, L), vertex F can be reached in 3 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=\left[M_{-} 1, T_{-} 4, G_{-} 5, K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Finished with the adjacents of L . Priority queue $=\left[M_{-} 1, T_{-} 4, G_{-} 5, K_{-} 7\right]$ Weight of red edges $=3+3+5+7+2+4+1=25$

Extracted M and added it to the MST-so-far. Let's adjust its adjacent vertices (T, H, L).
Priority queue $=\left[T_{-} 4, ~ G _5, ~ K-7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to M . Considering edge (M, T), leading to T .
Priority queue $=$ [T_4, G_5, K_7] Weight of red edges $=3+3+5+\overline{7}+2+4+1=25$

Using edge (M, T), vertex T can be reached in 8 from the MST-so-far (not better than 4).
Let's not use that edge.
Priority queue $=[$ T_4, G_5, K_7]
Weight of red edges $=3+3+5+\overline{7}+2+4+1=25$

Adjusting the vertices adjacent to M. Considering edge (M, H), leading to H .
Priority queue $=$ [T_4, G_5, K_7] Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (M, H), vertex H can be reached in 6 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=[$ T_4, G_5, K_7]
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to M. Considering edge (L, M), leading to L .
Priority queue $=$ [T_4, G_5, K_7] Weight of red edges $=3+3+5+\overline{7}+2+4+1=25$

Using edge (L, M), vertex L can be reached in 1 from the MST-so-far (not better than 0).
Let's not use that edge.
Priority queue $=[$ T_4, G_5, K_7]
Weight of red edges $=3+3+5+7+2+4+1=25$

Finished with the adjacents of M . Priority queue $=[$ T_4, G_5, K_7] Weight of red edges $=3+3+5+7+2+4+1=25$

Extracted T and added it to the MST-so-far. Let's adjust its adjacent vertices (G, J, M, H). Priority queue $=\left[G_{-} 5, K_{-} 7\right]$

$$
\text { Weight of red edges }=3+3+5+7+2+4+1=25
$$

Adjusting the vertices adjacent to T. Considering edge (T, G), leading to G.
Priority queue $=$ [G_5, K_7] Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (T, G), vertex G can be reached in 10 from the MST-so-far (not better than 5). Let's not use that edge.
Priority queue $=\left[G_{-} 5\right.$, K_7 $\left.^{2}\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to T . Considering edge (T, J), leading to J. Priority queue $=\left[G_{-} 5, K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (T, J), vertex J can be reached in 4 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=\left[G_{-} 5, K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to T. Considering edge (M, T), leading to M . Priority queue $=$ [G_5, K_7] Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (M, T), vertex M can be reached in 8 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=[$ G_5, K_7]
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to T. Considering edge (H, T), leading to H.
Priority queue $=$ [G_5, K_7] Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (H, T), vertex H can be reached in 32 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=\left[G_{-} 5\right.$, K_7 $\left.^{2}\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Finished with the adjacents of T. Priority queue $=\left[G_{-} 5, K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Extracted G and added it to the MST-so-far. Let's adjust its adjacent vertices (T, F).
Priority queue $=\left[K_{-7} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to G . Considering edge (T, G), leading to T . Priority queue $=\left[\mathrm{K}_{7} 7\right]$ Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (T, G), vertex T can be reached in 10 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=\left[K_{-} 7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to G. Considering edge (F, G), leading to F. Priority queue $=\left[\mathrm{K}_{7} 7\right]$ Weight of red edges $=3+3+5+\overline{7}+2+4+1=25$

Using edge (F, G), vertex F can be reached in 5 from the MST-so-far (not better than 0). Let's not use that edge.
Priority queue $=\left[K _7\right]$
Weight of red edges $=3+3+5+\overline{7}+2+4+1=25$

Finished with the adjacents of G . Priority queue $=\left[K _7\right]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Extracted K and added it to the MST-so-far. Let's adjust its adjacent vertices (H, J). Priority queue = [] Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to K. Considering edge (H, K), leading to H. Priority queue $=$ [] Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (H, K), vertex H can be reached in 7 from the MST-so-far (not better than 0).
Let's not use that edge.
Priority queue $=[]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Adjusting the vertices adjacent to K. Considering edge (J, K), leading to J. Priority queue $=[]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Using edge (J, K), vertex J can be reached in 23 from the MST-so-far (not better than 0). Let's not use that edge.

Priority queue $=[]$
Weight of red edges $=3+3+5+7+2+4+1=25$

Finished with the adjacents of K. Priority queue $=[]$
Weight of red edges $=3+3+5+7+2+4+1=25$

MST now complete.
Priority queue $=$ []
Weight of red edges $=3+3+5+7+2+4+1=25$

Prim minimum spanning tree
Generated by \$Id: prim.py 87 2010-11-15 23:48:22Z fms27 \$
(c) 2006-2010 Frank Stajano

University of Cambridge Computer Laboratory

