Dijkstra single-source shortest paths. Source $=\mathrm{L}$.
Priority queue $=[L 0, H+i n f, F+i n f, T+i n f, J+i n f, G+i n f, M+i n f, K+i n f]$

$$
F+\inf
$$

## extractMin() -> L.

Priority queue $=[H+i n f, F+i n f, T+i n f, J+i n f, G+i n f, M+i n f, K+i n f]$

$M+i n f$

Relaxing the edges from $L$. Considering edge ( $L, M$ ), leading to $M$. Priority queue $=[H+i n f, F+i n f, T+i n f, J+i n f, G+i n f, M+i n f, K+i n f]$


$$
\begin{aligned}
& 0+1<+ \text { inf. Edge }(L, M) \text { relaxed. } \\
& F+\text { inf }
\end{aligned}
$$

3

H +inf
$5 \quad 32$

3 T +inf 2

10
4

G +inf
$J+i n f$
6
$8 \quad 5 \quad 23$

L 0 K +inf

M 1

> Finished with L.
> Priority queue $=[$ M 1, $H+i n f, F+i n f, T+i n f, J+i n f, G+i n f, K+i n f]$ F +inf

3

H +inf

32

3 T +inf 2

10

G +inf
5

| 4 |  |
| :---: | :---: | :---: |
| 3 | $5+\mathrm{inf}$ |
| 8 | 23 |



M 1

$$
\begin{gathered}
\quad \operatorname{extractMin}()->M . \\
\text { Priority queue }=[H+\inf , F+\inf , T+\text { inf, } J+\text { inf, } G+\text { inf, } K+\text { inf }] \\
F+\text { inf }
\end{gathered}
$$

$$
3
$$

$$
\mathrm{H}+\mathrm{inf}
$$

$$
5
$$

$$
32
$$

$$
3 \quad T+i n f \quad 2
$$

$$
10
$$

$$
\mathrm{G}+\mathrm{inf}
$$



Relaxing the edges from $M$. Considering edge ( $\mathrm{M}, \mathrm{T}$ ), leading to T . Priority queue $=[H+i n f, F+i n f, T+i n f, J+i n f, G+i n f, K+i n f]$

$$
\mathrm{F}+\mathrm{inf}
$$



Relaxing the edges from $M$. Considering edge ( $\mathrm{M}, \mathrm{H}$ ), leading to H . Priority queue $=[\mathrm{T} 9, \mathrm{H}+\mathrm{inf}, \mathrm{F}+\mathrm{inf}, \mathrm{J}+\mathrm{inf}, \mathrm{G}+\mathrm{inf}, \mathrm{K}+\mathrm{inf}]$

$1+6<+$ inf. Edge ( $\mathrm{M}, \mathrm{H}$ ) relaxed.
F +inf


Finished with M .
Priority queue $=[$ H 7, T 9, F +inf, J +inf, G +inf, K +inf $]$


## extractMin() -> H.

Priority queue $=[$ T 9, F +inf, J +inf, G +inf, $K+i n f]$


Relaxing the edges from $H$. Considering edge $(H, K)$, leading to $K$. Priority queue $=[T 9, F+i n f, J+i n f, G+i n f, K+i n f]$


$$
\begin{aligned}
& 7+7<+ \text { inf. Edge }(H, K) \text { relaxed. } \\
& \text { F +inf }
\end{aligned}
$$



Relaxing the edges from H. Considering edge ( $\mathrm{H}, \mathrm{J}$ ), leading to J. Priority queue $=[$ T 9, K 14, F +inf, J +inf, G +inf]


$$
\begin{aligned}
& 7+2<+ \text { inf. Edge (H, J) relaxed. } \\
& \text { F +inf }
\end{aligned}
$$



Relaxing the edges from H . Considering edge $(\mathrm{H}, \mathrm{T})$, leading to T . Priority queue $=[T 9, J 9, K 14, F+i n f, G+i n f]$

$$
\mathrm{F}+\mathrm{inf}
$$


$7+32$ is not $<9$. Edge $(H, T)$ not relaxed.
F +inf


Finished with H.
Priority queue $=[T 9, J 9, K 14, F+i n f, G+i n f]$
F +inf



Relaxing the edges from $T$. Considering edge ( $T, G$ ), leading to $G$. Priority queue $=[J 9, K 14, F+i n f, G+i n f]$


$$
\begin{aligned}
& 9+10<+ \text { inf. Edge }(T, G) \text { relaxed. } \\
& \text { F +inf }
\end{aligned}
$$



Relaxing the edges from T. Considering edge ( $\mathrm{T}, \mathrm{J}$ ), leading to J. Priority queue $=[J$ 9, K 14, G 19, F +inf $]$

$9+4$ is not $<9$. Edge ( $\mathrm{T}, \mathrm{J}$ ) not relaxed. F +inf


Finished with T.
Priority queue $=[J$ 9, K 14, G 19, F +inf]
F +inf


> extractMin() -> J.
> Priority queue $=[\mathrm{K} \mathrm{14} ,\mathrm{G} \mathrm{19} F+$, inf $]$

F +inf


Relaxing the edges from J. Considering edge (J, L), leading to L. Priority queue $=[\mathrm{K} 14, \mathrm{G} 19, \mathrm{~F}+$ inf $]$

$9+5$ is not $<0$. Edge (J, L) not relaxed. F +inf


Relaxing the edges from J. Considering edge (J, K), leading to K. Priority queue $=[\mathrm{K} 14, \mathrm{G} 19, \mathrm{~F}+\mathrm{inf}]$


## $9+23$ is not < 14. Edge (J, K) not relaxed. F +inf



Finished with J.
Priority queue $=[\mathrm{K} 14, \mathrm{G} 19, \mathrm{~F}+\mathrm{inf}]$
F +inf



Finished with K. Priority queue $=[G 19, F+i n f]$

F +inf


$$
\begin{gathered}
\text { extractMin() -> G. } \\
\text { Priority queue }=[\mathrm{F}+\mathrm{inf}]
\end{gathered}
$$

F +inf


Finished with G.
Priority queue $=[\mathrm{F}+\mathrm{inf}]$
F +inf


$$
\begin{aligned}
& \text { extractMin() -> F. } \\
& \text { Priority queue = [] }
\end{aligned}
$$



Relaxing the edges from $F$. Considering edge ( $F, H$ ), leading to $H$. Priority queue = []


+ inf +3 is not $<7$. Edge $(F, H)$ not relaxed.


Relaxing the edges from $F$. Considering edge ( $F, L$ ), leading to $L$. Priority queue = []

$+\mathrm{inf}+3$ is not $<0$. Edge ( $F, L$ ) not relaxed. F +inf


Relaxing the edges from $F$. Considering edge ( $F, G$ ), leading to $G$. Priority queue $=[]$


+ inf +5 is not $<19$. Edge ( $\mathrm{F}, \mathrm{G}$ ) not relaxed.


Finished with F.

## Priority queue = []



## Dijkstra single-source shortest paths

Generated by \$Id: dijkstra.py 99 2010-11-18 10:48:22Z fms27 \$
(c) 2006-2010 Frank Stajano

University of Cambridge Computer Laboratory

