
Unix Tools

Markus Kuhn

Original notes by A C Norman

Part IB

largeprint edition

1 Introduction

This course is called “Unix Tools”, and this is because the various sup-

port utilities that it discusses originated with Unix and fit in with a philoso-

phy that was made explicit from the early days of that operating system.

It should however be noted that most of the particular programs or tools

mentioned have been found sufficiently useful by generations of pro-

grammers that versions have been ported to other operating systems,

notably Microsoft Windows, and so whatever platform you use now or

expect to use in the future there is something here that may prove rele-

vant to you. Even when running under Windows it seems proper to refer

to things as “Unix” tools, both for historical reasons and because the

style of interface that these tools provide contrasts quite strongly with

that seen in (say) the Microsoft Visual Studio1.

This course is short and it is also unusual in that no questions on it

will appear on the examination papers at the end of the year. These

two facts may lead to the impression that the department considers the

material covered unimportant or optional. Any such impression is ill-

founded. It is anticipated that techniques mentioned during this course

will be of relevance in later practical work: specifically both the Group

Project this year and your individual project next year. Familiarity with

and competent use of standard tools and techniques can make your

work on these projects significantly more efficient, and all assessment of

practical work are entitled to assume this fluency when judging whether

1The environment within which one influential vendor’s set of native Windows de-

velopment tools reside.

2

the amount of work done was more or less than could be reasonably

expected of you.

These printed lecture notes reflect mostly the content of the original

course given by Arthur Norman with some additions and updates from

the lecturers who have taught it since then. They still complement the

course very nicely but do not aim at covering all topics discussed in the

course. They should therefore be studied in addition to the course pre-

sentation slides that are available on

http://www.cl.cam.ac.uk/teaching/current/UnixTools/

This Web page also has links to further material such as manuals for

some of the discussed tools in an easy to print format as well as links to

related online resources.

I believe that your practical skills will only develop with practical expe-

rience, so I would urge you all to try using each of the tools and tech-

niques mentioned here. I will generally only explain the simple ways of

using each facility, and as you gain confidence it may be that you will

benefit if you deepen your understanding by reading the man pages or

other documentation. Many of the commands will display a concise ‘re-

minder’ of their usage by simply invoking them with the argument -h or

--help. “Info pages” provided for GNU tools can also be useful, and

can be viewed with the info command or in emacs by invoking Ctrl-h

i.

Over the past decade, there have been two attempts to standardise a

minimal common set of classic Unix tools, including the shell. One is

the IEEE 1003.2 POSIX Shell and Utilities specification, the other is

3

the Open Group’s Single Unix Specification. In late 2001, both these

standards have finally been merged into a single one, which can now

be freely accessed online as the Single Unix Specification, Version 3 at

http://www.unix.org/, which is also available in printed form in the

Computer Laboratory’s library (ST.8.7).

A thread I hope will run through my presentation is that the tools dis-

cussed are not totally arbitrary in their design (despite some of the initial

impressions that they give). There is at least a part of their construction

that concerns itself with compatibility of ideas from one tool to the next

and of exploitation of powerful and general computer science fundamen-

tals such as regular expressions. The “Unix philosophy” that I mentioned

earlier is that (ideally) the world would contain a number of tool compo-

nents, each addressing just one problem. Each individual tool would

then be small, easy to learn but completely general in its treatment of

the limited class of problem that it addressed. The Unix approach is

then to solve typically messy real-world problems by combining use of

several such basic tools. In this spirit there will be a small number of

major ideas underlying all the material covered here:

1. Complex tasks are often best solved by linking together several

existing programs rather than be re-inventing every possible low-

level detail of the wheel over again;

2. Regular expressions, seen in the Part IA course as a mathematical

abstraction of the patterns that finite-state machines can process,

generalise to provide amazingly powerful and flexible (if sometimes

obscure-looking) capabilities;

4

3. There should be a smooth transition between the tasks you per-

form one at a time interactively and those that need real programs

written to perform them. The Unix tool tradition is particularly

strong on helping to automate tasks of medium complexity;

4. The first Unix tools originated around 30 years ago at AT&T Bell

Labs when the main input/output devices available were slow and

noisy teletype terminals. At the time, the most convenient software

was the one that could be used with the fewest keystrokes and that

kept the output short and concise. I/O facilities have become far

more sophisticated since then, but the Unix tradition of compact

text command notations remained highly popular among expert

users, not only because it is well suited for automating tasks. The

mouse/menu interfaces pioneered by Xerox and Apple are utterly

admirable for making editors easy to use for the untutored or ca-

sual user. They are also helpful when your main concern is the

visual appearance of a page of text, since they can make it easy

to select a block of text and change its attributes. But for very

many other tasks a keyboard based (vermin free?) approach can

let a short sequence of keystrokes achieve what would otherwise

require much mouse movement and the frequent and distracting

change of focus between mouse and keyboard. The learning ef-

fort required pays off as you are able to get your work done faster.

The topics covered here are somewhat inter-related and so a strictly lin-

ear and compartmentalised coverage would not be satisfactory. I will

thus often refer back to concepts sketched earlier on and flesh out ad-

5

ditional details in examples given later in the course. In four lectures

it must be clear that I can not cover all of the facilities that Unix pro-

vides, and the language perl that I discuss towards the end could of

itself justify a full-length lecture course and a host of associated prac-

tical classes. You must thus be aware that this course is going to be

superficial, and those of you who already count yourselves as experts

are liable to find many of your favourite idioms are not covered. However

the lectures can (I hope) still form a good starting point for those who are

relative Unix beginners, while these notes can be a reminder of what is

available, a modest source of cook-book examples and a reminder of

which parts of the full documentation you might want to read when you

have some spare time.

2 The “Unix shell”

These first few sections will recapitulate on material that you will (mostly)

have come across in the introductions to Unix you had at the start of the

Part IA Java course, or that were mentioned in part of the Operating

Systems thread. Repetition in these notes will help keep this course

self-contained, although the lectures will skim over this information very

rapidly. See [1] for a tolerably concise expansion of what I have included

here.

Part of the Unix design involved making all the functionality supported

by the operating system available as function calls, and making as many

of these calls as possible available to all users. In other words a deliber-

ate attempt was made to arrange that Unix security only needed a very

6

small set of operations to be run as privileged system tasks. Partly as a

demonstration of this, the system ensured that the shell could be written

as an ordinary user-mode program. The shell comprises the fundamen-

tal interface the user sees to Unix: it is the component of Unix that lets

you type in commands which it then executes for you. Many other oper-

ating systems give their shells private and special ways of talking to the

inner parts of the operating system so that it is not reasonable for a user

to implement a replacement.

Two consequences have arisen. The first is that there are many different

Unix shells available. This can be a cause of significant confusion! The

second is that good ideas originally implemented in one of these shells

have eventually found their way (often in slightly different form) into the

others. The result is that the major Unix shells now have a very substan-

tial range of capabilities, and the way in which these are activated has

benefited from a great deal of experimentation and field-testing. The

original Unix shell is known as the Bourne Shell (after Steve Bourne,

who after leaving Cambridge went to Bell Laboratories where his en-

thusiasm for Algol 68 had its effects). The major incompatible shell you

may come across is the C shell, where the “C” is both to indicate that its

syntax is inspired by C, and also (given a Unix tradition of horrible puns)

because one expects to find shells on beaches, so a C-shell is an obvi-

ous thing to talk about. There have been many successors to these two

shells. The one that you are (strongly) encouraged to use here is basi-

cally upwards compatible with the Bourne Shell, and is know as bash,

the Bo(u)rn(e)-Again SHell. bash is part of the excellent GNU reimple-

mentation of the Unix tools, and is available on almost every platform

7

imaginable. Anyone thinking of using a C-shell derivative is advised to

read Tom Christiansen’s article “Csh Programming Considered Harm-

ful” [5] first.

Whenever you are typing in a command at the usual Unix command-

prompt you are talking to your current shell. Also if you put some text in a

file and set the file to have “executable” status (eg by saying chmod +x filename

then entering the name of the file will get the shell to obey the sequence

of commands contained. In such case it is considered standard and

polite to make the first line of the file contain the incantation

#!/bin/sh

where /bin/sh is the full file-name of the shell you are intending to use.

The “#” mark makes this initial line a comment, and the following “!”

and the fact that it is the very first thing in the file mark it as a special

comment used to indicate what should be used to process the file. Some

of the examples given here will be most readily tested interactively while

others will be best put into files while you perfect the lengthy and messy

runes.

Some small and common things that you may have thought of as com-

mands are in fact built into the shell (for instance cd2), particularly those

that change the state of the shell. But the most interesting shell features

relate to ways to run other programs and provide them with parameters

and input data.
2For the purposes of this course I am going to suppose that some of the basic Unix

commands are already familiar. But the suggested textbook will give brief explanations

even if I do happen to mention something that you have not seen or that you have

forgotten about.

8

3 Streams, redirection, pipes

Central to the Unix design is the idea of a stream of bytes. Streams are

the foundation for input and output, and at one (fairly low) level they are

identified by simple small integer identifiers. When a program is started

the shell provides it with three standard streams, with numeric identities

0, 1 and 2. The first of these is standard input, and programs tend to

read data from there if they have nothing better to do. The second is

a place for standard output to be sent, while the third is intended for

error messages. If you start a program without giving the shell more

explicit information it will connect your keyboard so it provides data for

the standard input, and it will direct both of the default output streams to

your screen.

These standard streams can be redirected so that they either access the

filing system or provide communication between pairs of programs. The

importance (for today!) of file redirection is that it means that a program

can be written so that it just reads from its standard input and writes to

its standard output. Using redirection the shell can then cause it to take

data from one file and write its results to another. The program itself

does not have to bother with any file-names or distinctions between files

and the keyboard or screen.

my_program < input_data.file > output_data.file

If >> is used as a redirection operator the new data is appended to the

output file. This can be very useful when executing a sequence of com-

mands:

9

#!/bin/sh

echo "Test run starting" > log.file

date >> log.file

my_program >> log.file

echo "end of test" >> log.file

Two programs can be linked so that the (standard) output from the first is

fed in as the (standard) input to the second. The fact that this is so very

easy to arrange encourages a style where you collect a whole bunch of

small utilities each of which performs just one simple task, and you then

chain them together as pipes to perform some more elaborate process. I

will use this in quite a number of the examples given later in these notes.

One useful program to put in a pipe is tee which passes material straight

from its input to output, but also diverts a copy to a log-file. The following

(not very useful) example uses cat to copy an input file to its standard

output. tee then captures a copy of this to a log file, and passes the

data on to my program for whatever processing is needed.

cat input.file | tee log.file | my_program

A further use of pipes and tee is as follows where the standard output

from a test run is permitted to appear on the screen but a copy is also

diverted to a log file in case detailed examination is called for at a later

date. The output is piped through more to make it possible to read it all

even when it is too long to fit on a single screen. The Unix enthusiast

would point out the power of pipes where the functionalities of both tee

and more are being combined without the need for a messy composite

utility.

10

my_second_program | tee log.file | more

Especially when debugging code it is often important to be able to redi-

rect the error output as well as the regular one. This is one of the areas

where the exact syntax to be used depends on which shell you are us-

ing, and so my use of the Bourne Shell or one of its derivatives does

matter. For such shells the form 2> error.file redirects the standard

error file (descriptor number 2) so that material is sent to the named file.

Its also sometimes useful to be able to redirect standard error to stan-

dard output, so you feed the combined stream into another program.

Again, the exact syntax is shell specific, but the following works for bash

and is quite useful when you’re compiling a program with lots of errors:

make my_program 2>&1 | more

When redirecting standard output and standard error to a file, the order

of the redirections is reversed in some sense. In other words, we write

make my_program >log 2>&1

so that the standard output file descriptor is duplicated after being redi-

rected, whereas if we wanted to do the same thing at the beginning of a

pipeline we would write

make my_program 2>&1 | ...

This is because the redirection of the standard output implied by the pipe

separator is performed before any redirection specified in the commands

composing the pipeline.

11

Likewise, in a shell script it is sometime useful to be able to echo mes-

sages to standard error:

echo 'Arghh! It's all broken!' 1>&2

A final common redirection feature known as ‘Here Documents’ is ac-

tivated using <<. This makes it possible to embed an input document

within a shell script file. After the doubled angle bracket you put some

word, and the standard input to the command activated will then be all

lines form the command input source up to one that exactly matches this

word:

#!/bin/sh

cat << XXX > output.file

line 1 to go in the new file

line 2 to go in the new file

XXX

4 Command-line expansion

When the shell is about to process a command it first performs some

expansion on it. It will interpret some sequences of characters as pat-

terns, and replace them with a list of all the names of files that match

those patterns. As a special and perhaps common case the single char-

acter “*” is a pattern that matches the names of all3 files in the current

3Well all except for the “hidden” file-names that start with a dot . . .

12

directory. For these purposes a sub-directory is just another file. Be-

cause this wild-card expansion is performed by the shell before a com-

mand is executed its effects are available whatever command you are

using. Perhaps a convenient one to try is echo which just prints back its

parameters to you:

echo *

will display a list of the files in the current directory. Of course to achieve

this effect you would normally use ls which lays out the list neatly and

provides lots of jolly options, but use of a pattern means that you can

send the list of file-names to any program, not just to echo. For now the

important components of a pattern are

1. Most characters stand literally for themselves;

2. An asterisk (*) matches an arbitrary string of characters. In file-

name expansion file-names that start with a dot (.) are treated

specially and the wild-card asterisk will not match that initial dot;

3. A question mark (?) matches any single character, again except

for an initial dot;

4. A backslash (\) causes the following character to lose any special

meaning, and so if you need a pattern that matches against an as-

terisk or question mark (or indeed a backslash) one may be called

for;

5. Quotation marks (either single or double) can also be used to pro-

tect special characters. Note that as well as * and ? the Unix shell

13

may be treating > and all sort of other punctuation marks specially,

so in case of doubt use quotation marks or backslash escapes

fairly liberally! Inside single quotation marks (' or ’), all charac-

ters loose their special meaning, whereas inside double quotation

marks (") the characters \, $, and ` keep their special rôles.

In addition to file-name expansion the shell expands commands by per-

mitting reference to environment variables. This is indicated by writing

a variable name preceded by a dollar sign ($). It is also legal to write a

variable reference as ${name} where the braces provide a clear way of

indicating where the variable name ends. There are liable to be quite a

few variables predefined for you, some set up by the shell itself, some

by scripts that are run for you when you log on.

To set a new variable you may write

variable_name=value ; export variable_name

where the use of export causes the variable to be visible not only within

the current shell but also to all programs called by it. A shorthand form

of the above is:

export variable_name=value

The built-in command set displays all variables and their values acces-

sible in the current shell. The command printenv on the other hand

displays only the exported environment variables that can be seen by

any program called from the current shell.

14

A slightly more concrete example shows that with a lot of shell variables

set up, the actual commands that you issue may turn out to be almost

entirely built out of references to variables.

LANGUAGE=java

COMPILER=javac

OPTIONS=

SOURCE=hello_world

$COMPILER $OPTIONS $SOURCE.$LANGUAGE

Especially in script files there is a great deal to be said for establishing

variables to hold the names of compilers that you use and of the options

that must be passed to them, since it makes everything much easier

to alter if you move your programs to a slightly different environment

later on. For instance on various Unix machines that I have used the C

compiler is called sometimes cc, sometimes gcc, and sometimes c89,

maybe ncc and even /opt/EA/SUNWspro/bin/cc! Changing just one

setting of a variable to allow for this is neater than making extensive

edits throughout long scripts.

A rather different but convenient use of variables is to hold the names

of directories. If you often work within a directory with a rather long

name, say /home/acn1/Project/version-1_0_3/source, then you

might set a variable (say SRC) to that long string. Then you can use

$SRC freely on the command line to allow you to select your important

directory or refer to files within it with much less typing that you might

otherwise need. An additional advantage of this strategy is that when

you move on to version 1_0_4 you can just change the one place where

15

you define this variable and now you will naturally access the newer lo-

cation.

Another key-stroke saving tip is to define shell functions that alias other

commands (or sequences of commands). For example:

function m () { more }

function ll () { ls -al }

The same effect could be achieved by creating shell scripts and placing

them on the search PATH, but defining a function is more efficient.

Within a shell script $1, $2, . . . refer to arguments passed when the

script was started, $* expands to a list of all the arguments, while $# is

replaced by the number of arguments provided. Consider a file called

demo that contains

#!/bin/sh

echo Start of $0, called with $# arguments

echo All args: $*

echo Arg 1 = $1

echo Arg 2 = $2

Let's put another comment here.

which also illustrated that “argument zero” will be taken to refer to the

name of the script that is being executed. A use of the above script

might be

demo hah | what I typed in

Start ./demo with 1 args | output from script

16

All args: hah

Arg 1 = hah

Arg 2 = | $2 => empty string

Redirection allows one to send the output from a command to the stan-

dard input of another. Sometimes you may want to incorporate the (stan-

dard) output from one command as part of another command. This is

achieved by writing the first command within $(. . .) or “back-quotes”

(‘. . .‘), which appear in many fonts as grave accents (`. . .`). A sen-

sible example of this in use will be shown later on, but for now I will

illustrate it with

echo "Today is $(date -I)."

Today is 2007-10-11.

5 find and grep

One of the expectations that comes with Unix is that it should be easy

to specify that operations should be performed upon multiple files by

issuing just one command. File-name expansion as described earlier

provides the simplest way of listing a bunch of files to be processed:

sometimes it is useful to have rather more subtle selection and filtering

procedures. The tool find is used when this should be based on the

file’s name and attributes (eg date of last update), while grep inspects

the contents of files.

17

5.1 find

The find command takes two groups of arguments. The first few argu-

ments must be path-names (ie typically the names of directories), and

the subsequent ones are conditions to apply when searching through

the directories mentioned. The conditions that can be used include tests

on the name, creation and modification date, access permissions and

owner of files. A special “condition” -print causes the name of the file

currently being processed4 to be sent to the standard output, and it will

often be shown as the final item on the command-line. Unless combined

using -o which stands for OR all previous conditions must be satisfied if

the -print is to be activated. Conditions may be negated using !.

The conditions -atime, -mtime and -ctime test the access, modifica-

tion or creation times of files. They are followed by an integer. If written

unsigned they accept files exactly that many days old. If it is written with

a + sign they accept files older than that, and a - asks for files younger.

A condition -name is followed by a pattern much like those previously

seen in file-name expansion, and checks the name of the file. You will

normally need to put a backslash before any special characters in the

pattern. There are lots of other options, including ones to execute arbi-

trary programs whenever a file is accepted, but those of you who want

to use them can read the full documentation.

Plausible uses are illustrated in the following examples:

1. List all files that have not been accessed for at least 150 days.

4Some implementations of find have an implicit -print if no other action is spec-

ified, but do not rely on that even if the one that you usually use does it

18

These are obvious candidates for moving to an archive, or com-

pressing or even deleting! Note that by searching in the current

directory (.) even files whose names start with a dot will be listed

here.

find . -atime +150 -print

2. List files that have been created during the last week. File-name

expansion means that the * is turned into a list of all files in the

current directory apart from those whose name starts with dot. Re-

minding oneself of recently created or modified files may be useful

when you want to consider what to back up.

find * -ctime -7 -print

3. Delete all files in the current directory or any sub-directory thereof

if their name end in “.old”. The -i flag to the rm command gets

it to ask the user for confirmation in each case, which makes this

command a little safer to issue. Observe the back-quotes to get the

output from find presented as command-line arguments to the rm

command.

rm -i `find . -name *.old -print`

Alternatively the xargs command could be used to build the call

to rm. This command builds a command from an initial command

name together with whatever it finds on its standard input, and

19

works better than the previous scheme when there are a very large

number of arguments to be passed5:

find . -name *.old -print | xargs rm -i

The alternative

find . -name *.old -exec rm -i {} \;

calls the command rm -i individually for each file found, which

is far less efficient in this particular example but useful for calling

programs other than rm that can handle only one file-name param-

eters at a time. The {} marks where the file name will be inserted

and the semicolon marks the end of the -exec “condition”.

4. Search the current directory and subdirectories for all entries that

are files (excluding directories), and that have the ‘other user’ exe-

cute permission bit set.

find . -type f -a -perm -001 -print

5. List any files in my program directory that are empty and whose

name does not start with a tmp.

find program -size 0 ! -name tmp* -print

5Specifically when you issue an ordinary command, including via the backquote

construction, there may be a limit on the length of the command-line that can be han-

dled. xargs goes to some trouble to invoke programs properly even when they are to

be passed utterly huge numbers of arguments.

20

find is obviously valuable as an interactive tool, perhaps especially for

helping keep your file-space tidy. It is also a valuable building-block in

scripts.

5.2 grep

grep is the first tool that I will describe here that makes serious use of

the Unix interpretation of regular expressions. Its use is

grep <options> <regular-expression> <file(s)>

where the options may include -i to make searches case insensitive

or -c to make it just count the number of matches found in each file.

Normally grep searches through all the files indicated and displays each

line that contains a match for the given regular expression. The option -l

gets you just a list of the names of files within which there are matches.

The sense of the matching can be inverted with the -v option.

You need to be aware that there are related commands called egrep and

fgrep that support different degrees of generality in the pattern match-

ing. Furthermore on some computers you will find that the program

invoked by the grep command has either more or less capability than is

mentioned here. This all arises because matching against very general

regular expressions can be an extremely expensive process so the early

Unix tool-builders decided to provide three different search engines for

trivial (fgrep), typical (grep) and ambitious (egrep) uses. In describing

the regular expression formats that are available I will mark ones that

need egrep with an (†). Given that todays computers are pretty fast you

21

might like to standardise on using egrep to reduce your worry on this

front.

All the real interest and cleverness with grep comes in the regular ex-

pressions that it uses. You will recall the rather spartan definition of

a regular expression used in the Part IA course that introduced them.

Those provided everything that was actually needed to describe any

regular language, but in many realistic cases there is a very great bene-

fit in using additional short-cuts. The following are the more important of

the constructs supported by grep, and as we will see later most of them

are also used with sed and perl as well as various other Unix-inspired

tools.

a,b,. . . In general characters in a regular expression stand for them-

selves. If one of the special characters mentioned below is needed

as an ordinary literal that can be arranged by sticking a backslash

in front of it. Note then (of course) that to get this backslash through

to where grep will find it you may need either quote marks or a yet

further backslash, and things can start to look messy!

A B Concatenating regular expressions works in the obvious man-

ner. An effect is that strings of literal characters can be given and

match words in much the way you might expect;

(A) (†) Where necessary you may use parentheses to group sub-

parts of a complicated expression;

A | B (†) Alternation is written using a vertical bar, which may be read

as OR;

22

A* The star operator applies to the previous character or brack-

eted expression, and matches zero or more instances of it;

A+ (†) Much like the star operator, but accepts one or more in-

stances of things that match the given pattern;

A? (†) Zero or one matches for the given item;

A\{n,m\} From n to m repetitions. Amazingly this construct is only

guaranteed to be available in grep and for egrep you may be able

to achieve the same effect with a pattern that omits the back-

slashes. This is a natural generalisation of the more common

cases that use *, + and ?.

[a-z] This matches a single character, which must be one of the

ones listed within the brackets. Ranges of characters are shown

with a hyphen. If you put a hyphen or close (square) bracket as the

very first character then it is treated as a literal, not as part of the

syntax of the construct. The mark “^” can be used at the start of a

pattern to negate the sense of a match;

. A dot matches any single character except a newline. Thus

.* matches any string of characters not including newlines;

^ and $ Normally patterns are looked for anywhere within a source

line. If you put a ^ at the start of an expression it will only match

at the start of a line, while a $ at the end ensures that matches are

only accepted at the end of a line. Use both if you want to match a

whole line exactly;

23

\< and \> These allow you to insist that a certain place within your pat-

tern matches the start or end of a word. This facility is only sup-

ported in some implementations of grep.

Again I think that the possibilities are best explored via some examples.

Firstly I will give just regular expressions, and then I will build them into

complete commands showing grep in a potentially useful context:

1. A pattern that matches words that start with a capital letter but

where the rest of the characters (if any) are lower case letters and

digits or underscores

[A-Z][a-z0-9_]*

2. The string “#include at the start of a line, apart from possible

leading blanks

^ *#include

3. A line consisting of just the single word END

^END$

4. A line with at least two equals signs on it with at least one character

between them

=.+=

24

5. Find which file (and which line within it) the string class LostIt

is in, given that it is either in the current directory or in one called

extras

grep 'class LostIt' *.java extras/*.java

6. Count the number of lines on which the word if occurs in each file

whose name is of the form *.txt.

grep -c "\<if\>" *.txt

The output in this case is a list showing each file-name, followed by

a colon and then the count of the number of lines which contain the

given string. The use of \<..\> means that if embedded within a

longer word will not be recognised.

7. As above, but then use grep again on the output to select out the

lines that end with :0, ie those which give the names of files that

do not contain the word if. This also illustrates that if no files are

specified grep scans the standard input.

grep -c "\<if\>" *.txt | grep :0\$

8. Start the editor passing it the names of all your source files that

mention some variable, presumably because you want to review

or change just those ones. You could obviously use the same sort

of construct to print out just those files, or perform any other plau-

sible operation on them.

25

emacs `grep -l some_variable *.java`

Note that grep has its own idea of what a “word” is, and so in some

circumstances you may want to write a more elaborate pattern to cope

with different syntax.

Regular expressions that look only at individual lines do not provide a

sufficiently general way of describing patterns to allow you to do real

parsing of programming languages, and as present in grep they do not

even make it easy to distinguish between the body of your program,

comments and the contents of strings. However with a modest amount

of ingenuity they can often let you specify things well enough that you

can search for particular constructions that are interesting to you. Some

people may even go to the extreme of laying out their code in stylised

manners to make grep searches easier to conduct!

6 Exit codes and conditional execution

When commands terminate they exit with an integer value known as a

exit code. In general, non-zero exit codes indicate that some sort of error

or other abnormal condition occurred. The exit code of the most recently

executed foreground command can be accessed via the $? environment

variable. For example:

echo "numbers" | egrep '[0-9]+' >/dev/null ; echo $?

1

echo "123" | egrep '[0-9]+' >/dev/null ; echo $?

0

26

It is possible to make the execution (or not) of commands dependent

on the exit code of previous commands using the || and && operators.

These operators provide short-circuiting OR and AND functions respec-

tively. In the case of A || B, B is executed iff A has a non-zero exit

status. Conversely, for A && B, B is executed iff A has a zero exit code.

For example:

echo "123" | egrep '[0-9]+' >/dev/null && echo "number"

ping -c1 srv1 || ping -c1 srv2 || echo "network down?"

More complex conditional execution can be achieved using if/then/else,

for, while and case statements. They are frequently used in conjunc-

tion with the test command, for which the abbreviation ‘[’ is frequently

used6. test can be used to check the existence, access permissions,

and modification times of files, as well to perform comparisons between

pairs of strings and even integers. For example:

if [-e foo -a -e bar -o $1 = "skip"]

then

echo "files foo and bar both exist, or arg1 == skip"

fi

while [! -r foo]

do echo "foo is not readable" ; sleep 1 ; done

6On many older Unix systems, /usr/bin/[was a filesystem link to test. I’ve

heard at least one apocryphal story of an over zealous sysadmin tidying up /usr/bin/

by deleting ‘spurious’ files such as [. . .

27

case `arch` in

hpux)

PSOPT="-eafl" # UNIX-style 'ps' options for HP/UX

;;

*)

PSOPT="auxw" # BSD-style options are OK for Linux

;;

esac

When using these commands it can be tricky to remember where it is

necessary (or forbidden) to insert command terminators, such as the

newline character or ‘;’. Perhaps, the easiest way to learn more about

these commands is by examining other people’s shell scripts. A good

source is to look in a Unix system’s boot scripts directory. On most Linux

boxes this is /etc/init.d or /etc/rc.d/init.d.

7 Shell script examples

The following section contains a number of fragments from shell scripts

that I find useful. I make no warranty as to their fitness for the purpose

intended, or even that they demonstrate good programming style.

The following is handy for searching a directory hierarchy of ‘C’ source

files looking for a particular identifier. Since all command line arguments

are passed in to grep, it’s possible to ask it to e.g. ignore case using the

-i option.

28

function trawl () {

find . \(-name '*.[chsS]' -o -name '*.[ch]?' \) \

-print | xargs fgrep -n $*

}

This function can be used to send a kill signal to the named process(es):

function killproc() {

pid=`/usr/bin/ps -e |

/usr/bin/grep $1 |

/usr/bin/sed -e 's/^ *//' -e 's/ .*//'`

case "$pid" in [1-9]*) kill -TERM $pid;; esac

}

The following function can be used to add an entry to the tail of the PATH

string, or deletes the entry if it’s already present.

function addpath () {

case $PATH in

${1}) PATH=`echo $PATH | sed "s+:${1}++"` ;;

*) PATH="$PATH:$1" ;;

esac

echo PATH=$PATH

}

29

8 make and project building

When building a serious program you will have a number of different

source files and a collection of more or less elaborate commands that

compile them all and link the resulting fragments together. For large

projects you may have helper programs that get run to generate either

data files or even fragments of your code. When you have edited one

source file you can of course re-build absolutely everything, but that is

obviously clumsy and inefficient. make provides facilities so you can doc-

ument which binary files depend on which sources so that by comparing

file date-stamps it can issue a minimal number of commands to bring

your project up to date.

The information needed has two major components. The first is a cata-

logue of which files depend on which other ones. The second is a set of

commands that can be executed to rebuild files when the things that they

depend upon are found to have changed. By default the utility looks for

this information in a file called Makefile7. In a practical Makefile there

will often be a substantial amount of common material used to make the

actual rules themselves more compact or easier to maintain. In partic-

ular variables will often be used to specify the names of the compilers

used and all sorts of other options. My first sample (or template) Make-

file will be for use with an imaginary programming language called frog.

It imagines that source files are first compiled into object code, and then

linked to form the final application.

7You can also use makefile without a capital. Many Unix users (slightly) prefer

the capitalised version because it results in the file being shown early on in the output

from ls when they inspect the contents of a directory.

30

Makefile for "princess" program

COMPILE = frogc

OPTS = -optimise -avoid_lillypads=yes

LINK = froglinker

princess: crown.o tadpole.o

$(LINK) crown.o tadpole.o -to princess

crown.o: crown.frog

$(COMPILE) $(OPTS) crown.frog

tadpole.o: tadpole.frog

$(COMPILE) $(OPTS) tadpole.frog

test.log: princess test.data

date > test.log

princess < test.data >> test.log

end of Makefile

The above file starts with a comment. Each line that begins with # is

comment. Next it defined three variables, which are supposed to be the

name of the compiler, options to pass to the compiler and the name of

the linker. Separating these off in this way and then referring to them

symbolically makes things a lot easier when you want to change things,

which in the long run you undoubtedly will. Note the use of round paren-

31

theses rather than curly braces to access Makefile variables.

The next few blocks are the key components of the file. Each starts with

a line that has a target file-name followed by a colon, and then a list of

the files upon which it depends. Following that can be a sequence of

commands that should be obeyed to bring the target up to date. These

commands must be inset using a tab character (n.b. not spaces). A line

that does not begin with a tab marks the end of such a sequence of

commands. More or less anywhere it is possible to refer to variables,

and using a dollar sign you can refer to either something defined in the

Makefile itself or to an environment variable exported by the shell. Ad-

ditional variable definitions can be passed down when make is invoked.

To use this you just issue a command such as make test.log, where

you specify one of the declared targets. make works out how many of

the commands need to be executed and so in the above case if nothing

at all had been pre-built it would execute the commands

frogc -optimise -avoid_lillypads=yes crown.frog

frogc -optimise -avoid_lillypads=yes tadpole.frog

froglinker crown.o tadpole.o -to princess

date > test.log

princess < test.data >> test.log

If you do not tell make what to do it updates whatever target is mentioned

first in your Makefile.

A true Unix enthusiast will feel that the above Makefile is too easy to

read and that it does not include enough cryptic sequences of punctu-

ation marks. A slightly better criticism is that as the number of source

32

files for our princess increases the contents of the file will become repet-

itive: it might be nice to be able to write the compilation command se-

quence just once. This is (of course) possible. In fact there will usually

be a whole host of built-in rules and predefined variables (they are typ-

ically called macros in this context) that know about a wide range of

languages, and the most you will ever want to do will be minor customi-

sation on them. To illustrate the power of make I will stick with my imagi-

nary Frog language. To tell make a general rule for making .o files from

.frog ones you include something like the following in your Makefile:

.frog.o:

$(COMPILE) $(OPTS) $<

where the $< is a macro that expands to the name of the source file that

needed recompilation. There are other slightly cryptic macros that can

be used in rules like this. These funny automatically defined macros are

needed so that you can refer to the files that the general file-suffix-based

rule is being used on.

$@ expands to the name of the current target, ie the file that is to be

re-created;

$< expands to the name of the “prerequisite” file, ie the source file that

had been seen to have a newer time-stamp than the target;

$* is like $< except that what it expands to does not include the file

suffix.

By default make stops if one of the commands it tries to run fails, and it

then deletes the associated target. The idea here is that if just one of

33

your source files contains a syntax error then everything will be re-built

up to the stage that that is detected, and things will be left so that a

subsequent invocation of make will try that file again and then continue.

There are in fact a few further things that I ought to mention with regard

to make: if you use file suffixes other than the ones that are initially

known about you may need to declare them and specify their ordering.

In the case being discussed here it would be necessary to specify first

an empty list of suffixes (to cancel the built-in list8) and then list the ones

that are desired. The various file suffixes should be listed in order, with

generated files first and original source ones last:

.SUFFIXES:

.SUFFIXES: .o .frog

It is also recommended that you put a line that says

SHELL = /bin/sh

in every Makefile so that even if it is invoked by somebody who is using

a non-standard shell its internal command processing will behave in a

standard manner.

Again (as you might expect) there are other declarations that can be

provided for various specialist uses. I will not even mention them here.

Some versions of make provide extra facilities, notably the opportunity to

build conditions into the file so that different things happen based on the

values of macros. Another extension is the ability to reference other files

8At least some versions of make appear to require this.

34

so that it is as if their contents had formed part of the original Makefile.

I suggest that you avoid any such features even when they do make life

a lot easier, at least until you have had significant experience moving

programs from one computer to another. Some people would disagree

with me here, perhaps suggesting that whenever you move to a new

computer you should fetch and install a copy of the GNU version of make

on it so you can be certain that all of its capabilities are available. I will

re-phrase my advice to suggest that you stick with very plain and simple

Makefiles at least until you feel comfortable re-building GNU make from

source and installing it on new computers!

It is well worth using a Makefile as the repository for many more com-

mands than just those to recompile your code. You can usefully put in

a target that tidies up by deleting all object and executable files (leaving

just the original sources present), ones to run test cases, commands

for formatting and printing the manual, scripts that pack up a version of

your program for distribution and interfaces to whatever backup/archive

discipline you adhere to. The one file can then end up as documen-

tation of all the major procedures associated with the management of

your program: it is perhaps sensible then to make sure it has plenty of

informative comments in it.

It is perhaps at this stage worth noting the command touch that re-

sets the date on a file to make it look as if it is new. Use of this can

sometimes allow you to trick make into assuming that some binary files

are new enough that they do not need re-building even though the gen-

eral rules given suggest otherwise. This can be helpful if you make

changes in some source files that you are certain do not really call for

35

re-compilation: eg correction of spelling errors in their comments.

The following example is a simple Makefile for a collection of C sources.

It uses the makedepend utility to auto-generate the dependencies list

and append it to the end of the Makefile. Generating the dependencies

in this way avoids obscure bugs that can be caused when hand-entered

dependencies are inaccurate and result in some files failing to be com-

piled when certain #include’d files are updated.

TARGET = my_prog

SRCS = a.c b.c c.c

OBJS = $(SRCS:.c=.o)

CC = gcc

CFLAGS = -O2

INCLUDES = -I.

LD = ld

LDFLAGS = -Bdynamic

LIBS = -lm

RM = rm -f

.c.o:

$(CC) $(CFLAGS) $(INCLUDES) -c $<

$(TARGET): $(OBJS)

$(LD) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

clean:

36

$(RM) *.o $(TARGET)

depend:

makedepend $(INCLUDES) $(SRCS)

DO NOT DELETE THIS LINE -- make depend depends on it.

a.o: magic.h magic2.h

b.o: magic.h magic2.h

c.o: magic2.h

9 rcs and friends

The most common cause of corrupted or lost files these days is not liable

to be hardware failure, viruses or rogue software. It will be carelessness

on the part of the owner of the files. The proper protection against ill-

conceived editing and false-starts towards program upgrades are best

based on keeping a fairly detailed incremental record of changes made

to all files. Because most changes are rather small these can be stored

quite compactly by keeping a base version of each file and a list of

changes made to it. The program diff which is discussed later on can

compare two versions of a file to generate just such a list of changes. If

properly organised such a scheme could have just one file representing

a base version of a module, the most recently released fully-tested ver-

sion and several experimental versions. Any one of the versions stored

could be re-created by applying the relevant set of stored edits to the

37

base version of the file. Having got that far it would seem natural to at-

tach commentary to each set of updates to document their author and

intent, and to accept the fact that several programmers might be working

on just one project, and all of them might be making their own separate

changes. With all this in place editing a file should never destroy infor-

mation, because it will always be possible to reconstruct the state the

file was in before it. It is still necessary to back up files to protect against

system failure or wholesale deletion of the code database, but overall ev-

erything should feel a lot safer. What I have just described is a revision

control system, and the Unix tool rcs is the prime example9. Note that

rcs is at least as relevant when developing documentation (or indeed

literary works) as when writing programs.

Getting started with rcs is easy. Change directories into the one where

your source files live. Create a sub-directory called RCS which will be

where the system keeps its database. You then never mess about inside

that directory directly, and periodically copy its contents to floppy disc,

magnetic tape or some other fully secure and for choice remotely stored

medium. Now suppose you have a set of files that make up the base-

line version of your program: imagine they are called Arthur.java and

Norman.java. You issue the commands:

ci Arthur.java

ci Norman.java

and when you have finished typing in the description of the two files that

you are asked for and you look at what has happened you find that your

9sccs is another, but at least locally rcs is distinctly preferred.

38

files seem to have vanished. In fact they have been entered into the

database with a “revision number” set to 1.1.

ci stands for check-in. Given that it is perhaps not too much of a sur-

prise that the converse command is called co for check out. This has

two rather different uses. The first is when you just want to read the file

(and the most recent version of it at that). Then you say just

co Arthur.java

and you should find that the file has re-appeared. You can print it or

compile it. If you want to edit it you ought to say

co -l Arthur.java

where the -l stands for lock. Part of what rcs does for you is to arrange

that only one user can lock a file at any one time, so if you are working in

a multi-user project10 and this succeeds then you know that none of your

colleagues will be able to lock that particular file until you have finished

making your edits and have checked it back in again. If you specify the

lock flag (-l) with ci it checks the file in but leaves a copy outside the

database for you to continue editing.

Note that with this scheme you may need to have a suitably elaborate

Makefile that checks out (without locking) all the files that it needs to

compile. Unlocked checking out is possible at any time. All that locking

does is to ensure that the only person subsequently allowed to check a

file back in is the person who successfully obtained a lock for it.

10Such as the Lent Term group project . . .

39

The command rcsdiff compares the version of a file that you have

checked out with the version in the database so you can get a quick

reminder of what you have just changed.

Each time a file is checked in it is given a new revision number. These

numbers normally run 1.1, 1.2, 1.3, You can check out a specific

one of these by saying (eg)

co -r1.4 Norman.java

While checking in a file rcs scans it for the string Id and if it finds

that it replaces it with a longer string that gives the name of the file, its

author, revision number and the date. This is a textual substitution so

you should normally place the marker within a comment or a string. If

you put it in a string you may be able to access this version information

when your program is run.

If the string Log is present in your source file the explanations you

type in when ci prompts you are collected there, (almost) painlessly

accumulating update history as part of your source files. Some other

similar substitutions are made for other words enclosed in pairs of dollar

signs.

There are (of course) rather more facilities and options than just that,

and in particular special provision is made for the case where a project

is totally under the control of just one programmer and so the full dis-

cipline of locking is too heavy handed. The only option I will mention

here is co -ddate where the date can be specified in almost any even

half-plausible syntax (the only trick is that the suffix LT is often use-

ful, and indicates that the clock should be measured in local time rather

40

than (say) the time zone relevant for California or Japan).11 This option

recovers the latest version of the file whose date is no later than the one

given. Eg

co "-d monday" file1.xxx

co "-d 2 July" file2.yyy

co "-d 20:00 gmt" file3.zzz

For the schemes that permit branches in the tree of versions see the

manual pages: the need for that should not arise until you have had

time to get thoroughly comfortable with the basic commands. Another

command worthy of investigation is rcsfreeze. It enables you to assign

a symbolic revision name to a set of source files. You might wish to do

this from time to time to denote when your set of source files are in a

state that you may wish to return to, for example, at landmark points in

the development cycle.

RCS is one of the oldest version control systems available on Unix. It is

still very widely used, but many large projects have moved on to more

recent alternatives. One of these is CVS, which started out as a layer on

top of RCS that provides extensions for dealing not just with individual

files, but also entire directory trees. Another important feature of CVS

is networking support, which allows the working files and repository di-

rectory to sit on different computers. Web sites that host freely usable

CVS servers have sprung up, such as http://sourceforge.net/ or

http://savannah.nongnu.org/.

11Use export RCSINIT=-zLT if you prefer the rcs tools to output all dates in local

time.

41

CVS still has a number of annoying limitations and quirks. For exam-

ple it understands only changes within files and remains ignorant of

changes such as moving and copying files or directories around. Sub-

version is a more recent tool that has quickly become popular and is

now replacing CVS in many projects. It solves most of the problems

with CVS quite elegantly and is used via the svn and svnadmin com-

mands. The full Subversion documentation can be found on http:

//svnbook.red-bean.com/.

One area where both CVS and Subversion differ radically from RCS

is the question of locking. RCS follows a lock-modify-unlock model. It

prevents two people from editing a file simultaneously by granting a write

lock only to one of them at a time. If you fail to obtain a lock on an RCS-

controlled file that you want to change, you normally have to contact the

person who has the lock and see how long they expect to be working

with that file. You may also instead choose to check the file out unlocked

and edit it locally. Then when (later on) you do succeed in locking the

file you can try to merge your own edits with the changes that the other

programmer made. With svn and cvs, this copy-modify-merge principle

is actually the normal way of working, and is better supported. Files

are normally not locked and can be edited simultaneously by several

team members. Both tools go to some trouble to detect during a commit

operation (that is what RCS calls a check-in) whether someone else has

already committed a change to a file while you were editing it. If you

and the other programmer made sufficiently well separated changes to

the file, these tools are usually able to propose a good merged version

for you automatically. If not, they provide you a version in which the

42

conflicting simultaneous changes are clearly marked, which you then

have to resolve manually in your editor.

In any case, it is anti-social to lock a file in RCS for longer than you

have to, or to modify a working file in CVS/Subversion locally without

committing it back into the repository for a long time. It will generally

count as good practice to plan your changes first, and then check-out,

change and check-in the file as quickly as possible, to keep the central

tree in the repository free for as much of the time as possible. For very

substantial changes that take much longer, all three tools have support

for creating new branches in the version history. These are often used by

sub teams who prefer to avoid interfering with the main (“trunk”) version

of the project tree. However, it may then involve a bit more work to merge

such a development branch back into the trunk later on.

On starting to use rcs you are liable to find two general frustrations.

The first is that it is not integrated with or especially comfortable to use

with make unless you use special mechanisms provided by the GNU

version of make. The second is that it stores its database in a rather

rigidly defined location (ie the subdirectory RCS of the currently selected

directory), and this means that all of the group of users working on a

project tend to need to work in this one directory. One way out of this

is that group members have in their respective working directories sym-

bolic links named RCS to a common shared subdirectory with the *,v

database files into which all group members can write. Better security

can be achieved if the database files are only made accessible to a spe-

cial user and the ci and co programs have the setuid bit set such that

they can access the database files with this special user’s privileges.

43

This way individual group members can check files in and out without

having the ability to corrupt the database files and thereby destroy old

revisions.

In general, svn and cvs are today widely considered to be far more

convenient for co-operative working. There is less need for them to in-

teract closely with make, because these tools can easily be applied to

an entire directory tree efficiently. They also can be deployed far more

flexibly, because they can access remote repositories via ssh remote

login. RCS remains very useful as a simple tool for tracking changes to

just an individual file, where creating an entire repository subdirectory –

as CVS and Subversion require – might be considered an undesireable

overhead.

10 Job control

The features mentioned here are probably ones that you are already

familiar with, but for completeness I will mention them again.

Under Unix you can have several tasks running at once: one foreground

task that you are interacting with and many background ones. Some

background jobs will be active and running while others may be sus-

pended. The command jobs displays information about the current sit-

uation, while ps can give information about tasks at a finer grain (eg

when one job that you have launched in fact ends up generating a num-

ber of sub-tasks).

To start some task in the background you append an ampersand (&)

44

to the command that starts it. Alternatively you can start the task as

usual and then interrupt it using control-Z. This suspends its work. A

suspended job can be allowed to proceed in the background using bg

and any job can be made into the one that is directly connected to your

terminal using fg. The jobs you have to work with may be referred to as

%1, %2, . . . , and the jobs command lists them so you can be reminded

of the numbers allocated to each particular activity. To cancel a job you

can use kill on it.

Ampersand can be used within shell scripts to launch tasks in the back-

ground. $! is assigned to the process ID (PID) of the most recently

executed background command. The shell builtin function wait can be

used to later wait for completion of the a background process, and col-

lect its exit code. For example:

ping -c 1 bailey & pid1=$!

ping -c 1 lundy || wait pid1 || echo "Net broken?"

Especially on multi-user systems it is polite to prefix long and non-urgent

commands with nice, which gets them run at a lowish priority thereby

interfering less with other interactive work. Putting the word time before

a command records the CPU and elapsed time it takes to execute it,

splitting the computation time into that used directly by the task and that

consumed by way of system overhead. It is unreasonable to expect

timings to be accurately repeatable, if only because of effects of multi-

tasking, virtual memory and caches.

nice make & # make in background at low priority

45

fg # bring it to the foreground

^Z # suspend it...

bg # .. and put back into background

time program < test.data > test.output # test time

jobs # see what jobs I have active

kill %3 # kill job number 3

The disposition of background tasks that have not completed at the time

that you log out and other such oddities can also be controlled, but such

matters fall beyond the scope of this introduction (see nohup).

Having multiple background jobs running and controlled in this manner

is probably less common than it used to be: nowadays many people will

use Unix via X-windows and if they have several tasks that they want

performed they will run them each in a separate window. This leaves

the basic Unix job-control mechanisms to be used for starting new X

windows and applications, as in

xterm -fn 10x20 -sb -sl 300 &

xclock &

where the xterm command launches a new command window (using a

big font and providing 300 lines of scroll-back), while the second com-

mand pops up a clock for you. In each case the ampersand is important

so that the new task runs concurrently with the shell from which it has

been invoked.

Creating totally excessive numbers of Unix tasks can overload and ul-

timately crash the system and so is discouraged, but some amount of

46

concurrency can speed up things even on single processor machines,

because it allows other tasks to utilise the CPU whenever one waits on

an I/O request. Trying to speed up compilation by starting too many

jobs at the same time (one for each input file) is not in general use-

ful: the jobs will compete for memory and disc access and can easily

slow things down. However, if you’re using a multiprocessor machine,

or compiling in an NFS mounted directory than there can be significant

benefits. Investigate use of make -j <n>, but take care not to upset

your colleagues on multiuser machines.

Some large tests might be better run at times when a computer is not

otherwise loaded. The command at allows you to schedule something

to be executed later. Suppose that you have a program you would like

recompiled overnight, and a set of commands stored in script.file

that you want executed later on you could issue the commands:

at -f script.file noon tomorrow

at 02:00am

cd /home/acn1/project

make

^D

The first form specifies the commands to be obeyed by indicating a file

that they live in. The second will prompt you to type in commands (I have

displayed them indented), and you end the list by typing control-D (ie the

commands terminate at an end-of-file mark). As with rcs the format for

dates and times that is supported is astonishingly flexible and general.

The command atq should show you all the jobs you still have pending,

47

but with luck you will not need to use it since at generally sends email

to you when your task runs.

11 More shell facilities: history

Your shell keeps track of all the commands that you have issued and

makes it easy for you to activate them again. This is achieved by making

text that starts with an exclamation mark (!) expand into some variation

off a previous command (much as things that start with a dollar get re-

placed by the value of a variable). The easiest cases arise when you

want to repeat a command exactly as it was. Then the only issue is how

to indicate which previous command is to be re-issued. There are five

recipes:

1. !! just repeats the most recent command, whatever it had

been;

2. !-n generalises on the above and repeats the command n

back. The simple case !! is in fact an abbreviation for !-1;

3. !n re-plays command number n where n starts counting at

the start of your session. The command history displays the

commands that are stored along with their numbers in case you

are not good at counting;

4. !string is a search. When you follow the exclamation mark with a

string the shell searches back for the most recent command that

48

starts with this string, and uses that one. This may well be the

most generally useful variant;

5. !?string?is also a search, but by enclosing the string within ques-

tion marks you indicate that the string should be looked for any-

where within the stored commands, not just at the start of the line.

When you have identified an old command with one of these recipes

you can change the command. After all you may well be wanting to re-

play it because you did not get it quite right last time. You can put an

edit request after a history reference, and this is of the form :s/pattern

/replacement / where it is legal to use almost any character as the

delimiter where I have used “/”. As might be imagined this makes the

indicated change to the old command. A special syntax is available if

you want to make an edit to the most recent command. For instance if

you had just typed in the mis-spelt command histery and wanted to

correct it you could issue either of the following equivalent forms

!! :s/e/o/

^e^o^

and it is clear that the short-hand using ^ saves a useful amount of

typing.

Because history substitutions are a part of the general shell command-

line expansion process (along with file-name wild cards and variable

references) you can put other text before or after a history reference

again allowing you to get a modified version of a previous command.

49

You can even make several history references on one line if that is at all

useful.

The history list in bash can also be browsed very conveniently with

the cursor keys and in fact many of the emacs key combinations are

available. For example, Ctrl-R initiates an interactive search backwards

through the history list. I find these interactive history editing techniques

much easier to use than the ! mechanism, which probably was more

useful in the old teletype terminal days where no cursor was available.

As well as history, bash also supports quite a sophisticated command

line completion mechanism. It can be activated to suggest completions

to a command line hitting the TAB, ESC or Ctrl-] keys. Various options

control which databases it uses for completion; file-name, history and

host-name completion are possible.

12 Data tools (1): tr

There are many editing-style tasks that are slightly beyond the (easy

use of) simple substitution capabilities of text editors but not complicated

enough to make you want to rush out and write a new program to per-

form them. Unix provides several tools that cover common conversion

tasks that you may come across. The first of these performs simple

character substitution, and it is called tr. You should note that the ver-

sion of tr that I describe here is the one documented in the book [1] and

is as defined for Unix systems that follow the “System V” tradition. The

version of tr on Unix systems descended from the BSD family differs,

50

and the GNU tr as provided on Linux documents itself as not being fully

compatible with either tradition. So before you use this command on any

particular computer please check the man pages!

You give tr some simple options and two strings. It reads from its stan-

dard input and writes to the standard output, so it is usually seen with

file redirection or pipes. Its basic use is to replace each character that is

present in its first string with the corresponding member of the second.

Strings can be abbreviated (as with grep) to show ranges of characters.

Two plausible uses follow:

tr A-Z a-z < original.file > lowercase.file

cat message | tr a-zA-Z b-zA-Za | ...

The first of these turns upper case letters into their lower case equiva-

lents, and is obviously a useful thing to be able to do easily. The second

is more of a joke: it replaces each letter by the next one in the alphabet

to produce a very weakly obscured version of some text.

With the -d flag the command only needs to be given one string, and it

just deletes any characters listed in this string from the file. For instance

if you have received a file from a DOS/Windows site it probably has

newlines represented as carriage return/linefeed pairs and it may be

padded at the end with control-Z characters. It can be cleaned up using

tr -d '\015\032' < dos.file

where the bad news is that I have had to use octal escapes to specify

the control characters that I want to discard.

51

A final use for tr is with the -s flag where if it finds any repeated strings

of any of the characters from its second string it consolidates them into

just a single instance. It can sometimes be useful to remove redundant

blanks and newlines. Such processes are perhaps unexpectedly useful

things to have in your armoury when you are building long pipes that use

output generated by one utility as input to another: tr might be used to

clean up the output to make it more digestible for the next use to be

made of it.

... | tr -s '' ' \012' | ...

Not a very complicated tool, but useful to know about!

13 Data tools (2): sort

sort can read an input data set from standard input, or from a set of files

specified on the command line. It then sorts all the lines in the data set

according to various command line options, and sends the sorted data

to standard output. sort uses an external sort algorithm, and is efficient

even when dealing with large datasets — I use sort on datasets of

several gigabytes quite regularly.

By default, the sort key is the entire line, but sort can be instructed to

use a specific field in lines in the dataset using the -k POS1[,POS2]

option. The default option is for fields to be delineated by whitespace

characters, though this can be changed with the -t separator option.

-k 2,4 would specify a sort key consisting of fields 2 through 4. Nu-

meric (as opposed to dictionary) sorting order on a key can be specified

52

with the -n option, and the sort order reversed with -r. Multiple sort

keys can be specified on a single command line, with the primary sort

key specified first. Sort can also be used to remove duplicate lines in

the sorted output by using the -u option.

sort -t : -k2n -k1 <input

pear:3

banana:9

apple:70

banana:70

orange:100

banana:102

14 Data tools (3): cut

The cut utility can be used to extract sections from lines in its input. Like

the other data manipulation commands it can take input from standard

input, or from a list of files on the command line. cut can be operated in

two basic modes: extraction of fields (-f field_list), and extraction

of characters (-c position_list). The field list and character position

lists are specified using a comma separated list of figures, with hyphens

used to denote ranges. The command cut -c 1-10,20- would extract

all but character columns 11-19 of the input data. When used for field

extraction, option -d can be used to specify the field delimiter.

Eg, Using the same input as the previous sort example:

sort -t : -k2n -k1 input | cut -d : -f 2

53

3

9

70

70

100

102

15 Data tools (4): sed

The next data tool to mention is sed, which is one of the world’s crudest

and dullest editors. The reason it still exists and qualifies for inclusion in

this course is that it is intended for use embedded within scripts where

it can do automatic and systematic editing for you. Thus nobody in their

right mind would use sed when first typing in a program, but uses for it

abound where a similar set of edits must be applied to a large number

of files or where the nature of some wholesale change does not quite

match the global-replacement facilities of your normal screen-based ed-

itor.

Since it is expected to be used in scripts, sed reads the original version

of the file it is to process as a stream. It either reads from files listed

on the command line, or if none are given it uses its standard input.

The edited version is always sent to the standard output. Editing com-

mands are either given directly on the command-line (typically delimited

by quote marks) or in a script file that is named on the command line

after them key -f.

54

When processing a file sed works through the file line by line applying

each of its commands to all lines to which they are relevant. Thus really

simple uses of sed let you perform collections of global exchanges all

the way through a file. For instance to change every dog into a cat and

every bone into a mouse you might use the command

... | sed 's/dog/cat/g; s/bone/mouse/g' | ...

The command being used is just “s” for substitute. The pattern that

follows it is a regular expression (very much as for grep.) After the final

“/” there can be some flags, and the g here instructs that the exchange

should be made as many times on the line as possible: by default only

the first match on each input line would be processed.

Any sed command can be preceded by one or two addresses to limit the

range within the file that it will be applied to. If you use a number as an

address it is treated as a line number. The symbol $ stands for the end of

the file. So if you want to make an edit that leaves the first dozen lines of

your file alone you might try a command of the form 12,$s/xx/yy/. The

more interesting feature of sed is that you can use regular expressions

as addresses. If you write just one pattern it will apply its edit to all lines

that match it. Appending an exclamation mark causes the edit to apply to

all lines except those matching the pattern. A pair of comma-separated

patterns will select a region from where the first pattern matches up to

(and including) where the second does.

We have already seen the s command. Next I will mention that d deletes

a line. It is then clear that the command

/public static void main/,/^ *}$/d

55

deletes all the lines from one containing the words about main down

to one that consists of just a close curly bracket (possibly preceded by

some spaces). Note that the range specified does not do anything to

enforce matching of braces, so it will delete until the first close brace

that it finds on a line of its own.

Another example, also slightly fragile, supposes that your code has a

collection of lines that optionally print a trace statement, and that you

want to comment them all out. Each such statement is supposed to be

on just one line:

/if ?(debug)/{

s/^/ \/*--- /

s/$/ ---*\//

}

This applies a pair of commands to each line that contains either if(debug)

or if (debug)12. The first command matches against the first position

in the line and inserts there /*--- while the second substitution puts

---*/ at the end of the line. You can see that a number of ugly back-

slash characters have been required so that various characters in pat-

terns and replacement text are treated literally rather than as special.

The use of multiple commands associated with one address expression

requires that the braces appear on separate lines just as shown in this

example.

Of course sed has many commands beyond the delete and substitute

ones listed here, but its real power comes not from the richness of its

12With a space in one but not in the other.

56

command set but from the use of regular expressions. One way in which

its variant on regular expressions differs from that used in grep is that

you can enclose a section of a pattern within backslashed parentheses,

and the effect is that whatever matches that pattern is captured and

stored in a text variable. Up to nine such strings can be collected, and

the replacement text in a substitute command can refer to them using

\1 to \9. So for instance if a file consisted of data in three columns

separated by blanks it would be possible to rearrange columns ABC into

the order BACA (making a second copy of the first column, A) using

s/ *\([^]*\) *\([^]*\) *\(.*\)/\2 \1 \3 \1/

This looks utterly horrible! But if read through one chunk at a time it

can make sense! The pattern first looks for zero or more blanks. Then

we have a block enclosed in \(...\) so that its value will be stored.

The pattern within looks for an arbitrary repetition of characters that are

not spaces. Next we match a further run of blanks, capture a second

column of non-blank data, skip further inter-column space and at the

end \(.*\) matches and saves everything up to the end of the line.

That completes the pattern. The replacement text just plays back the

saved material in the order we want it in. Achieving that effect using a

typical mouse-driven editor would probably be pretty uncomfortable.

I think that typical strings of sed commands are dense enough in punctu-

ation that they deserve to go into files so they can be prepared carefully

and tested. Comment lines in such files begin with # and are somewhat

desirable!

57

16 Data tools (5): diff

You probably already know that when you want to compare two files you

use diff. By default it displays the differences between the two files

by quoting line numbers and then listing lines that have been added,

deleted or changed. A fully-fledged Unix tool-user will also be aware of

at least some of the command-line options it can be given:

-i Ignore upper/lower case distinctions when making the comparison;

-b Treat multiple spaces as if they had been one space, and multiple

newlines as if they had been just one. This can be useful if you

have recently adjusted the layout in a file and do not want to be

overwhelmed with reports that are just whitespace changes;

-r When the “files” given to diff are in fact directories this recurses

through them and runs diff on all files in any common sub-directories;

-Dsymbol This merges the two files by inserting C-style conditional

compilation directives of the form #ifdef symbol. It is arranged

that if symbol is defined the generated file would be equivalent to

the second file, while otherwise it would match the first one. Even

if you are not using C this can be useful since you can edit the

merged file and search for the string symbol to find where discrep-

ancies had occurred;

-e Generate a simple edit script (intended for the Unix editor ed) that

would change the first file into the second. In effect this is what is

58

being done internally in rcs where is stores files as base versions

and sequences of updates.

-u A GNU extension that produces unified diffs, a very useful form

of diff output that is designed to be easy for humans to read and

robust against slight version mismatches when used as input to

the patch command.

Note that if the two files being compared have identical content then

diff will generate no output at all. A handy tool built on top of diff

is rcsdiff. This can be used to compare the current version of a file

against any of the versions stored in the rcs repository. The default

behaviour is to do the comparison against the most recently checked-

in version, thus enabling a user to see whether a given file has been

updated since.

17 perl as a super-set of grep

Thus far I have concentrated on tools that are fairly small and fairly spe-

cialised. Even when used individually these solve problems that would

otherwise require a lot of manual work. Linked together with pipes they

can do yet more. It is possible to use the Unix shell to run quite com-

plicated sequences of sub-tasks, with conditional execution, recursion

and most of the framework that you would expect in a real programming

language. When used this way you would let the shell call upon the var-

ious lower level tools to perform each elementary operation: of itself it

would do just the co-ordinating. Both the inefficiency of this and the fact

59

that there are at least half a dozen different Unix shells in use has led

to slightly more integrated scripting languages, such as awk, perl and

python gaining popularity.

For processing a set of input data into a different form awk (or its slightly

more powerful GNU cousin known as gawk) typically provides a compact

yet powerful programming solution. For example, a program to generate

a histogram from a set of experimental results could easily be crafted as

just a few lines of awk.

When the task in hand requires interfacing with other system facilities

(such as the OS, or other programs and libraries) then more powerful

general purpose programming languages such as perl and python are

best called upon.

Some have a strong preference for the more recent python over perl,

since it provides a modern object-oriented programming environment

with support for exceptions and many other high-level features. python

programs tend to be quite readable (and hence maintainable), but are

often are a little longer than their perl equivalent.

In contrast, perl has a reputation for being a “write-only” programming

language, perhaps because the syntax of perl is derived from diverse

languages and tools such as sed, awk, C, and the Bourne shell, there-

fore makes widespread use of significant punctuation characters, has

a huge array of predefined cryptic operators and functions with strange

default behaviours — all designed to save the programmer precious key

strokes. However, perl has been around for a long time, and is widely

used and installed on many systems.

perl can simulate and generalise most of the tools mentioned so far,

60

including quite elaborate shell scripting. Since it is a full-scale program-

ming language I will not start to pretend to cover more than a very tiny

fragment of it here. I can suggest the introductory book by Schwartz et

al. [2] and leave the definitive guide by Larry Wall [3] for those who want

to become real experts. The man pages offer a compact guide to the lan-

guage for those familiar with the basic concepts from other languages

such as sed or C and do not need a lot of examples. I will illustrate the

language by giving perl scripts that simulate behaviour similar to that

which can be obtained using one of the more specialist tools. So first I

will cover grep.

The first version of this shows the “program” passed to perl on its

command-line after the key -e:

perl -n -e 'print if /regexp/' < somefile.txt

In this very concise example the -n flag causes the command given

following -e to be applied to every line of the input. The command given

prints a line if it contains a match against the given expression.

The same effect can be expanded out into something that looks more

like a program: A perl script lives in a file, and contains

#!/usr/bin/perl -w

while (<>) {

if (/regexp/) {

print $_;

}

}

61

When the name of this file is presented to the shell it reads data from

either each file named on its command line, or if there are none of those

from its standard input. The first line marks it as a perl script13, and

the -w flag asks for warnings about dubious constructs. Since almost

anything is valid in perl you have to do something quite seriously weird

to get much of a warning! The body of the program we have here is a

loop. The angle operator (<>) causes the next line of input to be read and

saved in a standard place. The if statement matches this text against

the given regular expression (and regular expressions in perl are as

extended as you could ever dream of). If there is a match then the print

statement is activated to send something to the standard output. The

“$_” references the location where the most recent input line had been

stored. The effect is that all lines matching the regular expression get

printed.

It is perhaps obvious that there will then be arithmetic statements, vari-

ables, arrays and the ability to nest arbitrary mixtures of conditionals

and loops. You can define perl procedures and call them recursively. In

consequence and at the cost of writing a slightly longer script perl can

perform much more complicated pattern detection than can grep. But

because the full power of regular expression matching is available within

perl those tasks that just need that remain quite easy to express.

13Well, you need to indicate there whatever place on your Unix system perl is

actually installed.

62

18 perl for scripting

There are three things that perl does that make it a really useful lan-

guage for writing system maintenance utilities in. The first is that it has

a rich built-in collection of directory and file manipulation primitives. If

the variable $filename is the name of a file you are interested in then

there are over two dozen tests you can perform on it. Note that the op-

erators are the same as for the previously mentioned shell command,

test. Important examples are:

-r $filename yields true if the file exists and is readable;

-w $filename is true if the file is writable;

-e $filename is true if it exists;

-z $filename is true if it exists but has zero size;

-d $filename if it is a directory rather than a simple file.

and other similar short operators can find the age of a file or the size (in

bytes) that it currently has. There are then further facilities for travers-

ing directories, expanding file-name wild-cards and changing file-access

permissions.

The second feature is that it is easy to launch sub-processes and re-

trieve their output. If you want the output from the program you are

going to run to be sent to a file or to the standard output you can use a

system function, as in

system "javac Testfile.java";

63

but on other occasions you want your perl program to capture, parse

and respond to the output generated by the program. In such cases you

just write an expression which is the command you want executed en-

closed in backquotes. In my example here I just print the output straight

away — normally you would store it in a variable and process it further:

print `javac Testfile.java`;

The final strength that perl brings is the use of regular expressions to

decompose program output and a neat syntax that lets you separate out

the parts of your sub-program’s output. In fact this just comes from its

general pattern-matching ability, but I will illustrate it here based on a

sub-call to grep. Actually one would normally do grep-like things within

your perl program, but I just want an illustration of calling a program and

then parsing the output. So suppose I have a file called "funny.data"

and within it there are a number of lines that contain the string XXX. I can

cause perl to invoke grep by putting

`grep -n XXX funny.data`

in my perl script. With the -n flag the output from grep might be some-

thing like

108: while ((c = XXX getc(fmakebase)))

150: return 1; XXX

179: fXXXor (i=0; i<n_user_words; i++)

with a line number, then a colon, and then the line that the pattern was

found in. The output from grep gets passed back to perl as an array

64

of lines, and within each line it is useful to search (using a very simple

regular expression) for the colon and split the line into two parts there.

As a simple if frivolous demonstration I will just filter things so that I only

display things that are found within the first 160 lines, and I will annotate

the output a little:

#!/usr/bin/perl -w

@grepresults = `grep -n XXX funny.data`;

chomp @grepresults

foreach $line (@grepresults) {

($linenumber, $contents) = split(/:/, $line);

if ($linenumber < 160) {

print "line=$linenumber, data=<$contents>\n";

}

}

The output might then be

line=108, data=< while ((c = XXX getc(fmakebase)))>

line=150, data=< return 1; XXX>

A more realistic application that might start off in a similar style would run

a compiler and then retrieve and parse the error messages for you. . .

19 perl as a general-purpose language

Again I must stress that this course is at best a taster for perl, and so

rather than giving a proper presentation of its syntax and capabilities I

65

will just give a couple of annotated sample programs. The ones I present

are taken from the suggested book [2].

19.1 Counting repetitions

My first example program counts the number of times each word is

present in a file, where the file contains just one word per line:

#!/usr/bin/perl -w

chomp(@words = <STDIN>);

foreach $word (@words) {

$count{$word}++;

or: $count{$word} = $count{$word} + 1;

or: $count{$word} += 1; (all 3 are equivalent)

}

foreach $word (keys %count) {

print "$word was seen $count{$word} times\n";

}

The first line is one we have seen before and marks this as a perl

script. On the next line @words refers to a variable that is an array type,

and when we assign to it from <STDIN> it ends up with each line of the

input file in a separate element. The built-in function chomp removes

the newline characters that may initially be present in this array. The

foreach statement iterates over all items in the array. The reference

$count{$word} is the use of a hash table which is a bit like an array but

can be indexed by arbitrary things (in this case our words) not just by

66

numbers. Note that in perl references to scalar variables include a $

in the variable name to show that a scalar rather than an array value is

involved. Note also that the table of counts did not need to be initialised

first: in an arithmetic context an unset value is treated as zero! Finally

the built-in function keys is used on the hash table of counts. In this case

it is necessary to reference the whole hash table, not just some entry

in it, and this is why the text reads keys %count with a percent mark.

Observe that the output text is created by having variable references

expanded within the string.

19.2 Extracting data from a table

Suppose you have a file whose contents are arranged as a number of

fields separated by colons. The fifth such column contains a name,

which is followed (optionally) by an address and phone numbers (sep-

arated off by commas). This curious format is illustrated by a two-line

(non-real) file:

acn1:x:1000:1000:Arthur Norman,T34,,:/home/acn1:/bin/bash

am21:x:1003:1003:Alan Mycroft,,,:/home/am21:/bin/bash

and happens to follow the layout used by Unix for password files. The

task is to list just the first names of all the users present. This provides

an illustration of the split operation. This takes a regular expression

and a string and creates an array whose elements are the parts of the

string delimited by things that match the regular expression:

#!/usr/bin/perl

67

while (<STDIN>) {

chomp;

($gcos) = (split /:/)[4];

($real) = split(/,/, $gcos);

($first) = split(/\s+/, $real);

print "$first\n";

}

This is tolerably dense, but I hope that with some explanation it will be-

come readable. It starts by reading in lines from its standard input. The

while loop reads one line at a time. The line that has been read is left in

a default variable called $_ and other operations work on this if not told

to use something else. This saves typing somewhat. As before chomp

removes the newline that is at the end of each line. Here it works on

$_. The right hand side of the next line starts by splitting the input line at

each colon. This hands back an array and so the element with index 4 is

selected. Since the first item has index 0 this gets the field that we want.

It is assigned to $gcos where this name hints at a traditional Unix name

for this field in a password file. The next use of split find a comma, and

can omit an explicit subscript [0] because some cleverness in the as-

signment puts the first item from the right-hand-side array into the scalar

variable $real. The final use of split uses a regular expression that

looks for a string of one or more non-space characters. The escape

sequence \s is one of very many pre-defined escape sequences that

give you very concise ways of specifying words, numbers, whitespace

and other common things you may need to match. Finally I just print the

result.

68

19.3 A bit more pattern matching

In a bit of perl pattern matching you can enclose parts of your regu-

lar expression in parentheses, and the result (without backslashes this

time) is that the parts of the pattern that match those little fragments get

stored in variables for you. For instance when you use the C shell the

display you get when you use time to record how long a command takes

to execute looks something like:

44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+0w

where the fields show user-mode time, operating system overheads, to-

tal elapsed time and various statistics relating to memory and processor

utilisation. I present this example even though it comes from a different

shell because it provides a plausible example of some murky text string

that needs to be decomposed. To skip the issue of capturing the data I

will put it into a perl variable by hand. In this display I will underline the

parts that I will suppose are wanted (for some reason):

$data = "44.2u 1.8s 0:47.85 96.3% 0+0k 0+0io 24099pf+0w";

== ==== =====

The relevant fields can be extracted by matching the data against a reg-

ular expression

$data =~ /:([^.]*)\S*\s([^%]*)%.*io (.*)pf/;

print "field1 = $1 field2 = $2 field3 = $3\n";

69

The operator =~ asks for a pattern match. Within the horrid looking

regular expression there are a couple of patterns that represent ranges

of characters, so for instance the sub-pattern [^.]* is looking for an

arbitrary number of characters that are not dots. The predefined escape

\S matches any character that is not whitespace. And then some parts

of the regular expression are in parentheses so that the corresponding

fragments of matched text can be retrieved as $1 etc in what follows.

Perhaps a little cryptic but very powerful!

There are many hundreds of perl modules available on archive sites for

downloading. These provide ready-written facilities for a huge range of

operations: image compression, network management, database con-

nectivity, extra data-types and algorithms, . . . the list goes on and on.

One of the strengths of the language is the wide range of things that you

do not have to write for yourself but can pick up in this way.

A context where you are especially liable to hear perl mentioned is

the Common Gateway Interface (CGI), a mechanism in Web servers

where accesses to a web page not simply fetches a file but starts a

little separate program that analyses the URL and prepares the content

of the Web page on demand. These CGI-scripts are very frequently

written in Perl and often provide complex interfaces to databases and

other programs.

70

20 A brief note about emacs

There is one tool that is very widely used on Unix (and of course else-

where) which draws on some of the tradition of these tools, but which

embeds all of its power within a single comprehensive interface. This is

emacs. If you are only using this as a simple screen editor, clicking on

your mouse every time you want to open or save a file and doing most

of your navigation by dragging a scroll-bar then you are not following the

use-pattern that the original emacs designers had in mind and you may

be missing out on understanding just how much it can do for you.

emacs provides an astonishingly large collection of editing commands,

various of them based on searches using regular expressions of the form

we have seen here. It can also provide a model for file-management

based on the idea that you are “editing” your directory structure, and it

provides an editor-like environment for reading email (which thus natu-

rally permits easy searches through incoming or stored mail, and makes

the commands to display or delete mail rather like those to display or

delete files). Its scripting facilities are based on it having an embed-

ded language — emacs lisp — which makes it possible to write quite

general programs based upon the basic (and indeed not so basic) edit-

ing commands that are pre-defined. Perhaps the best illustration of the

power and benefit of the scripting capabilities is the way in which the ed-

itor can be customised for the language that you are editing, so that

there are simple commands to move across blocks and procedures,

to recompile parts of your code and to re-position the editing focus at

the first place that the compiler spotted a syntax editor. Simple users

71

can of course benefit from these language-specific emacs modes with-

out understanding where they came from, but the open nature of emacs

means that those who are more experienced can first customise existing

modes, and then design new ones to suit their own exact preferences or

to perform new tasks.

My belief is that gaining initial experience with grep and the like is useful

even if you intend to end up as an ultimate emacs wizard who uses it for

everything.

On some occasions, you may find that you want to perform some minor

edit on a file that doesn’t really warrant the overhead of “firing-up” emacs.

The editor vi can prove useful in such instances. The document can be

navigated using the cursor keys, or if the terminal is not setup correctly,

‘h’,‘j’,‘k’ and ‘l’ can be used instead. Ctrl-U and ctrl-D move up and down

the page. To insert text at the cursor position hit ‘i’ then enter the text.

Insertion mode is exited by hitting ESC. To append after the cursor po-

sition (eg to add something to the end of the line) use ‘a’ instead of ‘i’.

Characters can be deleted with ‘x’, whole lines with ‘D’. Searching can

be achieved using ‘/searchstring’ to search forward, ‘?searchstring’ to

search backwards. The next match is found by hitting ‘n’. After editing

a document, a save and exit can be performed using ‘ZZ’. Editing can

be aborted with ‘:q!’. vi provides many quite powerful features, but for

those you’ll have to refer to the man page.

72

21 “Unix” tools and Microsoft Windows

The Unix tools discussed here represent a particular perspective on the

world. It starts with an expectation that serious users are going to be will-

ing to take time to learn how to use the systems that are at their disposal.

It is perhaps rooted in the “no pain, no gain” world view, which expects

that anything that goes truly out of its way to be easy for an utter novice

to use will necessarily only have limited capabilities. An elaboration on

this is that the Unix tools are attempting to provide fundamental building

blocks of functionality (such as pattern matching), rather than complete

solutions (like writing your program for you automatically). Big tools will

be wonderful when what you want to is something that has been thought

of and supported by the tool author, but when it does not you are in trou-

ble. Small but generic tools provide at least some leverage even in new

or unusual situations.

A second part of the Unix philosophy is that it should be possible to auto-

mate tasks. Again setting up the scripts with all their pipes, redirections

and messy parameters may be a painful cost, but is can be seen as

an investment since then the operations concerned can be performed

over and over again with the greatest of ease. This applies just as much

to slightly complicated and repetitive edits on a large file as it does to

the process of recompiling your program, running all your standard tests

and checking their output to see that it is as expected. For tiny tasks

where you write a short program, run it once and do not worry about

documentation all this seems unnecessary, but for bigger projects it is of

course vital.

73

A third aspect of Unix is perhaps a legacy of the fact that most of these

tools have been around for a long while. However the tools described

here represent an emphasis on command-line working, with hands firmly

positioned above a keyboard. For one who has taken the time to learn

how to use the tools and who has set up a set of well designed scripts

and Makefiles almost all common operations can be performed using

a quite short sequence of keystrokes. Hands do not have to move be-

tween keyboard and mouse, and the accurate positioning needed when

selecting something visually is avoided. The shell history mechanism

saves keystrokes compared to the DOS/Windows equivalent that tends

to lead to long sequences of repeated presses on arrow keys.

A final thing to note about these Unix tools (and to contrast, if you have

used it, with the Microsoft Development Studio) is that the tools I have

discussed here are by and large neutral. make does not mind whose

compiler it is going to invoke. Indeed it can be used to automate anything

where one file gets re-built from another and where date-stamps define

dependencies. rcs stores updates to your files, but leaves you to decide

which editor you will use to change them. It does not lock you in to one

vendor or style. grep, sed and the rest are all general purpose.

Some tasks, however, do not fit in at all well with this style of work. The

prime example is probably desk-top publishing where fine adjustment of

the visual appearance of documents matters, and the automated testing

of windowed applications where text-based scripts find it a little hard to

simulate interactive input and check the program’s behaviour.

74

22 Conclusion

As previously mentioned, all the “Unix” tools are in fact pretty generic,

and although they original arose as part of the Unix project they have

been ported to other platforms, notably Windows. There (of course) they

are run from a command-line. Amazingly you can even get a version of

the bash shell that runs under Windows, although I would suggest that

if you really want that environment you should probably install Linux on

your computer instead! Better than the fact that they are available is

the fact that there are generally free versions of everything, in particu-

lar versions from the Free Software Foundation issued under the GNU

public license. You should perhaps be aware that there are also a load

of slightly half-baked approximations to the real Unix tools out there too,

where somebody has wanted (say) grep and implemented some subset

of it for themselves. You may like to try to ensure that you find defini-

tive versions of at least the more important tools. A useful and fairly

complete collection of Unix tools for Windows is Cygwin:

http://www.cygwin.com/

Cygnus spearhead a project intended to make it easy to host programs

that were originally written for Unix on a Windows machine, and in the

process they have gone quite a long way towards making it possible to

simulate a Unix development environment within Windows. They have

an implementation of bash as well as pretty well all the tools discussed

in this course, and the associated free C, C++ and Fortran compilers are

of respectable quality.

75

Everything you might want relating to perl is at

http://www.cpan.org/

References

[1] Arnold Robbins: Unix in a Nutshell. 4th ed., O’Reilly, 2005.

[2] Randal L. Schwartz, Tom Phoenix: Learning Perl. 4th ed., O’Reilly,

2005.

[3] Larry Wall, Tom Christiansen, Jon Orwant: Programming Perl. 3rd

ed., O’Reilly, 2000.

[4] Leslie Lamport: LATEX – A Documentation Preparation System User’s

Guide and Reference Manual. 2nd ed., Addison-Wesley, 1994.

[5] Tom Christiansen: Csh Programming Considered Harmful. Periodic

posting to USENET group comp.unix.shell. http://www.faqs.

org/faqs/unix-faq/shell/csh-whynot/

Should you spot any typos or mistakes in these notes, I’d appreciate a quick message

to mgk25@cl.cam.ac.uk. [Id: notes.tex 1372 2009-09-23 15:52:52Z mgk25]

76

Notes

77

78

