
Programming
Techniques

S.L. Graham, R.L. Rivest
Editors

A Data Structure for
Manipulating Priority
Queues
J e a n V u i l l e m i n
U n i v e r s i t 6 d e P a r i s - S u d

A data structure is described which can be used for
representing a collection of priority queues. The
primitive operations are insertion, deletion, union,
update, and search for an item of earliest priority.

Key Words and Phrases: data structures,
implementation of set operations, priority queues,
mergeable heaps, binary trees

CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1

I. Introduction

In order to design correct and efficient algorithms for
solving a specific problem, it is often helpful to describe
our first approach to a solution in a language close to
that in which the problem is formulated. One such
language is that of set theory, augmented by primitive
set manipulation operations. Once the algorithm is out-
lined in terms of these set operations, one can then look
for data structures most suitable for representing each of
the sets involved. This choice depends only upon the
collection of primitive operations required for each set.
It is thus important to establish a good catalogue of such
data structures. A summary of the state of the art on this
question can be found in [2]. In this paper, we add to
this catalogue a data structure which allows efficient
manipulation of priority queues.

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author's address: Laboratoire de Recherche en Informatique,
Brit. 490, Universit6 de Paris-Sud, Centre d'Orsay 91405--Orsay,
France.
© 1978 ACM 0001-0782/78/0400-0309 $00.75

309

A priority queue is a set; each element of such a set
has a name, which is used to uniquely identify the
element, and a label or priority drawn from a totally
ordered set. Elements of the priority queue can be
thought of as awaiting service, where the item with the ~
smallest label is always to be served next. Ordinary
stacks and queues are special cases of priority queues.

A variety of applications directly require using prior-
ity queues: job scheduling, discrete simulation languages
where labels represent the time at which events are to
occur, as well as various sorting problems. These are
discussed, for example, in [2, 3, 5, 11, 15, 17, 24]. Priority
queues also play a central role in several good algorithms,
such as optimal code constructions, Chartre's prime
number generator, and Brown's power series multipli-
cation (see [16] and [17]); applications have also been
found in numerical analysis algorithms [10, 17, 19] and
in graph algorithms for such problems as finding shortest
paths [2, 13] and minimum cost spanning tree [2, 4, 25].

Typical applications require primitive operations
among the following five: INSERT, DELETE, MIN, UP-
DATE, and UNION. The operation INSERT (name, label,
Q) adds an element to queue Q, while DELETE (name)
removes the element having that name. Operation MIN
(Q) returns the name of the element in Q having the least
label, and UPDATE (name, label) changes the label of the
element named. Finally, UNION (Q1, Q2, Q3) merges into
Qa all elements of Q1 and Q2; the sets Q1 and Q2 become
empty. In what follows, we assume that names are
handled in a separate dictionary [2, 17] such as a hash-
table or a balanced tree. If deletions are restricted to
elements extracted by MIN, such an auxiliary symbol
table is not needed. 1

The heap, a truly elegant data structure discovered
by J. W. Williams and R. W. Floyd, handles a sequence
of n primitives INSERT, DELETE, and MIN, and runs in
O(nlogn) elementary operations using absolutely mini-
mal storage [17]. For applications in which UNION is
necessary, more sophisticated data structures have been
devised, such as 2-3 trees [2, 17], leftist trees [5, 17], and
binary heaps [9].

The data structure we present here handles an arbi-
trary sequence of n primitives, each drawn from the five
described above, in O(nlogn) machine operations and
O(n) memory cells. It also allows for an efficient treat-
ment of a large number of updates, which is crucial in
connection with spanning tree algorithms: Our data
structure provides an implementation (described in
[25]) of the Cheriton-Tarjan-Yao [3] minimum cost span-
ning tree algorithm which is much more straightforward
than the original one.

The proposed data structure uses less storage than
leftist, AVL, or 2-3 trees; in addition, when the primitive
operations are carefully machine coded from the pro-
grams given in Section 4, they yield worst case running
times which compare favorably with those of their corn-

We-g'gsume here that indexing through the symbol table is done
in constant time.

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 1. Binary numbering of B4.

15

7 14

Fig. 2.

Bp =

Fig. 3.

x "
F 3 F 6 FI3

petitors. (A detailed analysis of the algorithms is given
by Brown [3].)

Besides these technical advantages, we feel the data
structure to be interesting in itself because of its concep-
tual simplicity and of the connections it establishes
among various data manipulation problems.

2 . B i n o m i a l T r e e s a n d F o r e s t s

We describe here the underlying combinatorial struc-
ture, called binomial trees. These are defined inductively
by:

Bo = 0 and Bp+l = ~ for p>O.

Thus B 2 = , and B 3 = ~

for example. In order to discover some of the many
combinatorial properties of binomial trees, Knuth [18]
suggests that we first label the nodes of a Bp tree in post-
order, starting at zero, and then associate with each node
the binary representation of its label (Figure 1). From
this numbering, it is easy to establish that
- - each Bp has 29 nodes;
- - there are (~) nodes at depth k in Bp which correspond

to the various sequences o f p bits having exactly k
zeros;

- - the maximum depth of a node in Bp is p;
- - the number of children of a node is equal to the

number of l 's following the last 0 in its binary
numbering; leaves thus correspond to even numbers;

- - in Bp there is exactly one node, the root, having p
children; for 0 _-_ k < p there are 2 p-k-1 nodes having
k children.

There are many ways of drawing Bp; in particular see
Figure 2.

In order to use binomial trees for representing sets
whose number n of elements is not always a power of
two, we consider the binary decomposition n = ~,i~ biT,
with bi E {0, 1 }, of the number n and define a binomial

fores t F , o f order n as a finite collection of binomial trees,
one Bi for each 1 in the binary decomposition of n. In
symbols, Fn = {Bili >-- O, bi = 1, n = ~,i~o bi2i}; we define
the /th component o f F, to be Bi if bi = 1 and empty
otherwise. For example, (12)10 = (1100)2; thus F~2 = (B3,
B2}. The first component of F12 is empty and its third is
B3. Figure 3 shows some small binomial forests.

Binomial trees and forests appear in various data
manipulation problems. They are used by Fisher [6] in
the worst case analysis of a simple data structure for
manipulating disjoint set unions (see also [18]). They
play a crucial role in the linear time median algorithm
of Paterson-Pippinger-Schrnhage [20]. The Ford-John-
son [8] sorting algorithm can also be nicely described
(nonrecursively) with the help of binomial trees; the
algorithm first builds a binomial forest, then sorts the
partial order thus obtained through a sequence of re-

310 Communications April 1978
of Volume 21
the ACM Number 4

Fig. 4. The collection {503, 87, 512, 6 !, 908, ! 70, 897, 275, 653, 426} of labels represented as: (a) a "perfect" tournament, (b) the same tournament
"contracted" into a binomial queue F~o.

peated "foldings." The data structure presented here can
actually be used for implementing the sorting algorithm
in time O(nlogn). An efficient machine coding of binary
search (see [251) uses binomial search trees.

3. Binomial Queues

A priority queue Q = {(pl, X1) (v~, X~)} consist-
ing of n items is represented by a labeled binomial forest
F~: Each item (name, label) is stored in a different node
of F~ subject to the constraint that, if node i is a child of
n o d e j in F~, the labels Xi and Xj of the items respectively
associated must satisfy Xi -> Xj. This is called the "heap
condition" by Knuth [17], and it arises through the
natural "contraction" of perfect tournaments as shown
in Figures 4(a) and 4(b). Such a labeled binomial forest
will be called a binomial queue.

We now describe how to perform the UNION of two
binomial queues F~ and Fn,. First consider the special
case n = n' = 2 i, in which each priority queue is repre-
sented by a single labeled binomial tree, say Bi for Fn
and Bi' for Fn,. The resulting forest Bi+~ = UNION (Bi,
Bi') also consists of a single labeled binomial tree with
2 i+1 = n + n' nodes, defined as

Bi+ 1 =

if the label of the root of B{ is smaller than the corre-
sponding label in Bi and

Bi+l ~

311

otherwise in order to preserve the heap condition. We
refer to this operation as couplings, and the general
UNION procedure is a sequence of couplings.

For treating the general case where n and n' may be
arbitrary, it is convenient to use an analogy with the
ordinary scheme for the binary addition of n and n'. The
UNION proceeds from low order bits to high order bits;
i.e. it treats the binomial trees composing Fn and Fn, in
order of increasing size.

At each step of the algorithm a carry is propagated;
the initial carry is empty, and the carry into the ith step
for i > 0 is either empty or is a labeled binomial tree Bi.
There are three operands at each step of the algorithm
which play identical roles; each operand is either empty
or a labeled binomial tree Bi. One of the operands is the
carry, and the other two are the ith components of F~
and F~, respectively. If all three operands are empty, the
ith component of the result UNION (Fn, F~,) is empty, as
is the carry propagated to the next step. If exactly one
operand is nonempty, it constitutes the ith component of
the result, and the carry is empty. If two operands are
nonempty, they are coupled according to the procedure
described earlier in order to constitute the (i+ 1)th carry;
the / th component of the result is empty. When all three
operands are nonempty, one of them arbitrarily consti-
tutes the / th component of the result, and the remaining
two are coupled in order to form the carry. The proce-
dure starts at the Oth step and stops when either F~ or
F~, has been exhausted and no carry is propagated any
further. The algorithm is pictured with n = 7 and n' = 5
(Figure 5).

By considering a single item as constituting an F~
binomial queue, INSERT can be treated as a special case
of UNION. A forest Fn is naturally constructed as the

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 5. (a) Binary addition of 7 and 5. (b) Scheme for UNION (/77, /;'5). (C) Actual example.

CARRY

result of a sequence of n INSERT operations. The number
of comparisons required by this construction is equal, on
the one hand, to the number of carries propagated in the
addition 1 + 1 + --- + 1 (n times), and, on the other
hand, to the number of edges in the graph of Fn. If p(n)
denotes the number of ones in the binary decomposition
of n, this last number is clearly equal to n - ~n) . It
follows that F,~ is constructed in n - p(n) comparisons,
which is O(n). As for UNION (n, n'), exactly i,(n) + v(n')
-- v(n + n') comparisons are required, which is O(log(n
+ n')).

In order to find the minimal label of F,, we merely
have to explore the roots of the binomial trees composing
F, and keep the name of a node having minimal label
among these. This involves ~,(n) - 1 comparisons, which
is O(log n).

In many applications, DELETE is restricted to extract-
ing the item m found by MIN. Let Bi be the labeled
binomial tree in Fn of which m is the root. We first
remove B~ from F~, thus forming a labeled binomial
forest F~, with n, = n - 2i; Then the root of Bi is cut. As
we can see from Figure 2, what remains is a "complete"
forest Fn 2 with n2 = 2 ~ - 1. One then calls UNION
(F,p Fn2) in order to restore F,_, in O(log n) compari-
sons again. This procedure is described in the example
shown in Figure 6.

If the item m to be removed by DELETE is not the

312

root of one of the components of F,, the algorithm is
slightly more complex. First, we determine the compo-
nent of F, in which m lies, say Bi. As before, we remove
Bi, thereby forming Fn, with n, -- n - 2 i. We then
consider

B i =

If m is in B~-I, we start constructing F, 2 = {B~_,} and
decompose B i - 1 by the same technique; otherwise, we
further decompose Br-1 and let Fn2 include 6u~_1. This
continues until m becomes the root of the subtree B i to
be decomposed. It is then "cut" from Bj, thus leaving a
complete FV_,, which is added to the binomial queue
F,~ = { Bi - , , Bi-2 Bj} already constructed in order to
form a complete F2~-1. This forest is then merged with
Fn, by using the UNION procedure in order to construct
the resulting F~-I. This algorithm is illustrated by an
example in Figure 7.

As for our last primitive, UPDATE, the obvious way
to realize it is to perform DELETE then INSERT in se-
quence. This requires O(logn) operations for each UP-
DATE. If we have to service an arbitrary sequence of
primitive operations in which MIN is required less often
than UPDATE and DELETE, and UPDATE only causes
labels to increase, there is a better way to proceed. The

Communications April 1978
of Volume 2 I
the ACM Number 4

Fig. 6. (a) Labeled Ft~. (b) Broken up into an F4 and an F7 after re-
moval of 61. (c) Fit = UNIOt~ (F4,/77) reconstituted.

F n =

Fig. 7. (a) Labeled Fm (b) Broken up into an /74 and an /77 after
removal o f 170. (c) F~ = Ur~lON (F4, FT) reconstituted.

F n =

F n _ I =

procedure UPDATE does not attempt to restore the struc-
ture, but merely changes the label and marks the node.
The DELETE procedure proceeds in the same way, chang-
ing the label to, say, + o0. The algorithm for MIN then
becomes more complicated; it explores all binomial trees
in the forest Fn until finding unmarked nodes on all
paths from the root of the tree to the leaves; this cuts
some subtrees and the forest is then reconstructed by
merging all these subtrees together with the marked
nodes having labels different from + oo. If # marked
nodes are met, it follows (see [25]) from the properties
described in Section 2 that the number of trees cut is a
most #log (n/#). If we consider an arbitrary sequence of
12 INSERT o r UNION, U U P D A T E o r DELETE, and m MIN,

an elementary analysis (see [25] again) shows that such
a sequence is treated in at most O(nlogn) + O(u) +
O(ulog (nm/u)) operations, which is better than the
naive method for m -< u.

Yet another way of treating UPDATE, when labels can
only decrease, is described in [14].

4. Implementation of Binomial Forests as Binary Trees

Although the above discussion is an adequate pres-
entation of the priority queue primitives for a very
abstract machine model (decision trees for example), it
does not indicate how to actually code these algorithms
on a digital computer. One still has to solve some prob-
lems, the first of which concerns the machine represen-
tation of labeled binomial forests.

313

For this purpose, we represent binomial forests as
binary trees through the well known "natural corre-
spondence" described in [16]: Each node has fields llink
and rlink such that llink points to the leftmost child of
the node and rlink to the node's right sibling. This leaves
some freedom for defining a node's right sibling. For the
purpose of the UNION procedure, it is crucial to link
small trees to larger siblings on the top level, i.e. for
nodes having no parent, and to link large trees to smaller
siblings on lower levels, as shown in Figure 8.

We can now give a formal description of our algo-
rithms in an Algol-like language. Following Knuth
[16], we represent a binary tree by three arrays INFO,
LLINK, and RLINK containing, respectively, the label,
llink, and rlink of each node. The value 0 represents an
empty pointer.

We first describe the UNION procedure:

proc ONION (RI, NI , R2, N2) ---, (R3, N3):
{This procedure merges the two binomial queues F 1 and F z, yielding
F 3 for result. Each F i is represented as a binary tree; Ri is a pointer
to its root, and Ni represents the number of elements in F i. The
initial carry C is zero. Variable RES points to the part o f F 3 being
currently constructed. Location RmNK[0] is used to keep R3 and thus
should be available upon calling the procedure.}

(N3, C, RES) ~ (NI + N2, 0~0);
while (min(Nl, N2) # 0) V (C ~ 0)
do NEXTBIT; (NI , N2) ~ ([N1/2], iN2/21) od;
RLINK[RES] *-- if NI ~ 0 then R1 else R2 fi;
R3 *-- RLINK[0]

endproc UNION.

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 8. (a) Binomial queue Fl0. (b) Same Fl0 as a binary tree. (c)
Possible machine representation for this binary tree using arrays;
memory cells R and N contain, respectively, a pointer to the root of the
tree and its number of elements.

S

Here NEXTBIT stands for a f ragment of program that
treats the eight possible cases for the carry and the
relevant componen t of F 1 and F2:

macro NEXTBIT"
BITC ~ if C = 0 then 0 else 1 fi;
case (NI rood 2, N2 rood 2, BITe)

000:
001: ((7, RES, RLINK[RES]) ~"- (O, C, C)
O 1 O: PROPRES(R2)
Ol I: PROPCARRY(R2)
100:PROPRES(R1)
101: PROPCARRY(R 1)
110." CONSTRUCTCARRY
1 1 1: PROPRES(RI); PROPCARRY(R2)

endcase
endmacro NEXTmT.

We then have to describe the various macro proce-
dures composing NEXTBIT:

macro eROPRZs(R):
{The number of bits is odd and one of them, namely R, must be added

to the result.}
(R, RES, RLINK[RES]) ~ (RLINK[R], R, R)

endmacro PROPRES.
macro PROPCARRY(R):
{Bit R must be added to the carry and the carry propagated.}
if INFO[R] < INFO[C]

then (C, R, LLINK[R], RLINK[C]) ~ (R, RLINK[R], C, LLINK[R])
else (R, LLINK[C], RLINK[R]) ~-- (RLINK[R], R, LLINK[C])

fi
endmacro PROPCARRY.

Note that our mult iple assignments are performed in
parallel, which can also be achieved sequential ly with
the help of extra temporary storage locations.

m a c r o CONSTRUCTCARRY:
{Bits RI and R2 are on and a carry must be constructed.)
if INFO[R 1] < INFO[R2]

then (C, Rl, R2, LLINK[RI], RUNK[R2]) *-- (Rl. RLI~K[RI],
RLINK[R2], R2, LLINK[Ri])

314

else (C, R2, RI, LLINK[R2], RLINK[RI]) +'- (R2, RLINK[R2],
RLINK[RI], R1, LLINK[R2])

fl
endmacro CONSTRUCTCARRY.

This completes the description of UNION. We omit
the description of the procedure MIN, which is straight-
forward. (If very f requent uses of MIN are requested, we
can keep the value of the mi n i ma l label in a special
register.)

As for DELETE, we simply treat EXTRACTMIN, where
the e lement having least label is first found then re-
moved. (The DELETE procedure, for which we give no
formal code, is very similar. A little compl icat ion arises
from the necessity of keeping and upda t ing upward
parent links.)

proc EXTRACTMIN(R, N) --, (R', N'):
{This procedure extracts from the nonempty labeled binomial forest
F the element having minimal label. The resulting forest F' is
obtained by merging two forests F t and F 2 which we first construct.}
(M, PRED, P, S) *--(R, 0, R, RLINK[R]);
while S ~ 0
do if tNFO[S] < INFo[M] then (M, PRED) *-- (S, P) fi;

(S, P) ~-- (RLINK[S], S)
od {INFO[M] is the minimal label in F.}
(R1, NI) ~-- CONSTRUCT(LLINK[M]); N2 +-- N - NI - 1;
if PRED = 0 then R2 ~-- RLINK[M] else (R2, RLINK[PRED]) ~-- (R,

RLINK[M]) ~;
(R', N') ~- UNION(RI, NI, R2, N2)

endproc EXTRACTM~N.

The procedure EXTRACTMIN uses CONSTRUCT,
which t ransforms the b inary tree representat ions of a Bp

into the b inary tree representat ion of the complete forest

F2p-~ obta ined by removing the root of Bp; essentially,
this is achieved jus t by reversing a list.

macro CONSTRUCT(RAC) --~ (RN, N):
if RAC = 0

then (R, N) . .- (0, 0)
else (R, succ, RLINK[RAC], P) ~--(SAC, RLINK[RAC], 0, l);

while succ # 0
do (R, succ, RLINK[SUCC], P) ~-

(succ, RL1NK[SUCC], R, 2 X P)
od;N~-2 × P - 1

fl
endmacro CONSTRUCT.

Received June 1976; revised April 1977

References
1. Adel'son-Vel'skii, G.M., and Landis, Y.M. An algorithm for the
organisation of information. Dokl. Akad. Nauk. SSSR 146, (1962),
263-266.
2. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.
3. Brown, M.R. Implementation and analysis of binomial queue
algorithms. (to appear in SICOMP).
4, Cberiton, D., Tarjan, R.E., Yao, A.C. Finding minimum
spanning trees. Res. Rep. Dept. Comptr. Sci. Stanford U., Stanford,
Calif., 1975; also S1AMJ. Comptng. 5, 4 (Dec. 1976), 724-742.
5, Crane, C.A. Linear lists and priority queues as balanced binary
trees. Rep. Stan-CS-72-259, Dept. Comptr. Sci., Stanford U.,
Stanford, Calif., 1972.
6. Fischer, M.J. Efficiency of equivalence algorithms. In Complexity
of Computer Computations, R.E. Miller and J.W. Thatcher, Eds.,
Plenum Press, New York, 1972, pp. 158-168.

Communications April 1978
of Volume 21
the ACM Number 4

7. Floyd, R.W. Algorithm 245. Treesort 3. Comm. ACM 7, 12 (Dec.
1964), 701.
8. Ford, L.R., and Johnson, S.M. A tournament problem. Amer.
Math. Monthly 66 (1959), 387-389.
9. Fran~.on, J. Representation d'une file de priorit~s par un arbre
binaire. Rapport, Dept. Math., U. de Strasbourg, 1975.
10. Gentleman, W.M. Row elimination for solving sparse linear
systems and least squares problems. Dundee Biennial Conf. on
Numer. Anal., 1975.
I1. Gormet, G.H. Heaps applied to event driven mechanisms. Comm.
ACM 19, 7 (July 1976), 417--418.
12. Gonnet, G.H., and Rogers, L.D. An algorithmic and complexity
analysis of the heap as a data structure. Res. Rep. CS 75-20, U. of
Waterloo, Waterloo, Canada, 1975.
13. Johnson, D.B. Algorithms for shortest paths. Ph.D. Th., Cornell
U., Ithaca, N.Y., 1973.
14. Johnson, D.B. Priority queues with update and finding minimum
spanning trees. Tech. Rep. 170, Penn. State U., University Park, Pa.,
1975.
15. Jonassen, A., and Dahl, O.J. Analysis of an algorithm for priority
queue administration. BIT 15 (1975), 409-422.
16. Knuth, D.E. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1968.
17. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
18. Knuth, D.E. Selected Topics in Computer Science. Lecture Notes
Series, Inst. Math. U. of Oslo, 1973.
19. Malcolm, M.A., and Simpson, R.B. Local versus Global
Strategies for Adaptative Quadrature. A CM Trans. Math. Software, 1,
2 (June 1975), 129-146.
20. Paterson, M., Pippcnger, N., Schfnhage, A. Finding the median.
Theory Comp. Rep. no. 6, U. of Warwick, Coventry, England, 1975.
21. Porter, T., and Simon, I. Random insertion into a priority queue
structure. Rep. Stan-Cs-74-460, Dept. Comptr. Sci., Stanford U.,
Stanford, Calif., 1974.
22. Prim, R. C. Shortest connection networks and some
generalizations. Bell Syst. Tech. J. 36, 6 (1957), 1389-1401.
23. van Emde Boas, B.P., Kaas, R., and Zijlstra, E. Design and
implementation of an efficient priority queue. Math. Centrum Rep.
ZW 60/75, Amsterdam, 1975.
24. Vaucher, J.G., and Duval, P. A comparison of simulation event
list algorithms. Comm. ACM 18, 4 (April 1975), 223-230.
25. Vuillemin, J. Structures de donndes. Notes de cours de l'ecole
d'&6, CEA-EDF-IRIA, 1975.
26. Williams, J.W.J. Algorithm 232. Heapsort. Comm. ACM 7, 6
(June 1964), 347-348.
27. Wyman, F.P. Improved Event-Scanning Mechanisms for Discrete
Event Simulation. Comm. ACM 18, 6 (June 1975), 350-353.

P r o g r a m m i n g
Techn iques

S. L. G r a h a m , R. L. Rivest
Edi tors

Economical Encoding
of Commas Between
Strings
S. Even
Technician-Israel Institute of Technology
M. Rodeh
IBM Israel Scientific Center

A method for insertion of delimiters between
strings without using new symbols is presented. As the
lengths of the strings increase, the extra cost, in terms
of prolongation, becomes vanishingly small compared
to the lengths of the strings.

Key Words and Phrases: string transmission,
delimiters, commas, encoding of the integers

CR Categories: 3.57, 3.81, 5.6

1. Introduction

W h e n represen t ing or t ransmi t t ing a cont iguous
sequence of strings of varying lengths, a t echn ique is
needed for indicat ing the boundar i e s of successive
strings. The most na tura l me thod is to inser t a special
de l imi t ing character , hereaf te r called a c o m m a , be-
tween the strings. Wi th this new character added to
the a lphabe t , the r ep resen ta t ion of the strings becomes
longer by a mult ipl icat ive cons tant greater than 1. By
a simple encoding , this effect can be min imized bu t
no t complete ly e l imina ted .

A n a l ternat ive m e t h o d is to place before each str ing
a code word which specifies the str ing's length . If the
length of the strings is b o u n d e d , then we can encode it
by using a fixed n u m b e r of a lphabet letters. However ,
if most strings are much shorter than the b o u n d , then
an unnecessary waste is in t roduced . In the absence of
such a b o u n d , the m e t h o d is not applicable at all.

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.

Authors' present addresses: S. Even, Department of Computer
Science, Technion, Haifa, Israel; M. Rodeh, IBM Israel Scientific
Center, Technion City, Haifa, Israel.
© 1978 ACM 0001-0782/78/0400-0315500.75

315 Communications April 1978
of Volume 21
the ACM Number 4

