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A data structure is described which can be used for 
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I. Introduction 

In order to design correct and efficient algorithms for 
solving a specific problem, it is often helpful to describe 
our first approach to a solution in a language close to 
that in which the problem is formulated. One such 
language is that of set theory, augmented by primitive 
set manipulation operations. Once the algorithm is out- 
lined in terms of  these set operations, one can then look 
for data structures most suitable for representing each of  
the sets involved. This choice depends only upon the 
collection of primitive operations required for each set. 
It is thus important to establish a good catalogue of  such 
data structures. A summary of  the state of  the art on this 
question can be found in [2]. In this paper, we add to 
this catalogue a data structure which allows efficient 
manipulation of  priority queues. 
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A priority queue is a set; each element of  such a set 
has a name, which is used to uniquely identify the 
element, and a label or priority drawn from a totally 
ordered set. Elements of  the priority queue can be 
thought of  as awaiting service, where the item with the ~ 
smallest label is always to be served next. Ordinary 
stacks and queues are special cases of  priority queues. 

A variety of  applications directly require using prior- 
ity queues: job scheduling, discrete simulation languages 
where labels represent the time at which events are to 
occur, as well as various sorting problems. These are 
discussed, for example, in [2, 3, 5, 11, 15, 17, 24]. Priority 
queues also play a central role in several good algorithms, 
such as optimal code constructions, Chartre's prime 
number generator, and Brown's power series multipli- 
cation (see [16] and [17]); applications have also been 
found in numerical analysis algorithms [10, 17, 19] and 
in graph algorithms for such problems as finding shortest 
paths [2, 13] and minimum cost spanning tree [2, 4, 25]. 

Typical applications require primitive operations 
among the following five: INSERT, DELETE, MIN, UP- 
DATE, and UNION. The operation INSERT (name, label, 
Q) adds an element to queue Q, while DELETE (name) 
removes the element having that name. Operation MIN 
(Q) returns the name of  the element in Q having the least 
label, and UPDATE (name, label) changes the label of  the 
element named. Finally, UNION (Q1, Q2, Q3) merges into 
Qa all elements of  Q1 and Q2; the sets Q1 and Q2 become 
empty. In what follows, we assume that names are 
handled in a separate dictionary [2, 17] such as a hash- 
table or a balanced tree. If  deletions are restricted to 
elements extracted by MIN, such an auxiliary symbol 
table is not needed. 1 

The heap, a truly elegant data structure discovered 
by J. W. Williams and R. W. Floyd, handles a sequence 
of  n primitives INSERT, DELETE, and MIN, and runs in 
O(nlogn) elementary operations using absolutely mini- 
mal storage [17]. For applications in which UNION is 
necessary, more sophisticated data structures have been 
devised, such as 2-3 trees [2, 17], leftist trees [5, 17], and 
binary heaps [9]. 

The data structure we present here handles an arbi- 
trary sequence of  n primitives, each drawn from the five 
described above, in O(nlogn) machine operations and 
O(n) memory cells. It also allows for an efficient treat- 
ment of  a large number of  updates, which is crucial in 
connection with spanning tree algorithms: Our data 
structure provides an implementation (described in 
[25]) of  the Cheriton-Tarjan-Yao [3] minimum cost span- 
ning tree algorithm which is much more straightforward 
than the original one. 

The proposed data structure uses less storage than 
leftist, AVL, or 2-3 trees; in addition, when the primitive 
operations are carefully machine coded from the pro- 
grams given in Section 4, they yield worst case running 
times which compare favorably with those of  their corn- 

We-g'gsume here that indexing through the symbol table is done 
in constant time. 
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Fig. 1. Binary numbering of  B4. 
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petitors. (A detailed analysis of the algorithms is given 
by Brown [3].) 

Besides these technical advantages, we feel the data 
structure to be interesting in itself because of its concep- 
tual simplicity and of the connections it establishes 
among various data manipulation problems. 

2 .  B i n o m i a l  T r e e s  a n d  F o r e s t s  

We describe here the underlying combinatorial struc- 
ture, called binomial trees. These are defined inductively 
by: 

Bo = 0 and Bp+l = ~  for p>O. 

Thus B 2 = , and B 3 = ~  

for example. In order to discover some of the many 
combinatorial properties of binomial trees, Knuth [18] 
suggests that we first label the nodes of a Bp tree in post- 
order, starting at zero, and then associate with each node 
the binary representation of its label (Figure 1). From 
this numbering, it is easy to establish that 
- -  each Bp has 29 nodes; 
- -  there are (~) nodes at depth k in Bp which correspond 

to the various sequences o f p  bits having exactly k 
zeros; 

- -  the maximum depth of a node in Bp is p; 
- -  the number of children of a node is equal to the 

number of l 's following the last 0 in its binary 
numbering; leaves thus correspond to even numbers; 

- -  in Bp there is exactly one node, the root, having p 
children; for 0 _-_ k < p  there are 2 p-k-1 nodes having 
k children. 

There are many ways of drawing Bp; in particular see 
Figure 2. 

In order to use binomial trees for representing sets 
whose number n of  elements is not always a power of 
two, we consider the binary decomposition n = ~,i~ biT, 
with bi E {0, 1 }, of the number n and define a binomial 

fores t  F ,  o f  order n as a finite collection of binomial trees, 
one Bi for each 1 in the binary decomposition of n. In 
symbols, Fn = {Bili >-- O, bi = 1, n = ~,i~o bi2i}; we define 
the /th component o f  F,  to be Bi if bi = 1 and empty 
otherwise. For example, (12)10 = (1100)2; thus F~2 = (B3, 
B2}. The first component of F12 is empty and its third is 
B3. Figure 3 shows some small binomial forests. 

Binomial trees and forests appear in various data 
manipulation problems. They are used by Fisher [6] in 
the worst case analysis of a simple data structure for 
manipulating disjoint set unions (see also [18]). They 
play a crucial role in the linear time median algorithm 
of  Paterson-Pippinger-Schrnhage [20]. The Ford-John- 
son [8] sorting algorithm can also be nicely described 
(nonrecursively) with the help of  binomial trees; the 
algorithm first builds a binomial forest, then sorts the 
partial order thus obtained through a sequence of re- 
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Fig. 4. The collection {503, 87, 512, 6 !, 908, ! 70, 897, 275, 653, 426} of  labels represented as: (a) a "perfect" tournament, (b) the same tournament 
"contracted" into a binomial queue F~o. 

peated "foldings." The data structure presented here can 
actually be used for implementing the sorting algorithm 
in time O(nlogn). An efficient machine coding of  binary 
search (see [251) uses binomial search trees. 

3. Binomial Queues 

A priority queue Q = {(pl, X1) . . . . .  (v~, X~)} consist- 
ing of  n items is represented by a labeled binomial forest 
F~: Each item (name, label) is stored in a different node 
of  F~ subject to the constraint that, if node i is a child of  
n o d e j  in F~, the labels Xi and Xj of  the items respectively 
associated must satisfy Xi -> Xj. This is called the "heap 
condition" by Knuth [17], and it arises through the 
natural "contraction" of  perfect tournaments as shown 
in Figures 4(a) and 4(b). Such a labeled binomial forest 
will be called a binomial queue. 

We now describe how to perform the UNION of  two 
binomial queues F~ and Fn,. First consider the special 
case n = n' = 2 i, in which each priority queue is repre- 
sented by a single labeled binomial tree, say Bi for Fn 
and Bi' for Fn,. The resulting forest Bi+~ = UNION (Bi, 
Bi') also consists of  a single labeled binomial tree with 
2 i+1 = n + n' nodes, defined as 

Bi+ 1 = 

if  the label of  the root of  B{ is smaller than the corre- 
sponding label in Bi and 

Bi+l ~ 
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otherwise in order to preserve the heap condition. We 
refer to this operation as couplings, and the general 
UNION procedure is a sequence of  couplings. 

For treating the general case where n and n' may be 
arbitrary, it is convenient to use an analogy with the 
ordinary scheme for the binary addition of  n and n'. The 
UNION proceeds from low order bits to high order bits; 
i.e. it treats the binomial trees composing Fn and Fn, in 
order of  increasing size. 

At each step of  the algorithm a carry is propagated; 
the initial carry is empty, and the carry into the ith step 
for i > 0 is either empty or is a labeled binomial tree Bi. 
There are three operands at each step of  the algorithm 
which play identical roles; each operand is either empty 
or a labeled binomial tree Bi. One of  the operands is the 
carry, and the other two are the ith components of  F~ 
and F~, respectively. If  all three operands are empty, the 
ith component of  the result UNION (Fn, F~,) is empty, as 
is the carry propagated to the next step. If  exactly one 
operand is nonempty, it constitutes the ith component of  
the result, and the carry is empty. If  two operands are 
nonempty, they are coupled according to the procedure 
described earlier in order to constitute the (i+ 1 )th carry; 
the / th  component of  the result is empty. When all three 
operands are nonempty, one of  them arbitrarily consti- 
tutes the / th  component of  the result, and the remaining 
two are coupled in order to form the carry. The proce- 
dure starts at the Oth step and stops when either F~ or 
F~, has been exhausted and no carry is propagated any 
further. The algorithm is pictured with n = 7 and n' = 5 
(Figure 5). 

By considering a single item as constituting an F~ 
binomial queue, INSERT can be treated as a special case 
of  UNION. A forest Fn is naturally constructed as the 
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Fig. 5. (a) Binary addition of 7 and 5. (b) Scheme for UNION (/77, /;'5). (C) Actual example. 

CARRY 

result of  a sequence of  n INSERT operations. The number 
of  comparisons required by this construction is equal, on 
the one hand, to the number of  carries propagated in the 
addition 1 + 1 + --- + 1 (n times), and, on the other 
hand, to the number of  edges in the graph of  Fn. If  p(n) 
denotes the number of  ones in the binary decomposition 
of  n, this last number is clearly equal to n - ~n) .  It 
follows that F,~ is constructed in n - p(n) comparisons, 
which is O(n ). As for UNION ( n, n'), exactly i,(n ) + v(n' ) 
-- v(n + n') comparisons are required, which is O(log(n 
+ n')). 

In order to find the minimal label of  F,, we merely 
have to explore the roots of  the binomial trees composing 
F,  and keep the name of  a node having minimal label 
among these. This involves ~,(n) - 1 comparisons, which 
is O(log n). 

In many applications, DELETE is restricted to extract- 
ing the item m found by MIN. Let Bi be the labeled 
binomial tree in Fn of  which m is the root. We first 
remove B~ from F~, thus forming a labeled binomial 
forest F~, with n,  = n - 2i;  Then the root of  Bi is cut. As 
we can see from Figure 2, what remains is a "complete" 
forest Fn 2 with n2 = 2 ~ - 1. One then calls UNION 
(F,p Fn2) in order to restore F,_, in O(log n) compari- 
sons again. This procedure is described in the example 
shown in Figure 6. 

If  the item m to be removed by DELETE is not the 
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root of  one of  the components of  F,, the algorithm is 
slightly more complex. First, we determine the compo- 
nent of  F,  in which m lies, say Bi. As before, we remove 
Bi, thereby forming Fn, with n, -- n - 2 i. We then 
consider 

B i =  

If  m is in B~-I,  we  start constructing F, 2 = {B~_,} and 
decompose B i - 1  by the same technique; otherwise, we 
further decompose Br-1 and let Fn2 include 6u~_1. This 
continues until m becomes the root of  the subtree B i to 
be decomposed. It is then "cut" from Bj, thus leaving a 
complete FV_,, which is added to the binomial queue 
F,~ = { Bi - , ,  Bi-2 . . . . .  Bj}  already constructed in order to 
form a complete F2~-1. This forest is then merged with 
Fn, by using the UNION procedure in order to construct 
the resulting F~-I. This algorithm is illustrated by an 
example in Figure 7. 

As for our last primitive, UPDATE, the obvious way 
to realize it is to perform DELETE then INSERT in se- 
quence. This requires O(logn) operations for each UP- 
DATE. If  we have to service an arbitrary sequence of  
primitive operations in which MIN is required less often 
than UPDATE and DELETE, and UPDATE only causes 
labels to increase, there is a better way to proceed. The 
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Fig. 6. (a) Labeled Ft~. (b) Broken up into an F4 and an F7 after re- 
moval  of  61. (c) Fit = UNIOt~ (F4,/77) reconstituted. 

F n = 

Fig. 7. (a) Labeled Fm (b) Broken up into an /74 and an /77 after 
removal o f  170. (c) F~ = Ur~lON (F4, FT) reconstituted. 

F n = 

F n _  I = 

procedure UPDATE does not attempt to restore the struc- 
ture, but merely changes the label and marks the node. 
The DELETE procedure proceeds in the same way, chang- 
ing the label to, say, + o0. The algorithm for MIN then 
becomes more complicated; it explores all binomial trees 
in the forest Fn until finding unmarked nodes on all 
paths from the root of  the tree to the leaves; this cuts 
some subtrees and the forest is then reconstructed by 
merging all these subtrees together with the marked 
nodes having labels different from + oo. If  # marked 
nodes are met, it follows (see [25]) from the properties 
described in Section 2 that the number of  trees cut is a 
most #log (n/#).  If  we consider an arbitrary sequence of  
12 INSERT o r  UNION,  U U P D A T E  o r  DELETE,  and m MIN,  

an elementary analysis (see [25] again) shows that such 
a sequence is treated in at most O(nlogn) + O(u) + 
O(ulog (nm/u))  operations, which is better than the 
naive method for m -< u. 

Yet another way of  treating UPDATE, when labels can 
only decrease, is described in [14]. 

4. Implementation of Binomial Forests as Binary Trees 

Although the above discussion is an adequate pres- 
entation of  the priority queue primitives for a very 
abstract machine model (decision trees for example), it 
does not indicate how to actually code these algorithms 
on a digital computer. One still has to solve some prob- 
lems, the first of  which concerns the machine represen- 
tation of  labeled binomial forests. 
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For this purpose, we represent binomial forests as 
binary trees through the well known "natural corre- 
spondence" described in [16]: Each node has fields llink 
and rlink such that llink points to the leftmost child of 
the node and rlink to the node's right sibling. This leaves 
some freedom for defining a node's right sibling. For the 
purpose of  the UNION procedure, it is crucial to link 
small trees to larger siblings on the top level, i.e. for 
nodes having no parent, and to link large trees to smaller 
siblings on lower levels, as shown in Figure 8. 

We can now give a formal description of our algo- 
rithms in an Algol-like language. Following Knuth 
[16], we represent a binary tree by three arrays INFO, 
LLINK, and RLINK containing, respectively, the label, 
llink, and rlink of  each node. The value 0 represents an 
empty pointer. 

We first describe the UNION procedure: 

proc ONION (RI,  NI ,  R2, N2) ---, (R3, N3): 
{This procedure merges the two binomial queues F 1 and F z, yielding 
F 3 for result. Each F i is represented as a binary tree; Ri is a pointer 
to its root, and Ni represents the number  of  elements in F i. The 
initial carry C is zero. Variable RES points to the part o f  F 3 being 
currently constructed. Location RmNK[0] is used to keep R3 and thus 
should be available upon calling the procedure.} 

(N3, C, RES) ~ (NI + N2, 0~0); 
while (min(Nl, N2) # 0) V (C ~ 0) 
do NEXTBIT; (NI ,  N2) ~ ([N1/2],  iN2/21) od; 
RLINK[RES] *-- if NI ~ 0 then R1 else R2 fi; 
R3 *-- RLINK[0] 

endproc UNION. 
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Fig. 8. (a) Binomial queue Fl0. (b) Same Fl0 as a binary tree. (c) 
Possible machine representation for this binary tree using arrays; 
memory cells R and N contain, respectively, a pointer to the root of the 
tree and its number of elements. 

S 

Here NEXTBIT stands for a f ragment  of  program that  
treats the eight possible cases for the carry and  the 
relevant  componen t  of  F 1 and  F2: 

macro NEXTBIT" 
BITC ~ if C = 0 then 0 else 1 fi; 
case (NI rood 2, N2 rood 2, BITe) 

000: 
001: ((7, RES, RLINK[RES]) ~"- (O, C, C) 
O 1 O: PROPRES(R2) 
Ol I: PROPCARRY(R2) 
100:PROPRES(R1 ) 
101: PROPCARRY(R 1 ) 
110." CONSTRUCTCARRY 
1 1 1: PROPRES(RI ); PROPCARRY(R2) 

endcase 
endmacro NEXTmT. 

We then  have to describe the various macro proce- 
dures composing NEXTBIT: 

macro eROPRZs(R): 
{The number of bits is odd and one of them, namely R, must be added 

to the result.} 
(R, RES, RLINK[RES]) ~ (RLINK[R], R, R) 

endmacro PROPRES. 
macro PROPCARRY(R ): 
{Bit R must be added to the carry and the carry propagated.} 
if INFO[R] < INFO[C] 

then (C, R, LLINK[R], RLINK[C]) ~ (R, RLINK[R], C, LLINK[R]) 
else (R, LLINK[C], RLINK[R]) ~-- (RLINK[R], R, LLINK[C]) 

fi 
endmacro PROPCARRY. 

Note that  our  mult iple  assignments  are performed in  
parallel,  which can also be achieved sequential ly  with 
the help of  extra temporary  storage locations. 

m a c r o  CONSTRUCTCARRY: 
{Bits RI and R2 are on and a carry must be constructed.) 
if INFO[R 1 ] < INFO[R2] 

then (C, Rl, R2, LLINK[RI], RUNK[R2]) *-- (Rl. RLI~K[RI], 
RLINK[R2], R2, LLINK[Ri]) 
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else (C, R2, RI, LLINK[R2], RLINK[RI]) +'- (R2, RLINK[R2], 
RLINK[RI], R1, LLINK[R2]) 

fl 
endmacro CONSTRUCTCARRY. 

This  completes the description of  UNION. We omit  
the description of  the procedure MIN, which is straight- 
forward. (If  very f requent  uses of  MIN are requested, we 
can keep the value of  the mi n i ma l  label  in  a special 
register.) 

As for DELETE, we simply treat EXTRACTMIN, where 
the e lement  having least label  is first found  then re- 
moved. (The DELETE procedure, for which we give no  
formal  code, is very similar. A little compl icat ion arises 
from the necessity of  keeping and  upda t ing  upward  
parent  links.) 

proc EXTRACTMIN(R, N) --, (R', N'): 
{This procedure extracts from the nonempty labeled binomial forest 
F the element having minimal label. The resulting forest F'  is 
obtained by merging two forests F t and F 2 which we first construct.} 
(M, PRED, P, S) *--(R, 0, R, RLINK[R]); 
while S ~ 0 
do if tNFO[S] < INFo[M] then (M, PRED) *-- (S, P) fi; 

(S, P) ~-- (RLINK[S], S) 
od {INFO[M] is the minimal label in F.} 
(R1, NI ) ~-- CONSTRUCT(LLINK[M]); N2 +-- N - NI - 1; 
if PRED = 0 then R2 ~-- RLINK[M] else (R2, RLINK[PRED]) ~-- (R, 

RLINK[M] ) ~; 
(R', N') ~- UNION(RI, NI, R2, N2) 

endproc EXTRACTM~N. 

The  procedure EXTRACTMIN uses CONSTRUCT, 
which t ransforms the b inary  tree representat ions of  a Bp 

into the b inary  tree representat ion of  the complete  forest 

F2p-~ obta ined  by removing the root of  Bp; essentially, 
this is achieved jus t  by reversing a list. 

macro CONSTRUCT(RAC) --~ (RN, N): 
if RAC = 0 

then (R, N)  . .-  (0, 0)  
else (R, succ, RLINK[RAC], P) ~--(SAC, RLINK[RAC], 0, l ); 

while succ # 0 
do  (R, succ,  RLINK[SUCC], P) ~- 

(succ,  RL1NK[SUCC], R, 2 X P) 
od;N~-2  × P -  1 

fl 
endmacro CONSTRUCT. 

Received June 1976; revised April 1977 
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1. Introduction 

W h e n  represen t ing  or t ransmi t t ing  a cont iguous  
sequence  of strings of varying lengths,  a t echn ique  is 
needed  for indicat ing the boundar i e s  of successive 
strings. The  most  na tura l  me thod  is to inser t  a special 
de l imi t ing  character ,  hereaf te r  called a c o m m a ,  be- 
tween the strings. Wi th  this new character  added  to 
the a lphabe t ,  the r ep resen ta t ion  of the strings becomes  
longer  by a mult ipl icat ive cons tant  greater  than  1. By 
a simple encoding ,  this effect can be min imized  bu t  
no t  complete ly  e l imina ted .  

A n  a l ternat ive  m e t h o d  is to place before each str ing 
a code word which specifies the str ing's  length .  If the 
length of the strings is b o u n d e d ,  then we can encode  it 
by using a fixed n u m b e r  of a lphabet  letters.  However ,  
if most  strings are much  shorter  than  the b o u n d ,  then  
an unnecessary  waste is in t roduced .  In  the absence of 
such a b o u n d ,  the m e t h o d  is not  applicable at all. 
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