Lecture Notes on

Types

for Part Il of the Computer Science Tripos

Prof. Andrew M. Pitts
University of Cambridge
Computer Laboratory

© 2009 A. M. Pitts

First edition 1997.
Revised 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008,

Contents

Learning Guide i
1 Introduction 1
2 ML Polymorphism 7
21 AnMLtypesystem
2.2 Examples of typeinference,byhand 17
2.3 Principaltypeschemes 22
2.4 Atypeinference algorithm L. 24
2.5 EXEICISES o e
3 Polymorphic Reference Types 31
3.1 Theproblem.
3.2 Restoringtypesoundness 36
3.3 EXEICISES
4 Polymorphic Lambda Calculus 39
4.1 From type schemes to polymorphictypes 39
4.2 ThePLCtypesystem i
4.3 PLCtypeinference 0
4.4 Datatypesin PLC
45 EXErCISES e e e e
5 Further Topics 63
5.1 Curry-Howard correspondence 63
5.2 Dependenttypes. 7
5.3 Currentareasofresearch 68
References 73

28

31

38

42

52
59

Learning Guide

These notes and slides are designed to accompany eighelectu type systems for Part Il
of the Cambridge University Computer Science Tripos. The dithis course is to show by
example how type systems for programming languages canfireedend their properties
developed, using techniques that were introduced in the IBatourse onSemantics of
Programming Language$o that course is a prerequisite (as, to a lesser extehg Rart 1B
course onFoundations of Functional ProgrammingWe apply these techniques to a few
selected topics centred mainly around the notion of “polgghsm” (or “generics” as it is
known in the Java and®Ccommunities).

Formal systems and mathematical proof play an importasetirothis subject—a fact
which is reflected in the nature of the material presented &id in the kind of questions set
on itin the Tripos. As well as learning some specific factsudiioe ML type system and the
polymorphic lambda calculus, at the end of the course youlgho

e appreciate how type systems can be used to constrain oriltkedbe dynamic
behaviour of programs

e be able to use a rule-based specification of a type systenfdo typings and to
establish type soundness results

e appreciate the expressive power of the polymorphic lambhéaitus.

Tripos questions and exercises

A list of past Tripos questions back to 1993 that are relet@tite current course is available
at (www.cl.cam.ac.uk/teaching/exams/pastpapers/t-Types.html).! In addition
there are a few exercises at the end of most sections.

Recommended reading

The recent graduate-level text by Pierce (2002) covers nofiche material presented in
these notes (although not always in the same way), plus misehbesides. It is highly
recommended. The following addition material may be useful

Sections 2-3(Cardelli 1987) introduces the ideas behind ML polymorphiand type-
checking. One could also take a look in (Milner, Tofte, Haypend MacQueen
1997) at the chapter defining the static semantics for the kemrguage, although it
does not make light reading! If you want more help understanthe material in
Section 3 (Polymorphic Reference Types), try Section 111(Malue Polymorphism)
of the SML'97 Conversion Guiderovided by the SML/NJ implementation of ML.
(See the web page for this lecture course for a URL for this ohesu.)

YWatch out for a misprint in 1993 paper 9, question 11: in thiation of these notesla.o should
be defined to b& 3 (Va (o — §) —).

Section 4 Read (Girard 1989) for an account by one of its creators of thignporphic
lambda calculus (Sysine F), its relation to proof theory and much else besides.

Note!

The material in these notes has been drawn from severatatffsources, including those
mentioned above and previous versions of this course by uhti@aand by others. Any
errors are of course all my own work. Please let me know if yod fiypos or possible
errors: a list of corrections will be available from the ceaimwveb page (follow links from
(www.cl.cam.ac.uk/teaching/)), which also contains pointers to some other useful
material. Please take time to complete the lecture(r) aggdriorm for this course available
at(www.cl.cam.ac.uk/cgi-bin/lr/login).

Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk

1 Introduction

“One of the most helpful concepts in the whole of programnisrtge notion of
type used to classify the kinds of object which are manipulagesignificant
proportion of programming mistakes are detected by an impl&ation which
does type-checking before it runs any program. Types peawithxonomy which
helps people to think and to communicate about programs.”

R. Milner, “Computing Tomorrow” (CUP, 1996), p264

This short course is about the use of types in programminguiages. Types also play an
important role in specification languages and in formaldegindeed types first arose (in the
work of Bertrand Russell (Russell 1903) around 1900) as a wayaidlieng certain paradoxes
in the logical foundations of mathematics. We will returrthe interplay between types in
programming languages and types in logic right at the endeotburse.

Many programming languages permit, or even require, theafiseertain kinds of
phrases—types, structures, classes, interfaces, etceldssifying expressions according
to their structure (e.g. “this expression is an array of abtar strings”) and/or behaviour
(e.g. “this function takes an integer argument and returist af booleans”). As indicated
on Slide 1, atype systenfior a particular language is a formal specification of howhsac
classification of expressions into types is to be carried out

The full title of this course is
Type Systems for Programming Languages

What are “type systems” and what are they good for?

“A type system is a tractable syntactic method for proving the absence
of certain program behaviours by classifying phrases according to the
kinds of values they compute”

B. Pierce, “Types and Programming Languages” (MIT, 2002), p1

It is not an exaggeration to say that to date, type systems are the most
important channel by which developments in theoretical computer
science get applied in programming languages.

Slide 1

Here are some ways (summarised on Slide 2) in which typersgster programming
languages get used:

2 1 INTRODUCTION

Uses of type systems

Detecting errors via type-checking, either statically (decidable errors
detected before programs are executed) or dynamically (typing errors
detected during program execution).

Abstraction and support for structuring large systems.

Documentation.

Efficiency.

Whole-language safety.

Slide 2

Detecting errors Experience shows that a significant proportion of programgmiistakes
(such as trying to multiply an integer by a string) can be ctetdby an implementation which
doesstatic type-checking, i.e. which checks for typing errors befdreuns any program.
Type systems used to implement such checks at compile-taoessarily involvelecidable
properties of program phrases, since otherwise the pradessnpilation is not guaranteed
to terminate. (Recall the notion of (algorithmutgcidabilityfrom the CST IB ‘Computation
Theory’ course.) For example, in a Turing-powerful langaiégne that can code all partial
recursive functions), it is undecidable whether an arbjtegithmetic expression evaluates to
0 or not; hence static type-checking will not be able to elaénall “division by zero” errors.
Of course the more properties of program phrases a typensgstan express the better and
the development of the subject is partly a search for greatpressivity; but expressivity
is constrained in theory by this decidability requiremeartd is constrained in practice by
questions of computational feasibility.

Abstraction and support for structuring large systems Type information is a crucial part
of interfacesfor modules and classes, allowing the whole to be to be dedigrdependently

of particular implementations of its parts. Type systemsnfahe backbone of various
module languages in which modules (“structures”) are assigypes which are interfaces
(“signatures”).

Documentation Type information in procedure/function declarations amdhiodule/class
interfaces are a form of documentation, giving useful hatitsut intended use and behaviour.
Static type-checking ensures that this kind of “formal doeatation” keeps in step with
changes to the program.

Efficiency Typing information can be used by a compilers to produce ratireient code.
For example the first use of types in computer science (in #¥4) was to improve the
efficiency of numerical calculations in Fortran by distiighung between integer and real-
value expressions. Many static analyses carried out bynegitig compilers make use of
specialised type systems: an example is the “region indefemsed in the ML Kit Compiler
to replace much garbage collection in the heap by stackdoasenory management (Tofte
and Talpin 1997).

Safety

Informal definitions from the literature.

“A safe language is one that protects its own high-level abstractions [no
matter what legal program we write in it]".

“A safe language is completely defined by its programmer’s manual
[rather than which compiler we are using]”.

“A safe language may have trapped errors [one that can be handled
gracefully], but can’t have untrapped errors [ones that cause
unpredictable crashes]".

Slide 3

Whole-language safety Slide 3 gives some informal definitions from the literatufe o
what constitutes a “safe language”. Type systems are anrtemidool for designing safe
languages, but in principle, an untyped language could fledbgavirtue of performing certain
checks at run-time. Since such checks generally hampereeffi; in practice very few
untyped languages are safe; Cardelli (1997) cites LISP asamnme of an untyped, safe
language (and assembly language as the quintessentigkahtynsafe language). Although
typed languages may use a combination of run- and compilethecks to ensure safety, they
usually emphasise the latter. In other words the ideal iat@ la type system implementing

4 1 INTRODUCTION

algorithmically decidable checks used at compile-timeul@ out all untrapped run-time
errors (and some kinds of trapped ones as well). Of courses danguages (such as C)
employ types without any pretensions to safety.

Formal type systems

e Constitute the precise, mathematical characterisation of informal type
systems (such as occur in the manuals of most typed languages.)

e Basis for type soundness theorems: “any well-typed program cannot
produce run-time errors (of some specified kind)”.

e Can decouple specification of typing aspects of a language from
algorithmic concerns: the formal type system can define typing
independently of particular implementations of type-checking
algorithms.

Slide 4

Some languages are designed to be safe by virtue of a tyasyait turn out not to be—
because of unforeseen or unintended uses of certain cotignis®f their features (object-
oriented languages seem particularly prone to this propleve will see an example of this in
Section 3, where we consider the combination of ML polymaphwith mutable references.
Such difficulties have been a great spur to the developmethieoformal mathematics and
logic of type systems: one can onprove that a language is safe after its syntax and
operational semantics have been formally specified. The maint of this course is to
introduce a little of this formalism and illustrate its us&sandard ML (Milner, Tofte, Harper,
and MacQueen 1997) is the shining example of a full-scalguage possessing a complete
such specification and whogge soundneggf. Slide 4) has been subject to prdof.

!standard ML is a sufficiently large language that a fully fatised proof of its type safety is surely
enormous and certainly requires machine-assistance g @at. However, since the language design
was semantically-driven and had type safety very much irdpiinis possible to give convincing, if
semi-formal, proofs of type safety for large fragments of it

Typical type system “judgement”

is a relation between typing environments (I'), program phrases (M) and
type expressions (7) that we write as

'-M:7

and read as “given the assignment of types to free identifiers of M
specified by type environment I, then M has type 7.

E.g.
f :intlist — int,b: bool - (if bthen fnil else3) : int

is a valid typing judgement about ML.

Slide 5

The study of formal type systems is partstfuctural operational semantic$o specify
a formal type system one gives a number of axioms and rulaadaictively generating the
kind of assertion, or “judgement”, shown on Slide 5. Idedalig rules follow the structure
of the phrasel/, explaining how to type it in terms of how its subphrases canyjpes—
one speaks ofyntax-directedsets of rules. It is worth pointing out that different langea
families use widely differing notations for typing—seed#li6.

Once we have formalised a particular type system, we are os#ign toproveresults
abouttype soundneg$lide 4) and the notions ¢fpe checkingtypeabilityandtype inference
described on Slide 7. You have already seen some examplés 83T IBSemantics of
Programming Languagesourse of formal type systems defined using inductive dedmst
generated by syntax-directed axioms and rules. In thisseowe look at more involved
examples revolving around the notion of “parametric polypmism”, to which we turn next.

1

INTRODUCTION

Notations for the typing relation

“foo has type bar”

ML-style (used in this course):

foo : bar
Haskell-style:
foo :: bar
C/Java-style:
bar foo
Slide 6

Type checking, typeability, and type inference

Suppose given a type system for a programming language with

judgements of the form I' = M : 7.

Type-checking problem: given I', M, and 7,is I' = M : 7 derivable in

the type system?

Typeability problem: given I' and M, is there any 7 for which

I' = M : 7 is derivable in the type system?

Second problem is usually harder than the first. Solving it usually
involves devising a type inference algorithm computing a 7 for each I'

and M (or failing, if there is none).

Slide 7

2 ML Polymorphism

As indicated in the Introduction, static type-checkingegarded by many as an important
aid to building large, well-structured, and reliable safter systems. On the other hand,
early forms of static typing, for example as found in Pasealgded to hamper the ability to
write generic code For example, a procedure for sorting lists of one type o& aatuld
not be applied to lists of a different type of data. It is natwo want apolymorphic
sorting procedure—one which operates (uniformly) on liftseveral different types. The
potential significance for programming languages of thismq@menon opolymorphisnwas
first emphasised by Strachey (1967), who identified sevefferent varieties: see Slide 8.
Here we will concentrate on parametric polymorphism. Ong waget it is to make the
type parameterisation an explicit part of the languageasynwe will see an example of this
in Section 4. In this section we look at tlmplicit version of parametric polymorphism
first implemented in the ML family of languages (and subsetjyeadopted elsewhere, for
example in forthcoming versions of Java an#,Gvhere it is known as “generics”). ML
phrases need contain little explicit type information: tiipe inference algorithm infers a
“most general” type (scheme) for each well-formed phrasenfwhich all the other types of
the phrase can be obtained by specialising type variablesselideas should be familiar to
you from your previous experience of Standard ML. The pofrihs section is to see how
one gives a precise formalisation of a type system and itecaged type inference algorithm
for a small fragment of ML, called Mini-ML.

Polymorphism = “has many types”

Overloading (or ‘ad hoc’ polymorphism): same symbol denotes
operations with unrelated implementations. (E.g. + might mean both
integer addition and string concatenation.)

Subsumption 71 <: 79: any M : 71 can be used as M7 : T without
violating safety.

Parametric polymorphism (“generics”): same expression belongs to a
family of structurally related types. (E.g. in SML, length function

fun lengthnil = 0
| length(x::xs) = 14 (lengthxs)

has type T list — int for all types T.)

Slide 8

8 2 ML POLYMORPHISM

Type variables and type schemes in Mini-ML

To formalise statements like
“ length has type T list — int, for all types 7"

it is natural to introduce type variables « (i.e. variables for which types
may be substituted) and write

length : ¥ o (a list — int).

YV a (a list — int) is an example of a type scheme.

Slide 9

2.1 An ML type system

As indicated on Slide 9, to formalise parametric polymaosphi we have to introducegpe
variables An interactive ML system will just display list — int as the type of théength
function (cf. Slide 8), leaving the universal quantificatiover« implicit. However, when it
comes to formalising the ML type system (as is done in the dieimof the Standard ML
‘static semantics’ in Milner, Tofte, Harper, and MacQue®&81, chapter 4) it is necessary to
make this universal quantification over types explicit imgoway. The reason for this has
to do with the typing of local declarations. Consider the eglngiven on Slide 10. The
expression f true) :: (fnil) has typebool list, given some assumption about the type of
the variablef. Two possible such assumptions are shown on Slide 11. Heageniaterested
in the second possibility since it leads to a type system walty useful properties. The
particular grammar of ML types and type schemes that we wélis shown on Slide 12.

2.1 An ML type system

Polymorphism of let-bound variables in ML

For example in
let f = Az(z)in(f true) :: (fnil)

)\:1:(1:) has type 7 — 7 for any type 7, and the variable f to which it is
bound is used polymorphically:

- in (f true), f has type bool — bool
- in (fnil), f has type bool list — bool list

Overall, the expression has type bool list.

Slide 10

“Ad hoc” polymorphism:

if f: bool — bool
and f : bool list — bool list,
then (f true) :: (fnil) : bool list.

“Parametric” polymorphism:

if f:Va(a— a),
then (f true) :: (fnil) : bool list.

Slide 11

10 2 ML POLYMORPHISM

Mini-ML types and type schemes

T
ypes T o= « type variable

| bool type of booleans
| 7 — 7 function type
| T list listtype

where « ranges over a fixed, countably infinite set T'y Var.

Type Schemes

o = VA(T)
where A ranges over finite subsets of the set Ty Var.
When A = {aq,...,ay}, wewrite V A (7) as
Vag,...,an (7).
Slide 12

The following points about type schemes! (1) should be noted.

(i) The case whe is empty, A = {}, is allowed: V{ } (7) is a well-formed type
schemeWe will often regard the set of types as a subset of the set offig schemes
by identifying the type 7 with the type schemev { } (7).

(i) Any occurrences irr of a type variablex € A become bound itv A (7). Thus by
definition, thefree type variablesf a type schemg A (7) are all those type variables
which occur int, but which are not in the finite set. (For example the set of free
type variables of/ o (o — /) is {&’}.) We call a type schemé A (7) closedif it
has no free type variables, that is,Af contains all the type variables occurring in
7. As usual for variable-binding constructs, we are not ggérd in the particular
names of/-bound type variables (since we may have to change them td eanable
capture during substitution of types for free type variahl&@ hereforave will identify
type schemes up to alpha-conversion of-bound type variables. For example,
Va(a—da')andva” (o' — ') determine the same alpha-equivalence class and will
be used interchangeably. Of course the finite set

fiv(V A (7))

of free type variables of a type scheme is well-defined upgbalconversion of bound
type variables. Just as in (i) we identified Mini-ML typesvith trivial type schemes
V{}(7), so we will sometimes write

fto(7)

2.1 An ML type system

11

for the finite set of type variables occurringin(of course all such occurrences are

free, because Mini-ML types do not involve binding openasip

(ili) ML type schemes are not ML types!So for exampleq —V o/ () is neither a well-
formed Mini-ML type nor a well-formed Mini-ML type schemeRather, Mini-ML
type schemes are a notation for families of types, parametkby type variables. We
get types from type schemes by substituting types for typmabkes, as we explain

next.

The “generalises” relation between type schemes and types

and write if 7 can be obtained from the type 7/ by

ct=1,...,n):

T="7r/a1,...,Tn/an].

variables in 0.)

of atype scheme g ifo > 7.

We say a type scheme o0 =V aq,...,qy, (T’) generalises a type T,

simultaneously substituting some types 7; for the type variables o;

(N.B. The relation is unaffected by the particular choice of names of bound type

The converse relation is called specialisation: a type 7 is a specialisation

Slide 13

Slide 13 gives some terminology and notation to do with stuistg types for the bound
type variables of a type scheme. The notion of a type sclggmeralisinga type will feature
in the way variables are assigned types in the Mini-ML typstem that we are going to

define in this section.
Example 2.1.1. Some simple examples of generalisation:

Va(a—a) = bool — bool
Va(la—a) = o list— o list
Vala—a) = (@ —ad)—(a/ —a).
However
Va(a—a) # (o —-ad)—d.

The step of making type schemes first class types will be tak8ection 4.

12 2 ML POLYMORPHISM

This is because in a substitutieiir’ /o], by definition we have to repla@dl occurrences in
7 of the type variablex by 7/. Thus whenr = o — a, there is no type’ for which 7|7’ /]
is the type(a — «) — «. (Simply because in the syntax treerdf’'/a] = 7' — 7/, the two
subtrees below the outermost constructer are equal (hamely ta’), whereas this is false
of (¢ — a) — a.) Another example:

Vay,as () — ag) = alist — bool.

However
Vag (a; — ag) # alist — bool

becausev; is a free type variable in the type scheme; (a; — «2) and so cannot be
substituted for during specialisation.

Mini-ML typing judgement

takes the form where

e the typing environment I is a finite function from variables to type

schemes.
Wewrite I' = {z1 : 01,...,2, : 0} to indicate that I has
domain of definition dom(I") = {x1, ..., x,} and maps each z;

to the type scheme o; fori = 1..n.)
e M is an Mini-ML expression

e T is an Mini-ML type.

Slide 14

Slide 14 gives the form of typing judgement we will use toshtiate ML polymorphism
and type inference. Just as we only consider a small subs< tfpes, we restrict attention
to typings for a small subset of ML expression$, generated by the grammar on Slide 15.
We use a non-standard syntax compared with the definitioMimér, Tofte, Harper, and
MacQueen 1997). For example we write (M) for fn x => M andletz = M; in M,
for let val x = M1 in M2 end. Furthermore we call the symbot™occurring in these
expressions aariablerather than a “(value) identifier”. As usual, the free valéslof Az (M)
are those of\/, except forz. In the expressioflet z = M; in M5, any free occurrences of
the variablex in My become bound in theet-expression. Similarly, in the expression

2.1 An ML type system 13

case M of nil => M, | x1 :: x5 => M3, any free occurrences of the variablgsandz; in
M3 become bound in thease-expression. The axioms and rules inductively generatieg t
Mini-ML typing relation for these expressions are given dilé&s 16-17.

Mini-ML expressions, M
= variable
| true boolean values
| false
| if M then M else M conditional
| Ax(M) function abstraction
| MM function application
| letz=MinM local declaration
| nil nil list
| M:=M list cons
| caseMofnil=> M| x::x=>DM case expression

Slide 15
Note the following points about the type system defined oteSIiL6—-19.

(i) Given a type environmerit we writeI", x : ¢ to indicate a typing environment with
domaindom(I") U {z}, mappingz to o and otherwise mapping like. When we use
this notation it will almost always be the case thag dom(I") (cf. rules (n), (let)
and case)).

(i) In rule (fn) we usel',x : 7, as an abbreviation for,z : V{} (m). Similarly, in
rule (case), I', zq : 71,22 : 7 list really meand’, zq : V{} (11), 22 : V{} (71 list).
(Recall that by definition, a typing environment has to majpeldes to type schemes,
rather than to types.)

(ii) In rule (let) the notationftv(I") means the set of all type variables occurring free in
some type scheme assignedin(For example, if* = {z1 : 01,...,2, : 0,,}, then
fto(T') = ftv(o1)U---U ftv(oy,).) Thus the sefl = ftv(7) — ftv(I") used in that rule
consists of all type variables inthat do not occur freely in any type scheme assigned
inT.

14

2 ML POLYMORPHISM

Mini-ML type system, |

(var >) Fkz:7 if(x:0)€l ando =T
(bool) ' B :bool if B€ {true,false}
) I'EM:bool T'EMy:7 I'Msg:7
i
I'Fif M;thenMsyelse M3 : T
Slide 16
Mini-ML type system, Il
(nil) I'-nil: 7list
I'EMy:7 T'E My : 7list
(cons)
I'E My :: My : 1 list
I'E My list I'EM;:m
Iyxq:m, 201 list M3 1o if 1,22 ¢
(case) dom(T")
I' F case My of nil => M> and r1 # T9

|LE1 xo=> M3z : 7o

Slide 17

2.1 An ML type system

Mini-ML type system, IlI

Fe:mM:m
(fn) ifx ¢ dom(T)
FEXe(M):1 — 7

FI_M12T1—>7'2 Fl‘MQZTl

(app)

'k M1 M2 T2
Slide 18
Mini-ML type system, IV
I'EM,: 1
. e
(let) F,.IVA(T)'_MQ . T |f$¢ dOm(F) and
I'Fletz = MyinMy:7 A= fto () — fto(T)

Slide 19

15

16 2 ML POLYMORPHISM

Assigning type schemes to Mini-ML expressions

Given a type scheme o = V A (), write

if A= ftu(r) — ftv(I') and I = M : 7 is derivable from the axiom
and rules on Slides 16-19.

When I' = { } we just write for { } F M : o and say that

the (necessarily closed—see Exercise 2.5.2) expression M is typeable
in Mini-ML with type scheme o.

Slide 20

As usual, the axioms and rules on Slides 16—-19 are scheniatit/, andr stand for
any well-formed type environment, expression, and type. Theraxand rules are used to
inductively generate thgping relation—a subset of all possible tripldst- M : 7. We say
that a particular tripld” = M : 7 is derivable(or provable or valid) in the type system if
there is a proof of it using the axioms and rules. Thus thentypelation consists of exactly
those triples for which there is such a proof.

In fact we often use the typing relation to assign not jusesyut also type schemes to
Mini-ML expressions, as described on Slide 20.

Example 2.1.2. We verify that the example of polymorphism bét-bound variables given
on Slide 10 has the type claimed there, i.e. that

Flet f = Ax(z)in (f true) :: (fnil) : bool list.
holds.
Proof. First note that- Az(z) : Va (o — «), as witnessed by the following proof:

(var =) usingv{} (a) > «
(f)

1) r:abFr:«
{}FXx(z) :a—«
Next note that sinc& o (« — «) > bool — bool, by (var >) we have

f:Va(la—a)k f: bool — bool.

2.2 Examples of type inference, by hand 17

By (bool) we also have

f:Va(a— a)t true : bool

and applying the ruleapp) to these two judgements we get

(2) f:Va(a—a)tk ftrue: bool.

Similarly, using &pp) on (var =) and fil), we have

(3) f:Va(a—a)k fnil : bool list.

Applying rule (cons) to (2) and (3) we get

f:Va(a—a)t (ftrue): (fnil) : bool list.

Finally we can apply rulel¢t) to this and (1) to conclude

{}Flet f = Ax(x)in(f true):: (fnil) : bool list

as required. O

2.2 Examples of type inference, by hand

As for the full ML type system, for the type system we have jositoduced the typeability
problem (Slide 7) turns out to be decidable. Moreover, anaditpe possible type schemes a
given closed Mini-ML expression may possess, there is a gestral one—one from which
all the others can be obtained by substitution. Before shgpwiny this is the case, we give
some specific examples of type inference in this type system.

18 2 ML POLYMORPHISM

Two examples involving self-application

MY let f = Azxi(Axo(zy1)) in f f

M (AF(f 1)) Azr(Aza(an))

Are M and M’ typeable in the Mini-ML type system?

Slide 21

Given a typing environmert and an expressiof/, how can we decide whether or not
there is a type schemefor whichT' = M : ¢ holds? We are aided in this task by satax-
directed(or “structural”) nature of the axioms and rules:Iif M : V A (7) is derivable,
i.e.if A= fto(r)— ftv(I') andl’ = M : 7 is derivable from Slides 16—19, then the outermost
form of the expressio/ dictates which must be the last axiom or rule used in the pbof
I' = M : 7. Consequently, as we try to build a proof of a typing judgenient M : 7 from
the bottom up, the structure of the expressidndetermines the shape of the tree together
with which rules are used at its nodes and which axioms at#eds. For example, for the
particular expression/ given on Slide 21, any proof df} - M : 7, from the axioms and
rules, has to look like the tree given in Figure 1. Node (COuisp®sed to be an instance
of the (et) rule; nodes (C1) and (C2) instances of the fule; leaves (C3), (C5), and (C6)
instances of thevar >) axiom; and node (C4) an instance of thagif) rule. For these to be
valid instances the constraints (C0)—(C6) listed on Slide&2Ho be satisfied.

2.2 Examples of type inference, by hand 19

(3
Ty 173, . Ts T @ Tg (02) (05) (06)
1713 Axg(xy) @ Ty 1) fYA()F f:m f:VA(m)F f:1s
{}}_)\ml(/\x‘g(l’l))iTQ fI\V/A(TQ)}_ffZTl

(C0)

{}Flet f=Axy(Aza(x1))inf f:m

Figure 1: Skeleton proof tree for let f = Azq(Aza(z1)) in f f

Constraints generated while inferring a type for

let f = Azi(Aza(z1))in f f
(CO) A = fto(r2)
(C1) Ty = T3 — T4
(C2) T4 = Ts — T
(C3) V{}(13) > 76, i.e. T3 = Tg
(C4) T7 = T8 — Tl
(C5) VA(m) =17
(C6) VA(m) > T3

Slide 22

ThusM is typeable if and only if we can find types, . . . , 75 satisfying the constraints
on Slide 22. First note that they imply

(C1) (C2) (C3)
To = T3—T4 = 13— (175 = 76) = 76— (75 — T¢).

So let us takers, 74 to be type variables, says, a; respectively. Hence by (CO4A =
fto(1e) = ftv(ag — (ag — a1)) = {a1, as}. Then (C4), (C5) and (C6) require that

VOél,OéQ (041 — (042 —>061)) — T8 — T1 and VOél,OéQ (041 — (042 —>061)) >~ T8.

20 2 ML POLYMORPHISM

In other words there have to be some typgs . ., 712 such that

(C7) 7'9—>(7'10—>7'9):7'8—>7'1

(C8) 11 — (T12 — T11) = Ts.
Now (C7) can only hold if
Tg = T8 and Ti0 — T9 = T1

and hence

(C8)
T1 =T10 7 T9 =T10 778 = T10 — (7'11 - (7'12 —>7'11)).

with 7, 711, 712 Otherwise unconstrained. So if we take them to be type @saly, a4, as
respectively, all in all, we can satisfy all the constramtsSlide 22 by defining

A={ag,as}

1 = ag — (a4 — (a5 — aq))

T2 = a1 — (a2 — aq)

T3 = a1

T4 = G2 — 01

T5 = (2

Te = Q1

T = (u — (a5 — ag)) — (a3 — (g — (a5 — ay)))

Ts = ay — (a5 — ay).
With these choices, Figure 1 becomes a valid proof of
{}Flet f=Azi(Aza(z1))in f f 1 a3 — (4 — (a5 — o))
from the typing axioms and rules on Slides 16-19, i.e. we de ha
(4) Flet f=Azi(Aze(z1))inf f: Vas, as, a5 (a3 — (s — (a5 — aa)))

If we go through the same type inference process for the egfme)/’ on Slide 21 we
generate a tree and set of constraints as in Figure 2. The@dgimparticular that

(C13) (C12) (C11)
Tr = T4 = Tg = Ty —T5.

But there are no types;, 77 satisfyingr; = m — 75, because; — 75 contains at least one
more ‘=’ symbol than does;. So we conclude that f(f f)) A\z1(Az2(z1)) is not typeable
within the ML type system.

2.2 Examples of type inference, by hand

21

e (012) o (O13) e (C10)
fimubfi76 fomub fomg (1) 1:78,%2 1 Tio - @1 1 T11 (©15)
fimbff:Ts x1: 718 b Axa(xy) T

(C10) (C14)
{}EXNF(ff): 72 {} Ay (Aza(x1)) : 73

(C9)
{FE QL) Aor(Aza(z1)) : 7

Constraints:

(C9) T2 =73 —1T1
(C10) Ty = T4 —Ts
(C11) T6 =T7r —Ts
(C12) V{}(14) = 76, ie. T4 =76

(C13) V{}(m4) = 17,ie. T4 = T7

(C14) T3 = Tg — To
(C15) T9 = T10 — T11
(C16) V{} (1) >~ 18, i.e. 11 = T3

Figure 2: Skeleton proof tree and constraints for (Af(f f)) Az1(Aza(z1))

22 2 ML POLYMORPHISM

2.3 Principal type schemes

The type schem¥ as, ay, as (a3 — (ag — (a5 — ay))) not only satisfies (4), it is in fact
the most general, gprincipal type scheme follet f = Az (Az2(2z1)) in f f, as defined
on Slide 23. It is worth pointing out that in the presence 9f (e converse of condition
(b) on Slide 23 holds: if- M : YA(r) andV A(r) = 7/, then- M : VA’ (7') (where
A’ = fto(7")). This is a consequence of the substitution property ofivslini-ML typing
judgements given in Exercise 2.5.6.

Slide 24 gives the main result about the Mini-ML typeabilfyoblem. It was first
proved for a simple type system without polymorphiet-expressions by Hindley (1969)
and extended to the full system by Damas and Milner (1982).

Principal type schemes for closed expressions

A closed type scheme Y A (7) is the principal type scheme of a closed
Mini-ML expression M if

@FM:YVA(T)

(b) for any other closed type scheme V A’ (1),
if- M :VA (7)), thenVA(T) =7/

Slide 23

Remark 2.3.1(Complexity of the type checking algorithmplthough typeability is decid-
able, itis known to be exponential-time complete. Furthememthe principal type scheme of
an expression can be exponentially larger than the expregself, even if the type involved
is represented efficiently as a directed acyclic graph. Mweeisely, the time taken to de-
cide typeability and the space needed to display the prheype are both exponential in
the number of nestetkt’s in the expression. For example the expression on SlideaR&1f
from Mairson 1990) has a principal type scheme which wolktd taundreds of pages to print
out. It seems that such pathology does not arise naturaltiyitzat the type checking phase
of an ML compiler is not a bottle neck in practice. For moreailstabout the complexity of
ML type inference see (Mitchell 1996, Section 11.3.5).

2.3 Principal type schemes

Theorem (Hindley; Damas-Milner)

If the closed Mini-ML expression M is typeable (i.e. = M : o holds for
some type scheme o), then there is a principal type scheme for M .

Indeed, there is an algorithm which, given any M as input, decides
whether or not it is typeable and returns a principal type scheme if it is.

Slide 24

An ML expression with a principal type scheme
hundreds of pages long

let pair = Ax(Ay(Az(zxy))) in
let x1 = Ay(pairyy) in
letzy = A\y(z1(x1y)) in
let zg = Ay(z2(x2y)) in
let x4 = Ay(z3(x3y)) in
let x5 = M\y(z4(x4y)) in
z5(Ay(y))

(Taken from Mairson 1990.)

Slide 25

23

24 2 ML POLYMORPHISM

2.4 Atype inference algorithm

The aim of this subsection is to sketch the proof of the Hipddamas-Milner theorem stated
on Slide 24, by describing an algorithm, for deciding typeability and returning a most
general type schement is defined recursively, following structure of expressi¢asd its
termination is proved by induction on the structure of egpiens). As the examples in
Section 2.2 should suggest, the algorithm depends cruciptbnunification—the fact that
the solvability of a finite set of equations between algebtarms is decidable and that a
most general solution exists, if any does. This fact wasadised by Robinson (1965)
and has been a key ingredient in several logic-related afeasmputer science (automated
theorem proving, logic programming, and of course typessyst to name three). The form of
unification algorithmyngu, we need here is specified on Slide 26. Although we won’t bothe
to give an implementation ofvgu here (see for example (Rydeheard and Burstall 1988,
Chapter 8), (Mitchell 1996, Section 11.2.2), or (Aho, Sedimd Uliman 1986, Section 6.7)
for more details), we do need to explain the notation for tgpbstitutions introduced on
Slide 26.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types 71 and
T2 decides whether 77 and 72 are unifiable, i.e. whether there exists a
type-substitution S € Sub with

@ S(11) = S(m).

Moreover, if they are unifiable, mgu(ﬁ, 7'2) returns the most general
unifier—an S’ satisfying both (a) and

(b) forall S’ € Sub, if S’(11) = S'(72), then S” = T'S for some
T € Sub.

By convention mgu(Ty, 7o) = FAILif (and only if) 71 and 75 are not unifiable.

Slide 26

Definition 2.4.1 (Type substitutions) A type substitutionS' is a (totally defined) function
from type variables to Mini-ML types with the property théitc) = « for all but finitely
many«. We writeSub for the set of all such functions. Tlmainof S € Sub is the finite
set of variables

dom(S) et {a € TyVar | S(a) # a}

Given a type substitutioy, the effect of applying the substitution to a type is written

2.4 Atype inference algorithm 25

S 7; thus if dom(S) = {a1,...,a,} andS(«;) is the typer; for eachi = 1..n, thenS(7) is
the type resulting from simultaneously replacing each oetwce ofa; in 7 with 7; (for all
1 =1..n), le.

St=71lmn/a1,..., /0]

using the notation for substitution from Slide 13. Notwithreding the notation on the right
hand side of the above equation, we prefer to write the agidic of a type substitution
functionS on the left of the type to which it is being appliéds a result, theompositioril’S

of two type substitution$, 7' € Sub means first applys and therl". Thus by definitioril"S

is the function mapping each type variabléo the typel'(S(«)) (apply the type substitution
T to the typeS(«)). Note that the functio’S does satisfy the finiteness condition required
of a substitution and we do hat&S € Sub; indeed,dom(T'S) C dom(T") U dom(S).

More generally, ifdom(S) = {aq, ..., o, } ando is an Mini-ML type scheme, thefi o
will denote the result of the (capture-avoidfigubstitution ofS(«;) for each free occurrence
of a; in o (fori = 1..n).

Even though we are ultimately interested in the typeabdftglosedexpressions, since
the algorithmpt descends recursively through the subexpressions of the expression,
inevitably it has to generate typings for expressions wite fvariables. Hence we have
to define the notions of typeability and principal type sckeior open expressions in the
presence of a non-empty typing environment. This is doneligie 7. For the definitions
on that slide to be reasonable, we need some properties tffhmg relation with respect
to type substitutions and specialisation. These are stateflide 28; we leave the proofs
as exercises (see Exercise 2.5.6). To compute principaldgpemes it suffices to compute
‘principal solutions’ in the sense of Slide 27: forif is in fact closed, then any principal
solution(S, o) for the typing problen{ } - M : ? has the property that is a principal type
scheme forM! in the sense of Slide 23 (see Exercise 2.5.5).

li.e. we writeS 7 rather tharr S as in the Part IB.ogic and Proofcourse.
2Since we identify type schemes up to renaming thefround type variables, we always assume
the bound type variables inare different from any type variables in the typge@y;).

26

2 ML POLYMORPHISM

Principal type schemes for open expressions

A solution for the typing problem I' = M : 7 is a pair (S, a) consisting
of a type substitution S' and a type scheme o satisfying

ST'HFM:o

where ST ={z1 : So1,...,2n : Sop}, il ={z1 1 01,...,25 : O }).

Such a solution is principal if given any other, (S’, o’), there is some
T € Subwith TS = S"and T'(0) > o’.

[For type schemes o and o’, with ¢’ =V A’ (1) say, we define

o = o [tomean A’ N ftv(o) = {}and o > 7]

Slide 27

Properties of the Mini-ML typing relation

e IfI' = M : o, then for any type substitution S € Sub
ST'H M : So.

e lf’HFM:ocando = o', thenT' - M : o'.

Slide 28

2.4 Atype inference algorithm 27

Specification for the principal typing algorithm, pt

pt operates on typing problems I' = M : 7 (consisting of a typing
environment I' and a Mini-ML expression M). It returns either a pair

(S, 7') consisting of a type substitution S € Sub and a Mini-ML type T,
or the exception FAIL.

e IfI"' = M : 7 has a solution (cf. Slide 27), then pt(I' - M : 7)
returns (.S, 7) for some S and T;

moreover, setting A = (ftv(7) — ftv(ST)), then (S,V A (7)) isa
principal solution for the problem I' = M : 7.

e If ' = M : 7 has no solution, then pt(I" = M : ?7) returns FAIL.

Slide 29

Slide 29 sets out in more detail what is required of the ppalctyping algorithm,pt.
One possible algorithm in somewhat informal pseudocode lEaving out the cases fat 1,
cons, andcase-expressions) is sketched on Slide 30 and in FiguteN&te the following
points about the definitions on Slide 30 and in Figure 3:

(1) We implicitly assume that all bound variables in express and bound type variables
in type schemes are distinct from each other and from any etireables in context.
So, for example, the clause for function abstractionslyeagisumes that ¢ dom(I');
and the clause for variables assumes that ftv(I') = { }.

(i) The type substitution/d occurring in the clauses for variables and booleans is the
identity substitution which maps each type variabléo itself.

(i) We have not given the clauses of the definition fdrl, cons, ancttase-expressions
(Exercise 2.5.4).

(iv) We do not give the proof that the definition in Figure 3 isrrect (i.e. meets the
specification on Slide 29): but see Exercise 2.5.7. The coress of the algorithm

A complete implementation of this algorithm in Fresh O’Cdmiw. freshml . org/foc/) can be
found on the course web page. The Fresh O’Caml code is refigdase to the informal pseudocode

given here, because of Fresh O’Caml’s sophisticated fi@silfor dealing with binding operations and
fresh names.

28 2 ML POLYMORPHISM

depends upon an important property of Mini-ML typing, naynislatit is respected
by the operation of substituting types for type variabkee Exercise 2.5.6.

Some of the clauses in a definition of pt

Function abstractions: pt(I" = Az(M) : 7) def

let o = fresh in

let (S,7)=pt(C,x:akF M:?7)in (S,S(a) — 7)
Function applications: pt(I" = My My : 7) o

let (S1,71) =pt(I'F M;:7)in

let (S2,72) = pt(S1TF My :7)in

let o = fresh in

let S3 = mgu(Se 11,72 — «) in (535251, S3(a))

Slide 30

More efficient algorithms make use of a different approacisubstitution and unifi-
cation, based on equivalence relations on directed acydiphg and union-find algorithms:
see (emy 2002, Sect. 2.4.2), for example. In that reference, ludmPierce’s book (Pierce
2002, Section 22.3), you will see an approach to type inf@egorithms that views them as
part of the more general problem of generating and solgorgstraint problemsThis seems
to be a fruitful viewpoint, because it accommodates a widgezof different type inference
problems.

2.5 Exercises

Exercise 2.5.1.Here are some type checking problems, in the sense of SlidR¥oke the
following typings hold for the Mini-ML type system:

FAz(z::nil) : Va (o — alist)

F Ax(casex of nil =>true | x :: w9 => false) : Vo (« list — bool)
FAzp(Aze(z1)) : Vag,as (o — (ag — aq))

Flet f=Azi(Axa(z1))in f f : Vaq, as, a3 (a1 — (ae — (a3 — a2))).

2.5 Exercises 29

Variables: pt(T Fz:?) %< let VA (7) = D(2) in (Id, 7)

let-Expressions: pt(I' - letx = My in My : 7) o

let (Sl,Tl) = pt(F F M1 : 7) in
let A= fto(m) — fto(S1 1) in
let (Sa,72) = pt(S10,x : VA (1) F My :7)in (5251, 72)

Booleans (B = true, false): pt(I'+ B : 7)< (1d, bool)

Conditionals: pt(I' - if M; then M, else M3 : 7) def

let (S1,71) =pt(I' M :7)in

let Sy = mgu(ry, bool) in

let (Sg,Tg) = pt(SQS;l 'k M2 : 7) in

let (S4,7'4> = pt(SgSgSl '+ M3 : 7) in

let 55 = mgu(S4 73, ’7'4) n (555’43352517 S5 T4)

Figure 3: Some of the clauses in a definition of pt

Exercise 2.5.2.Show that if{ } - M : o is provable, then\/ must beclosed i.e. have
no free variables. [Hint: use rule induction for the rulesSlides 16-19 to show that the
provable typing judgement§, - M : 7, all have the property that (M) C dom(T).]

Exercise 2.5.3.Let o ando’ be Mini-ML type schemes. Show that the relation- o’
defined on Slide 27 holds if and only if

Vr(o' =7 = o»=1).
[Hint: use the following property of simultaneous subgtdn:
(r[ri/e, .., mfan)[7 /@) = Tlni[7 &) fau, ..., 7ol7 /&) o]
which holds provided the type variabl@sdo not occur inr.]

Exercise 2.5.4.Try to augment the definition gft on Slide 30 and in Figure 3 with clauses
fornil, cons, anttase-expressions.

Exercise 2.5.5.SupposéeV/ is a closed expression and thiat o) is a principal solution for
the typing problem{ } - M : 7 in the sense of Slide 27. Show thatmust be a principal
type scheme fol/ in the sense of Slide 23.

Exercise 2.5.6.Show that ifl" - M : o is provable ands € Sub is a type substitution, then
ST+ M : Sois also provable.

Exercise 2.5.7. [hard]Try to give some of the proof that the definition in Figure 3 sd¢ke
specification on Slide 29. For example, try to prove that if

VT (pt(I' = M; : 7) has correct propertigs

30 2 ML POLYMORPHISM

fori = 1,2, then
VT (pt(I' F My M, : 7) has correct propertig¢s

(Why is it necessary to build the quantification oveinto the inductive hypotheses?)

31

3 Polymorphic Reference Types
3.1 The problem

Recall from the Introduction that an important purpose oktggstems is to providsafety
(Slide 3) viatype soundnes®sults (Slide 4). Even if a programming language is intende
to be safe by virtue of its type system, it can happen thatragpéeatures of the language,
each desirable in themselves, can combine in unexpectesl twgroduce an unsound type
system. In this section we look at an example of this whicluged in the development of
the ML family of languages. The two features which combina imasty way are:

e ML's style of implicitly typedlet-bound polymorphism, and
e reference types.

We have already treated the first topic in Section 2. The skconcerns ML's imperative
features, which are based upon the ability to dynamicalbate locally scoped storage
locations which can be written to and read from. We begin bingithe syntax and typing
rules for this. We augment the grammar for Mini-ML types 8li12) with a unit type (a
type with a single value) an@ferencetypes; and correspondingly, we augment the grammar
for Mini-ML expressions (Slide 15) with a unit value, and og®ons for reference creation,
dereferencing and assignment. These additions are shoshdmn31. We call the resulting
language Midi-ML. The typing rules for these new forms of eegsion are given on Slide 32.

ML types and expressions for mutable references

T =
| unit unit type
| Tref reference type.
M =
() unit value

‘M dereference

|
| ref M reference creation
|
| M :=M assignment

Slide 31

32 3 POLYMORPHIC REFERENCE TYPES

Midi-MLs extra typing rules

(unit) L' (): unit
(ref) '=M:r
I'Fref M : 7ref
' M :1ref
(get)
r='M:r
'EMy:7ref THMy:T
(set)

I' = My := My : unit

Slide 32

Example 3.1.1

The expression

letr = ref \z(z)in
letu = (r:= Az/(ref!z’)) in

('r)0)

has type unzt.

Slide 33

3.1 The problem 33

Example 3.1.1. Here is an example of the typing rules on Slide 32 in use. Tipeession
given on Slide 33 has typenit.

Proof. This can be deduced by applying thet] rule (Slide 19) to the judgements
{} Fref \z(x): (o« — a) ref
r:Va((a—a)ref) - letu = (r:= \a'(ref !2')) in (I7)() : unit.
The first of these judgements has the following proof:

(var)

(fn)

riakFzr:ia
{}FXz(z):a—a
{} Fref \z(x): (o« — a) ref

(ref)

The second judgement can be proved by applyinglthg rule to

(5) r:Va((a— a)ref) b r:=\t'(ref!z’) : unit
(6) r:Va((a—a)ref),u: unit = (Ir)() : unit

Writing I for the typing environmenfr : Vo ((a — «) ref)}, the proof of (5) is

(var >)
o' :aref a2’ aref
- - (get)
Lax':aref Fl2': «
(ref)

I,2 :aref - refls : aref

>~) (fn)

(var
TCkr:(aref — aref)ref [X/ (refla’) : aref — aref

(set)
[k r:= X/ (ref!l2) : unit
while the proof of (6) is
(var >)
Dyu: unit Fr: (unit — unit) ref
(get) (unit)
D u: unit v @ unit — unit D u: unit & () : unit
(app)

Lyu:unit = (1r)() : unit
0

Although the typing rules for references seem fairly inrmesj they combine with the
previous typing rules, and with thé&() rule in particular, to produce a type system for which
type soundness fails with respect to ML's operational seéimgnFor consider what happens
when the expression on Slide 33, callf, is evaluated.

Evaluation of the outermosdtet-binding in M creates a fresh storage location bound
to » and containing the valuaz(z). Evaluation of the secontlet-binding updates the

34 3 POLYMORPHIC REFERENCE TYPES

contents ofr to the value\z’(ref !z’) and binds the unit value te. (Since the variable
does not occur in its bodyl/’s innermostlet-expression is just a way of expressing the
sequencér := Az’ (ref !2’)); (I7)() in the fragment of ML that we are using for illustrative
purposes.) Next'r)() is evaluated. This involves applying the current contehts which is
Az’ (ref l2’), to the unit valud). This results in an attempt to evaluatg i.e. to dereference
something which is not a storage location, an unsafe operathich should be trapped. Put
more formally, we have

(M,{}) — FAIL

in the transition system defined in Figure 4 and Slide 34 (uthe rather terse “evaluation
contexts” style of Wright and Felleisen (1994)). The confajiems of the transition system
are of two kinds:

e A pair (M, s), whereM is an ML expression and is a state—a finite function
mapping variables;, (here being used as the names of storage locations) tacsignta
values V. (The possible forms ol for this fragment of ML are defined in
Figure 4.) Furthermore, we require a well-formedness dmrdior such a pair to
be a configuration: the free variablesof and of each value(x) (asx ranges over
dom(s)) should be contained in the finite séim(s).

e The symbolFAIL, representing a run-time error.

(The notations[z +— V] used on Slide 34 means the state with domain of definition
dom(s) U {x} mappingz to V' and otherwise acting like.)

Midi-ML transitions involving references

(lx,s) — (s(z),s) ifx € dom(s)
(V,s) — FAIL itV not a variable
(@:=V") = (), slz— V)
(V:=V' s) — FAIL ifV nota variable

(ref V,s) — (z,s[x — V) ifz ¢ dom(s)
where V' ranges over values:

Vi=a | Xx(M)|()|true | false |nil |V =V

Slide 34

3.1 The problem 35

The axioms and rules inductively defining the transition system for Midi-ML are those on
Slide 34 together with the following ones:

e (if truethen M; else My, s) — (M, s)
e (if falsethen M; else My, s) — (M, s)
e (if V then M; else My, s) — FAIL, if V ¢ {true, false}
o ((Az(M))V',s) — (M[V'/z],s)
o (VV' s) — FAIL, if V not a function abstraction
o (letz =V inM,s) — (M[V/x],s)
e (casenilofnil=>M | z;::xo=>M",s) — (M,s)
o (caseVjuVoofnil=M | zy xo=>M',s) — (M'[Vi/21,Va/22],)
e (caseVofnil=>M |z :: 20 =>M',s) — FAIL, if V is neither nil nor a cons-
value
(M,s) — (M',s")
(€M), 5) — (€D,)
. (M, sy — FAIL

(E[M], s) — FAIL

where V' ranges over values:
Vi=x | x(M)| ()| true | false |nil |V =V
& ranges over evaluation contexts:

E = —|iffthenMelseM |EM |VE|letz=EinM |EM |V =&
| casefofnil=Mlzuxz=>M |refl|IE|E=M|V =&

and £[M] denotes the Midi-ML expression that results from replacing all occurrences of
—" by M in €.

Figure 4: Transition system for Midi-ML

36 3 POLYMORPHIC REFERENCE TYPES
3.2 Restoring type soundness

The root of the problem described in the previous sectios irethe fact that typing
expressions likaet r = ref M; in M5 with the (et) rule allows the storage location (bound
to) r to have a type schemegeneralising the reference type of the typédf. Occurrences
of r in M5 refer to the same, shared location and evaluatial@may cause assignments to
this shared location which restrict the possible type okeglent occurrences of But the
typing rule allows all these occurrencesrafo haveanytype which is a specialisation of,
and this can lead to unsafe expressions being assigned ages have seen.

We can avoid this problem by devising a type system that pte\generalisation of type
variables occurring in the types of shared storage locati@mumber of ways of doing this
have been proposed in the literature: see (Wright 1995) foneeg of them. The one adopted
in the original, 1990, definition of Standard ML (Milner, Tef and Harper 1990) was that
proposed by Tofte (1990). Itinvolves partitioning the deiype variables into two (countably
infinite) halves, the “applicative type variables” (rangeer by«) and the “imperative type
variables” (ranged over by). The rule (ef) is restricted by insisting that only involve
imperative type variables; in other words the principaltyggcheme oz (ref =) becomes
V_a(.a — _aref), rather thar/ a (« — a ref). Furthermore, and crucially, théef) rule
(Slide 19) is restricted by requiring that when the type sthe = V A (1) assigned ta\/;
is such that4 contains imperative type variables, théf must be a value (and hence in
particular its evaluation does not create any fresh stdmions).

This solution has the advantage that in the new system tleabylity of expressions not
involving references is just the same as in the old systemveier, it has the disadvantage
that the type system makes distinctions between expressioich are behaviourly equivalent
(i.e. which should be contextually equivalent). For exaariplere are many list-processing
functions that can be defined in the pure functional fragné&ML by recursive definitions,
but which have more efficient definitions using local refees1 Unfortunately, if the type
scheme of the former is something likex (« list — « list), the type scheme of the latter
may well be the different type scherea (-« list — _a list). So we will not be able to use
the two versions of such a function interchangeably.

The authors of the revised, 1996, definition of Standard Mllr{&t, Tofte, Harper, and
MacQueen 1997) adopt a simpler solution, proposed indegrlydoy Wright (1995). This
removes the distinction between applicative and impezdtipe variables (in effect, all type
variables are imperative, but the usual symhaola’ ... are used) while retaining a value-
restricted form of thelét) rule, as shown on Slide 35Thus our version of this type system
is based upon exactly the same form of type, type scheme amjtjudgement as before,
with the typing relation being generated inductively by éix@ms and rules on Slides 16-19
and 32, except that the applicability of tHet{ rule is restricted as on Slide 35.

IN.B. what we call a value, (Milner, Tofte, Harper, and Mac®ue 997) calls aon-expansive
expression

3.2 Restoring type soundness 37

Value-restricted typing rule for ~ let-expressions

F|—M1:7'1
Cox:VA(T)F My

(letv)
I'letx = M;inMs : 1

(1) provided z ¢ dom(T") and
o {} if M7 is not a value
a fto() — fto(T") it M7 is a value

(Recall that values are given by
Vi=xz | x(M)| ()| true | false |nil |V = V)

Slide 35

Example 3.2.1. The expression on Slide 33 is not typeable in the type sysbelidi-ML
resulting from replacing rulddt) by the value-restricted ruléefv) on Slide 35 (keeping all
the other axioms and rules the same).

Proof. Because of the form of the expression, the last rule used ipaf of its typeability
must end with fetv). Because of the side condition on that rule and sirefe A\x(x) is not
a value, the rule has to be applied with= { }. This entails trying to type

(7) letu = (r:= \z'(ref !2')) in (Ir)()

in the typing environment = {r : (o« — «) ref }. But this is impossible, because the type
variablea is not universally quantified in this environment, wherdeestivo instances ofin
(7) are of different implicit types (namelyy ref — a ref) ref and(unit — unit) ref). O

The above example is all very well, but how do we know that weehachieved safety
with this type system for Midi-ML? The answer lies in a fornpabof of thetype soundness
property stated on Slide 36. To prove this result, one firsttoaormulate a definition of
typing for general configurations\/, s) when the state is non-empty and then show

e typing is preserved under steps of transities,

e if a configuration can be typed, it cannot posses a tranditidd /L.

38 3 POLYMORPHIC REFERENCE TYPES

Thus a sequence of transitions from such a well-typed cordigun can never lead to the
F AIL configuration. We do not have the time to give the detailsimdburse: the interested
reader is referred to (Wright and Felleisen 1994; Harper 1884examples of similar type
soundness results.

Type soundness for Midi-ML with the value restriction

For any closed Midi-ML expression M, if there is some type scheme o

for which
FM:o

is provable in the value-restricted type system (axioms and rules on
Slides 16-18, 32 and 35), then evaluation of M does not fail, i.e. there is
no sequence of transitions of the form

(M,{}) — -+ — FAIL

for the transition system — defined in Figure 4
(where { } denotes the empty state).

Slide 36

Although the typing rulel¢tv) does allow one to achieve type soundness for polymorphic
references in a pleasingly straightforward way, it does nmimat some expressions not
involving references that are typeable in the original Mpdysystem are no longer typeable
(Exercise 3.3.2.) Wright (1995, Sections 3.2 and 3.3) aeslylse consequences of this and
presents evidence that it is not a hindrance to the use oti&tdML in practice.

3.3 Exercises

Exercise 3.3.1.Letting M denote the expression on Slide 33 gndthe empty state, show
that(M, {}) —* FAIL is provable in the transition system defined in Figure 4.

Exercise 3.3.2.Give an example of a Mini-ML1et-expression which is typeable in the
type system of Section 2.1, but not in the type system of 8e@&i2 for Midi-ML with the
value-restricted rulelétv).

4 Polymorphic Lambda Calculus

In this section we take a look at a type system for explicitjyetd parametric polymorphism,
variously called thgolymorphic lambda calculyushe second order typed lambda calcujus
or system Flt was invented by the logician Girard (1972) and, indegarly and for different
purposes, by the computer scientist Reynolds (1974). Iturasd out to play a foundational
role in the development of type systems somewhat simildrabglayed by Church’s untyped
lambda calculus in the development of functional prograngmAlthough it is syntactically
very simple, it turns out that a wide range of types and typestactions can be represented
in the polymorphic lambda calculus.

4.1 From type schemes to polymorphic types

We have seen examples (Example 2.1.2 and the first examplieder23) of the fact that the
ML type system permitiet-bound variables to be used polymorphically within the botly
a let-expression. As Slide 37 points out, the same is not trug-ledund variables within
the body of a function abstraction. This is a consequencleofact that ML types and type
schemes are separate syntactic categories and the fuhgi®iconstructor,—, operates on
the former, but not on the latter. Recall that an importanppse of type systems is to provide
safety(Slide 3) viatype soundned$lide 4). Use of expressions such as those mentioned on
Slide 37 does not seem intrinsically unsafe (although uskeo§econd one may cause non-
termination—cf. the definition of the fixed point combinaitountyped lambda calculus). So
it is not unreasonable to seek type systems more powerfoltt@ML type system, in the
sense that more expressions become typeable.

One apparently attractive way of achieving this is just tagedypes and type schemes
together: this results in the so-callpdlymorphic typeshown on Slide 38. So let us consider
extending the ML type system to assign polymorphic typepressions. So we consider
judgements of the form' - M : = where:

e 7 is a polymorphic type;
e ['is a finite function from variables to polymorphic types.

In order to make full use of the mixing ef andV present in polymorphic types we
have to replace the axiomdr) of Slide 16 by the axiom and two rules shown on Slide 39.
(These are in fact versions for polymorphic types of ‘adibissules’ in the original ML type
system.) In ruleqpec), 7|7’ /a] indicates the polymorphic type resulting from substitgtin
7’ for all free occurrences af in .

39

40

4 POLYMORPHIC LAMBDA CALCULUS

A-bound variables in ML cannot be used
polymorphically within a function abstraction

E.g. A\f((ftrue):: (fnil))and Af(f f) are not typeable in the ML type
system.

Syntactically , because in rule
e:mbEM:m

(fn)
X Xe(M):1— 1

the abstracted variable has to be assigned a trivial type scheme (recall
x ;7 stands for z : V{ } (1))

Semantically , because V A (71) — T2 is not semantically equivalent to
an ML type when A # { }.

Slide 37
Monomorphic types ...
Tu=a | bool | T— 7| T list
...and type schemes
ou=1|Val(o)
Polymorphic types
mu=a | bool | m—m|wlist | Va(m)

E.g.a — o isatype, Va (o —) is a type scheme and a polymorphic type
(but not a monomorphic type), V a () — « is a polymorphic type, but not a
type scheme.

Slide 38

4.1 From type schemes to polymorphic types 41

Identity, Generalisation and Specialisation

(id) F'Fz:nm if(z:m) el

'-M:n=
(gen) if v & fto(I
g 'EM:Va(r) # fivil)

'-M:Va(r)
I'EM:rw[r'/a]

(spec)

Slide 39

Example 4.1.1. In the modified ML type system (with polymorphic types ancr(>-)
replaced by id), (gen), and §pec)) one can prove the following typings for expressions
which are untypeable in ML

(8) {} FAf((f true) :: (fnil)) : Va (o — «) — bool list
9) {}EA(fS) :Va(a) = Va(a).

Proof. The proof of (8) is rather easy to find and is left as an exerdik=re is a proof for

(9):

(id) (id)
f:Vag (o) F f:Vaq (o) X f:Vay(an)bF f:Vag (aq))
fI\V/Oél(Oél)}_fIOJQHOLQ f:Val(al)l—f:ag

(app)

fZVOél (Oél)l_ffiozg
f:Var (o) F ff:Vas(a)
{PEAMf]) Vo (a1) = Vaz (az)

(gen)
(fn).

Nodes (1) and (2) are both instances of thpe¢) rule: the first uses the substitution
(g — ag)/aq, whilst the second uses, /«;. O

42 4 POLYMORPHIC LAMBDA CALCULUS

Fact (see Wells 1994):

For the modified ML type system with polymorphic types and (var >)
replaced by the axiom and rules on Slide 39, the type checking and
typeability problems (cf. Slide 7) are equivalent and undecidable.

Slide 40

So why does the ML programming language not use this extehgersystem with
polymorphic types? The answer lies in the result stated @e 3l0: there is no algorithm
to decide typeability for this type system (Wells 1994). Thiiiculty with automatic type
inference for this type system lies in the fact that the galisation and specialisation rules
are not syntax-directed: since an application of eitlgen) or (spec) does not change the
expressionV/ being checked, it is hard to know when to try to apply them allbttom-up
construction of proof inference trees. By contrast, in an Metsystem based oiif, (gen)
and gpec), but retaining the two-level stratification of types int@nomorphic types and
type schemes, this difficulty can be overcome. For in thag¢ ca® can in fact push uses of
(spec) right up to the leaves of a proof tree (where they merge withdxioms to become
(var) axioms) and push uses afef) right down to the root of the tree (and leave them
implicit, as we did on Slide 19).

4.2 The PLC type system

The negative result on Slide 40 does not rule out the use gfdlyenorphic types of Slide 38
in programming languages, since one may consaxglicitly typedlanguages (Slide 41)
where the tagging of expressions with type information ezadhe typeability problem
essentially trivial. We consider such a language in thiseation, thegolymorphic lambda
calculus(PLC).

4.2 The PLC type system 43

Explicitly versus implicitly typed languages

Implicit: little or no type information is included in program phrases and
typings have to be inferred (ideally, entirely at compile-time). (E.g.
Standard ML.)

Explicit: most, if not all, types for phrases are explicitly part of the syntax.
(E.g. Java.)

E.g. self application function of type V o (o) — V av ()
(cf. Example 4.1.1)

Implicitly typed version: A f (f f)
Explicitly type version: A f : Vay (1) (A s (f(ae — a2)(f az2)))

Slide 41

Remark 4.2.1 (Explicitly typed languages)One often hears the view that programming
languages which enforce a large amount of explicit type rmfdion in programs are
inconveniently verbose and/or force the programmer to nelgerithmically irrelevant
decisions about typings. But of course it really depends upenintended applications.
At one extreme, in a scripting language (interpreted imtarely, used by a single person to
develop utilities in a rapid edit-run-debug cycle) imaigiping may be desirable. Whereas at
the opposite extreme, a language used to develop largeasefsystems (involving separate
compilation of modules by different teams of programmeray imenefit greatly from explicit
typing (not least as a form of documentation of programmiat&sntions, but also of course
to enforce interfaces between separate program parts)rt Apen these issues, explicitly
typed languages are usefuliatermediate languagas optimising compilers, since certain
optimising transformations depend upon the type inforamathey contain. See (Harper and
Stone 1997), for example.

44

4 POLYMORPHIC LAMBDA CALCULUS

PLC syntax

Types

Expressions

M

T = type variable

| 7 —7 function type

| VYa(r) V-type

X variable

Az : 7 (M) function abstraction

|

| MM function application
| Ao (M) type generalisation
|

Mt type specialisation

(v and x range over fixed, countably infinite sets T'yVar and Var respectively.)

Slide 42

Functions on types

In PLC,

Aa (M)

is an anonymous notation for the function F’

mapping each type 7 to the value of M [7 /] (of some particular type).

denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on types

(Aa(M)) T — M[r/a]

as well as the usual form of beta-reduction from \-calculus

()\LU . T(Ml))M2 — Ml[MQ/LU]

Slide 43

4.2 The PLC type system 45

The explicit type information we need to add to expressiangét syntax-directed
versions of the den) and épec) rules (Slide 39) concerns the operationstyfe gener-
alisation andtype specialisation These are forms of function abstraction and application
respectively—for functions defined on the collection otgtles (and taking values in one par-
ticular type), rather than on the values of one particulpetySee Slide 43. The polymorphic
lambda calculus, PLC, provides rather sparse means for wigfich functions—for exam-
ple there is no “typecase” construct that allows branchewpeding to which type expression
is input. As a result, PLC is really a calculus mdrametrically polymorphidunctions (cf.
Slide 8). The PLC syntax is given on Slide 42. Its typesare like the polymorphic types,
7, given on Slide 38, except that we have omitbted! and(_) list—because in fact these and
many other forms of datatype are representable in PLC (se®8d.4 below). We have also
omittedlet-expressions, because (unlike the ML type system presentekction 2.1) they
are definable from function abstraction and applicatiommwie correct typing properties: see
Exercise 4.5.3.

Remark 4.2.2(Operator association and scopind)s in the ordinary lambda calculus, one
often writes a series of PLC applications without parergbesising the convention that
application associates to the left. Thus M, M3 meang My M) Ms, andM; M, 73 means
(My M>)Ts. Note that an expression like/; 7, M3 can only associate 43/, m2)Ms, since
association the other way involves an ill-formed expras$ioMs). Similarly My 7 75 can
only be associated 9/, 72)13 (Sincer; 7 is an ill-formed type). On the other hand it is
conventional to associate a series of function types toighe.rThusm, — 7 — 73 means
1 — (T2 — 73).

We delimit the scope of-, A-, andA-binders with parentheses. Another common way
of writing these binders employs ‘dot’ notation

Yo .1 e :Tm. M Aa. M

with the convention that the scope extends as far to the aghpossible. For example
Vai . (Vag .7 — a1) — a1 meansy g (Vas (T — a1) — a1). One often writes iterated
binders using lists of bound (type) variables:

Vay,as (1) def Vo (Vaz (7))

Axy Ty, X0 T (M) e (Azg 1 72 (M))

Aag,as (M) E Aay (Aas (M)) .

It is also common to write a type specialisation by subsiripthe type:M.. ©f a7

Remark 4.2.3(Free and bound (type) variableshny occurrences in of a type variablex
become bound i « (7). Thus by definition, the finite sefiv(7), of free type variables of a
typer, is given by

fto(a) € {a}
fro(ri — 1) Y fro(r) U frv(m)

def

fo(Va (7)) = fto(r) —{a}.

46 4 POLYMORPHIC LAMBDA CALCULUS

Any occurrences M/ of a variabler become bound it x : 7 (M). Thus by definition, the
finite set,fu(M), of free variables of an expressiav, is given by

folz) < {z}
fora 7 (M) % fo(M) - {}
Fo(My M) & fo (M) U fo(My)
fo(Aa (M) = fo(M)
fo(M 7)< fu(M).

Moreover, since types occur in expressions, we have to denshefree type variables
of an expression The only type variable binding construct at the level of reggions is
generalisation: any occurrenceslif of a type variablex become bound it o (M). Thus

Q.
-

fro(z) = {}
ftoOhx -7 (M) = fto(r) U fto(M)

) (

fto(My My) = fto(My) U fto(Ma)
) (
) (

Q.
-

o
n

Q.
-

fto(Aa (M) = fto(M) — {a}
fto(M T

Q.
-

€

= ftv(M) U ftu(r).

As usual,we implicitly identify PLC types and expressions up to alpbaversion of bound
type variables and bound variableSor example

Az:a(Aa(zxa))z and (A2’ :a(Ad (2'd))))z

are alpha-convertible. We will always choose names of bawgbles as in the second
expression rather than the first, i.e. distinct from any fregables (and from each other).

Remark 4.2.4(Substitution) For PLC, there are three forms of (capture-avoiding) substit
tion, well-defined up to alpha-conversion:

e 7[7’/a] denotes the type resulting from substituting a typéor all free occurrences of the
type variablex in a typer.

e M[M'/z] denotes the expression resulting from substituting anesgoon)’ for all free
occurrences of the variablein the expressiod/.

e M7 /a] denotes the expression resulting from substituting a tyfur all free occurrences
of the type variablex in an expression/.

The PLC type system uses typing judgements of the form showlide 44. Its typing
relation is the collection of such judgements inductivedjinied by the axiom and rules on
Slide 45.

4.2 The PLC type system

PLC typing judgement

takes the form where

e the typing environment I is a finite function from variables to PLC

types.
Wewrite I' = {z1 : 71,..., %, : 7, } toindicate that I" has
domain of definition dom(I') = {z1, ...,z } and maps each z;

to the PLC type 7; fori = 1..n.)
e M is a PLC expression

e 7 isaPLC type.

Slide 44

PLC type system

(var)

(fn)

(app)

(gen)

(spec)

F'tz:7 if(x:7)el
x:mm=M:m

itz ¢ dom(T)
FFXxx:m(M):11—m

FI_M1271—>7'2 F|_M2:7-1
F|_M1M2:7-2
I'EM:T1

'Aa(M):Va(r) fo ¢ fooll)

'EM:Va(r)

L't Mmry:1i[me/a]

Slide 45

a7

48 4 POLYMORPHIC LAMBDA CALCULUS

An incorrect “proof”

(var)

T, Tl xy
1 2 2 ()

rx1:abF Az a(r): a—«
(wrong!)

z1:akFAa(Axy:a(z)) : Va(a— a)

Slide 46

Remark 4.2.5(Side-condition on rulegen)). To illustrate the force of the side-condition on
rule (gen) on Slide 45, consider the last step of the ‘proof’ on Slide #6s not a correct
instance of theden) rule, because the concluding judgement, whose typingr@mvient
I' = {z1 : «}, does not satisfyx ¢ ftv(I") (sinceftv(I') = {«a} in this case). On the
other hand, the expressidn (A x5 : o (z2)) does have typ¥ o (a« — «) given the typing
environment{x; : a}. Here is a correct proof of that fact:

(var)

(fn)

T1:0,T0 0 Fag

x1:abAre i d (xg):a —

(gen)
r1:abFAd (Azg:d (x2)) :Va (o —)

where we have used the freedom afforded by alpha-convetsioename the bound type
variable to make it distinct from the free type variablesh# typing environment: since we
identify types and expressions up to alpha-conversionuthgement

1ok Aa(Aze :a(xr)) :Va(la— a)
is the same as

ri:abAd (Axe:d (22)) :Va (o —)

4.2 The PLC type system 49
and indeed, is the same as
z1:abFAd (Aze:d (22)) : Va" (o — a”).

Example 4.2.6.0n Slide 41 we claimed théﬁf Vo (Oél) (A (D) (f(afg — Oég)(f 012)))
has typeV a (o) — V a (). Here is a proof of that in the PLC type system:

(var) (var)
f:VOél (al)l—f:Val (041) f:Val (al)l—f:Val (al)
(spec) (spec)
fZVOél(Oél)l_f(OéQHOéQ)ZOéQHOéQ fZVOél(Oél)l_fOéQZOéQ
(app)

f . Val (041) F f(OéQ — Otg)(fOéQ) %)
f:Vai(a) FAas (f(ag — a)(faz)) : Vas (asz)
{}EAS:Var(a1) (Aaz (f(az = a2)(f az))) : (Ve (a1)) = Vaz (az2)

(gen)
(fn).

Example 4.2.7. There is no PLC type for which
(10) {}FAa((Az:a(x))a): T

is provable within the PLC type system.

Proof. Because of the syntax-directed nature of the axiom and rfitbe L C type system,
any proof of (10) would have to look like

(var)

ok x
r:abFx:o (n)

{}FAz:a(x): 7"
{}FQz:a(@)a:7
{}FAa((Az:a(z))a): T

(spec)
(gen)

for some types, 7 and7”. For the application of rulefif) to be correct, it must be that
7" = a — «. But then the application of rulegec) is impossible, because — « is not a
V-type. So no such proof can exist. O

50 4 POLYMORPHIC LAMBDA CALCULUS

Decidability of the PLC typeability
and type-checking problems

Theorem.

For each PLC typing problem, I' = M : 7, there is at most one PLC type
7 for which I = M : 7 is provable. Moreover there is an algorithm, typ,
which when given any I' = M : 7 as input, returns such a 7 if it exists
and FAILs otherwise.

Corollary.
The PLC type checking problem is decidable: we can decide whether or
not I' = M : 7 is provable by checking whether typ(I' = M : 7) = 7.

(N.B. equality of PLC types up to alpha-conversion is decidable.)

Slide 47

4.3 PLC type inference

As Examples 4.2.6 and 4.2.7 suggest, the type checking geciylity problems (Slide 7)
are very easy to solve for the PLC type system, compared WehViL type system. This
is because of the explicit type information contained in Rixpressions together with the
syntax-directed nature of the typing rules. The situat®summarised on Slide 47. The
“uniqueness of types” property stated on the slide is easgréee by induction on the
structure of the expressiall, exploiting the syntax-directed nature of the axiom anesul
of the PLC type system. Moreover, the type inference algorityp emerges naturally from
this proof, defined recursively according to the structdrelaC expressions. The clauses of
its definition are given on Slides 48 and 49he definition relies upon the easily verified
fact that equality of PLC types up to alpha-conversion isdigade. It also assumes that the
various implicit choices of names of bound variables andchbldyipe variables are made so as
to keep them distinct from the relevant free variables aed fype variables. For example, in
the clause for type generalisatiohsy (M), we assume the bound type variablés chosen
so thata ¢ fto(T).

'An implementation of this algorithm in Fresh O’Canalifs . freshml . org/foc/) can be found
on the course web page. The Fresh O’Caml code is remarkadslg tb the informal pseudocode given
here, because of Fresh O’Caml’s sophisticated facilibesl€aling with binding operations and fresh
names.

4.3 PLC type inference

PLC type-checking algorithm, |

Variables:

typ(Dyx: 7k x:7) def

Function abstractions:

typ(TF Aw:m (M) : 7)Y

let o =typ(T,x:mEM:?)inT — 7
Function applications:
typ(T - My My :)
let 71 = typ(D'F M :?7)in

let 9 = typ(I'+ M3 : 7) in

casep of 7—71" +— if 7 =79 then 7/ else FAIL

| _ +— FAIL

Slide 48

PLC type-checking algorithm, Il

Type generalisations:
typ(CHAa (M) :7) def
let 7 =typ(TF M :?7)inVa(r)

Type specialisations:
typ(C- M7 7)

let 7 =typ(I' - M :7) in

case T of Va(r) — T7im/a]

| . FAIL

Slide 49

51

52 4 POLYMORPHIC LAMBDA CALCULUS

4.4 Datatypesin PLC

The aim of this subsection is to give some impression of jogt &xpressive is the PLC type
system. Many kinds of datatype, including both concreta dlaboleans, natural numbers,
lists, various kinds of tree, ...) and also abstract daggypvolving information hiding, can
be represented in PLC. Such representations involve

e defining a suitable PLC type for the data,
e defining some PLC expressions for the various operatiormeded with the data,

e demonstrating that these expressions have both the ctypmoygs and the expected
computational behaviour.

In order to deal with the last point, we first have to consiadens operational semantics
for PLC. Most studies of the computational properties of payphic lambda calculus have
been based on the PLC analogue of the notiorbeth-reductionfrom untyped lambda
calculus. This is defined on Slide 50.

Beta-reduction of PLC expressions

M beta-reduces to M’ in one step, | M — M’ |, means

M’ can be obtained from M (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

()\x : T(Ml))MQ — Ml[Mg/x]
(Ao (M) T — M|[1/0a.

M —* M’ indicates a chain of finitely! many beta-reductions.

(T possibly zero—which just means M and M’ are alpha-convertible).

M is in beta-normal form if it contains no redexes.

Slide 50

Example 4.4.1. Here are some examples of beta-reductions. The variouses@dee shown

4.4 Datatypes in PLC 53

boxed. Clearly, the final expressigrs in beta-normal form.

Azx:ag—ar(zy))|(Aas (Az:az(2)))(ar — aq)

I

(Aae (A z:az(2) (a1 — aq) |y Ax:a1— a1 (zy))(Nz: a1 — ag (2))

\/

Properties of PLC beta-reduction on typeable expressions

Suppose I' = M : 7 is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M — M’ thenT' - M’ : 7 is also a provable
typing.

Church Rosser Property. If M —* My and M —* My, then there is
M’ with M7 —* M’ and My —* M'.

Strong Normalisation Property. There is no infinite chain
M — M; — My — ... of beta-reductions starting from M.

Slide 51

Slide 51 lists some important properties typeablePLC expressions that we state
without proof. The first is a weak form of type soundness te&lide 4) and its proof is
straightforward. The proof of the Church Rosser property $ @uite easy whereas the
proof of Strong Normalisations is difficult. It was first proved by (Girard 1972) using a

!Since it in fact implies the consistency of second ordehardtic, it furnishes a concrete example
of Godel's famous incompleteness theorem: the strong noratialis property of PLC is a statement

54 4 POLYMORPHIC LAMBDA CALCULUS

clever technique called “reducibility candidates”; if yate interested in seeing the details,
look at (Girard 1989, Chapter 14) for an accessible accouthieoproof.

PLC beta-conversion, =3

By definition, | M =4 M’ | holds if there is a finite chain

M—-— ... —._ M

where each — is either — or <—, i.e. a beta-reduction in one direction or
the other. (A chain of length zero is allowed—in which case M and M’
are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for typeable
PLC expressions, M =g M’ holds if and only if there is some
beta-normal form /N with

M —* N *— M’

Slide 52

Theorem 4.4.2. The properties listed on Slidgl have the following consequences.

(i) Each typeable PLC expressiod/, possesses heta-normal formi.e. an N such that
M —* N - , which is unique (up to alpha-conversion).

(i) The equivalence relation obeta-conversioriSlide 52) between typeable PLC expressions
is decidable, i.e. there is an algorithm which, when given twe#&ple PLC expressions,
decides whether or not they are beta-convertible.

Proof. For (i), first note that such a beta-normal form exists beed#use start reducing re-
dexes inM (in any order) the chain of reductions cannot be infinite (rgi®) Normalisation)
and hence terminates in a beta-normal form. Uniquenes®dfdta-normal form follows by
the Church Rosser property: M —* Ny andM —* N, thenN; —* M’ *«— N5 holds
for someM’; so if N; and N, are beta-normal forms, then it must be tihat —* M’ and
N, —* M’ are chains of beta-reductions of zero length and héfhce- M’ = N, (equality
up to alpha-conversion).

For (ii), we can use an algorithm which reduces the betaxesdef each expression in
any order until beta-normal forms are reached (in finitelynynateps, by Strong Normal-
isation); these normal forms are equal (up to alpha-cormv@rsf and only if the original
expressions are beta-convertible. (And of course, theioalaf alpha-convertibility is de-
cidable.) O

that can be formalised within second order arithmetic,us {as withessed by a proof that goes outside
second order arithmetic), but cannot be proved within tistesn.

4.4 Datatypes in PLC 55

Remark 4.4.3. In fact, the Church Rosser property holds for all PLC expressiohether
or not they are typeable. However, the Strong Normalisgti@perties definitely fails for
untypeableexpressions. For example, consider

QYL Nfa(fHNNFalff)

from which there is an infinite chain of beta-reductions, et — 2 — Q — - --. Aswith
the untyped lambda calculus, one can regard polymorphibdancalculus as a rather pure
kind of typed functional programming language in which caomation consists of reducing
typeable expressions to beta-normal form. From this viemtpthe properties on Slide 51
tell us that (unlike the case of untyped lambda calculus) Ba@not be “Turing powerful”,
i.e. not all partial recursive functions can be programnmeitl jusing a suitable encoding of
numbers). This is simply because, by virtue of Strong Noisatibn, computation always
terminates on well-typed programs.

Now that we have explained PLC dynamics, we return to thetopresf representing
datatypes as PLC types. We consider first the simple examplegoteans and then the more
complicated example of polymorphic lists.

Polymorphic booleans

bool % v o (a— (a— a))
def
True = Aa(Az1 o, x9 : (1))
def
False = Aa(Axy @ a, 9 a(x2))

if déan()\b: bool,x1 : a,x9 : a(baxy x2))

Slide 53

Example 4.4.4(Booleans) The PLC type corresponding to the ML datatype

datatype bool = True | False

56 4 POLYMORPHIC LAMBDA CALCULUS

is shown on Slide 53. The idea behind this representatidmaisthe “algorithmic essence”
of a booleanp, is the operation\z; : o, x5 : a(if bthen x; else) of typea — a — a,t
taking a pair of expressions of the same type and returniegoorother of them. Clearly,
this operation is parametrically polymorphic in the typeso in PLC we can take the step of
identifying booleans with expressions of the correspogititype,V o (o« — o« — «). Note
that for the PLC expressioriBrue and False defined on Slide 53 the typings

{}F True :Va(a —a—a) and {}F False :Va(a—a— a)

are both provable. The_thenelse construct, given for the above ML datatype byase-
expression

case M of True => M, | False => M3

has an explicitly typed analogue in PLC, vif.r M, M, Ms, wherer is supposed to be the
common type of\/, and M3 andif is the PLC expression given on Slide 53. It is not hard
to see that

{}Fif :Va(bool — (a — (a—))).

Thus ifI' = My : bool, ' = My : 7 andI’ = M3 : 7, thenl' - if 7 My My Ms : 7 (cf. the
typing rule (f) on Slide 16). Furthermore, the expressidhsie, Fulse, andif have the
expected dynamic behaviour:

if My —* True andM, —* N, thenif 7 My My Ms —* N;

if My, —* False andMg —* N, thenifTMl Mo M3 —* N.

It is in fact the case thalrue and Fualse are the only closed beta-normal forms in PLC of
type bool (up to alpha-conversion, of course), but it is beyond thegeaaf this course to
prove it.

'Recall our notational conventions:— a — a meansy — (a — a).

4.4 Datatypes in PLC

Polymaorphic lists

alist € vd (o = (a—d —a) —a)

Nil déonz,o/ A2, fra—d —d (2))
Cons & Aa(\z : a, € : o list(Aa/(
M fra—ad —d(

fz(ta'’f)))))

Slide 54

Iteratively defined functions on finite lists

f
A* % finite lists of elements of the set A
Given aset A’, anelementz’ € A’, andafunction f : A — A" — A’
the iteratively defined function listlter x’ f is the unique function
g : A* — A’ satisfying:
g Nil = 2
g 0) = fal(gl),

forallz € Aand / € A*.

Slide 55

57

58 4 POLYMORPHIC LAMBDA CALCULUS

Example 4.4.5(Lists). The polymorphic type corresponding to the ML datatype
datatype a list = Nil | Cons of « x (« list)

is shown on Slide 54. Undoubtedly it looks rather mysteriauérst sight. The idea behind
this representation has to do with the operationtefation over a listshown on Slide 55.
The existence of such functioistiter 2’ f does in fact characterise the skt of finite lists
over a setd uniquely up to bijection. We can take the operation

(11) Moo fra—a — o (listlter 2’ f0)

(of type o/ — (@ — o' — o) — ') as the “algorithmic essence” of the liét: « list.
Clearly this operation is parametrically polymorphicdhand so we are led to thétype
given on Slide 54 as the polymorphic type of lists represkuta the iterator operations they
determine. Note that from the perspective of this reprediemt, thenil list is characterised
as that list which when anystlter 2’ f is applied to it yields:’. This motivates the definition
of the PLC expressioVil on Slide 54. Similarly for the constructd@rons for adding an
element to the head of a list. It is not hard to prove the tyging

{}F Nil :Va(alist)
{}F Cons :Va(a— alist — «alist).

As shown on Slide 56, an explicitly typed version of the ofieraof list iteration can
be defined in PLCiter a o/ 2’ f satisfies the defining equations for an iteratively defined
function (11) up to beta-conversion.

List iteration in PLC

iter & Ao, /(M2 -, f:ra—a — d(
A alist (Lo 2’ f)))
satisfies:
o Hiter :Va,d (¢ — (a—ad —d)— alist — o)
o iterad x’ f(Nila) =3 2

o iterad z’ f(Consaxl) =g fx(iterad’ 2’ f1)

Slide 56

4.5 Exercises 59

ML PLC
def
datatype null =; null = Vo («a)
datatype unit = Unit; unit < v a (v —)
def
a1 * Qg arxay = Va((ag —as — a) — a)
def
datatype (a1, ag)sum = (a1,) sum =
Inl of ay | Inr of ao; Va((a — a) = (ae — a) — «)
datatype nat = nat def
Zero | Succ of nat; Va(a— (a—a) — a)
. . def
datatype binTree = binTree =
Leaf | Node of binTree x binTree; Va(a— (a—a—a) — a)

Figure 5: Some more algebraic datatypes

Booleans and lists are examples of “algebraic” datatypesmes which can be specified
(usually recursively) using products, sums and previodslyned algebraic datatypes. Thus
in Standard ML such a datatype (callelg, with constructor€’s, . . ., C,,) might be declared

by

datatype (a1,...,a,)alg=Cyp of 71 |-+ | Cp, of 7y
where the types, ..., , are built up from the type variables,,...,«, and the type
(aq,...,an)alg itself, just using products and previously defined algebdzitatype con-

structors, but not, for example, using function types. Fegb gives some other algebraic
datatypes and their representations as polymorphic typdact all algebraic datatypes can
be represented in PLC: see (Girard 1989, Sections 11.3-&)doe details.

4.5 Exercises
Exercise 4.5.1.Give a proof inference tree for (8) in Example 4.1.1. Show tha
Vag (o — Vs (ag)) — bool list

is another possible polymorphic type fof ((f true) :: (f nil)).

Exercise 4.5.2.Show that ifl’' - M : 7 andI" - M : 7’ are both provable in the PLC type

system, them = 7/ (equality up toa-conversion). [Hint: show thatl def {T,M,7) | TH
M:7 & V7' (I'EM:7 = 7=7")}is closed under the axioms and rules on Slide 45.]

60 4 POLYMORPHIC LAMBDA CALCULUS

Exercise 4.5.3.In PLC, defining the expressidrt x = M; : 7 in M5 to be an abbreviation
for (Ax : 7 (M>)) M, show that the typing rule

'EMy:m e EMy:m
I'F(letz =M; : 7 inMs) = 1y

if z ¢ dom(T)

is admissible—in the sense that the conclusion is provélie ihypotheses are.

Exercise 4.5.4.The erasure erase(M), of a PLC expressiod/ is the expression of the
untyped lambda calculus obtained by deleting all type miairon from\/:

(i) Find PLC expressions/; and M, satisfyingerase(M;) = Az () = erase(Ms) such that
F M :Va(a— a)and- My : Vag (ap — Vas (aq)) are provable PLC typings.

(i) We saw in Example 4.2.6 that there is a closed PLC exprasy of typeVa (o) — Va («)
satisfyingerase(M) = X f (f f). Find some other closed, typeable PLC expressions with
this property.

(i) [For this part you will need to recall, from the CST PaB Foundations of Functional
Programmingcourse, some properties of beta reduction of expressidahs intyped lambda
calculus.] A theorem of Girard says thatHf M : 7 is provable in the PLC type system,
then erase(M) is strongly normalisable in the untyped lambda calculies, there are no
infinite chains of beta-reductions starting framuse(M). Assuming this result, exhibit an
expression of the untyped lambda calculus which is not equatase(M) for any closed,
typeable PLC expressialy.

Exercise 4.5.5.Attack or defend the following statement.

“A typed programming language molymorphiaf a well-formed phrase of the language may
have several different types.”

[Hint: consider the property of PLC given in the theorem owl&HU7.]
Exercise 4.5.6.Prove the various typings and beta-reductions assertexample 4.4.4.

Exercise 4.5.7.Prove the various typings asserted in Example 4.4.5 ancetfaedonversions
on Slide 56.

4.5 Exercises 61

Exercise 4.5.8.For the polymorphic product type; * as defined in the right-hand column
of Figure 5, show that there are PLC expressifng-, fst, andsnd satisfying:

{}F Pair :Vay,as (o — as — (a1 x az))
{}F fst:Vay,as (a1 * as) — ay)
{}Fsnd :Vag,as (a1 % az) = az)

fst ay aa(Pair ay cp x1 x2) =g 21

snd ay ag(Pair ag o 1 T2) =g T2.

Exercise’ 4.5.9. Suppose that is a PLC type with a single free type variabte, Suppose
also thatl" is a closed PLC expression satisfying

{}FT :Vai,as (a1 — ag) — (T[ag /o] — Tlas/al)).

Define. to be the closed PLC type

Ldéfvaf((THOé)%Oé).

Show how to define PLC expressioRsand/ satisfying

{}FR:Va((t—a) = t—a)
{}FI:7[t/a] =1
(Raf)Iz) =" f(Tra(Raf)x).

62

4 POLYMORPHIC LAMBDA CALCULUS

5 Further Topics

5.1 Curry-Howard correspondence

The concept of “type” first arose in the logical foundatiofisrmathematics. Russell (1903)
circumvented the paradox he discovered in Frege’s setyhmostratifying the universe of
untyped sets into levels, or types. Church (1940) proposgpeait higher order logic based
on functions rather than sets and which is capable of fosimgjilarge areas of mathematics.
A version of this logic is the one underlying the HOL systeno{@n and Melham 1993).
See (Lamport and Paulson 1999) for a stimulating discussitite pros and cons of untyped
logics (typically, set theory) versus typed logics for maeising mathematics.

The interplay between logic and types has often been meldiatehe correspondence
between certain systems of constructive logic and cerygied lambda calculi first noted by
the logician Curry in the 1950s and brought to the attentionashputer scientists by the
work of Howard in the 1980s. As a result, this connection leetwlogic and type systems
is often known as th€urry-Howard correspondendand also as the “proposition as types”
idea); it is sketched on Slide 57. To see how the Curry-Howardespondence works, we
will look at a specific instance, namely the correspondemt@den the PLC type system of
Section 4 and the logic known agscond-order intuitionistic propositional calcul(IPC),
which is defined on Slide 58.

Curry-Howard correspondence

Logic — Type system
propositions, ¢ — types, T
(constructive) proofs, p <« expressions, M
“p is a proof of ¢” < “M is an expression of type 7"
simplification of proofs <+ reduction of expressions
Slide 57

63

64 5 FURTHER TOPICS

Second-order intuitionistic propositional calculus (2IP (03]

2IPC propositions: | ¢ ::=p | ¢ — ¢ | Vp (¢) |, where p ranges over
an infinite set of propositional variables.

2IPC sequents: | ® F ¢ |, where P is a finite set of 2IPC propositions
and ¢ is a 2IPC proposition.

® F ¢ is provable if it is in the set of sequents inductively generated by:

(lddFo¢ ifped

P, ¢ ¢ PH¢—¢ OFo¢
(=) ———— (—E)
DFo— g o+ ¢
O - ¢ O FVp(9)
(V) ————ifp ¢ fu(®) (VE) —————
®FYp(9) © - ol¢'/p]
Slide 58

Note that if we identify propositional variables with PLCigpe variables, then 2IPC
propositionsare just PLC types. Every proof of a 2IPC sequd@nt- ¢ can be described
by a PLC expressioi! satisfyingl’ - M : ¢, once we have fixed a labelling = {z; :
$1,..., %y : ¢n} Of the propositions ib = {¢1,..., ¢, } with variablesz,, ..., z,. M
is built up by recursion on the structure of the proof of thgqusnt using the following
transformations:

(Id) @, ¢ F ¢ — (d)zT:P,x:0pkx:0
- O,k ¢ I T:Bx: b M:o
OF¢— ¢ T:OFAz:p(M):p— ¢
Op—¢ Do T:PFM:¢p—¢ T:PFMy:¢
(—E) = (app) -
Dk ¢ T:PF M My: ¢
- T: O M:
(VI)(I)—¢ = (gen)— ziorM:¢
- VYp(o) T: 9 Ap(M):Vp(9)
PV T:dFM:V
VCpancil ~ (spec)— i
O - [’ /p] T: @M P[¢/p]

This is illustrated on Slide 59. The example on that slidesubke fact that the logical

5.1 Curry-Howard correspondence 65

operation of conjunction can be defined in 2IPC. Slide 60 gbagse other logical operators
that are definable in 2IPC. Compare it with Figure 5: the ricer&fsPLC for expressing

datatypes is mirrored under the Curry-Howard corresporelegahe richness of 2IPC for
expressing logical constructions.

A 2IPC proof

(Id)
{p&q,p, ¢} Fp

(Id)
(VE)
(—E)

.
{p&q,ptt-qg—p ; &g EVr((p—qg—r)—1)
—

{p&atFp—qg—p {p&atr(p—g—p) —p
{p&attp
{}Fp&aq—p
{}FYa(p&q—p)
{}FVpap& q—p)
where p & ¢ is an abbreviation for Vr ((p — ¢ — 1) — 7).

(—1)
(V1)
Vi)

The PLC expression corresponding to this proof is:

Ap,gAz:p&q(zp(Az:p,y:q(x)))).

Slide 59

The Curry-Howard correspondence gives us a different petispeon the typing judge-
mentl’ = M : o, outlined on Slide 61. As well as the undecidablity resulhti@ed on that
slide, it should be noted that 2IPC icanstructiverather than &lassicallogic, in the sense
that theLaw of Excluded Middlés not provable in 2IPC. More precisely (using the encoding
of disjunction and negation given on Slide 60), there is mmpof Vp (p V —p); in other
words, there is no PLC expression satisfying{ } - M : Vp (pV —p). (This can be proved
using the technique developed in the Tripos question 13 pargain 2000).

The Curry-Howard correspondence cuts both ways: in onetdireit has proved very
helpful to use lambda terms as notations for proofs in maskdmproof assistants; in the other
it has helped to suggest new type systems for programmingexification languages. Two
examples of the second kind of application are the trandfédeas from Girard’'dinear
logic (Girard 1987) into systems ¢ihear typesn usage analyses (see Chirimar, Gunter, and
Riecke (1996), for example); and the use of type systems lmas@ddal logicSor analysing
partial evaluationandrun-time code generatiofDavis and Pfenning 1996).

66

5 FURTHER TOPICS

Logical operations definable in 2IPC

o Truth: true Vp(p—p).

e Falsity: false def Vp(p).

e Conjunction: ¢ & ¢/ of p((¢p— ¢ —p)—p)

(where p & fu(¢, ¢')).

def

e Disjunction: ¢ V ¢' = Vp((¢ — p) — (¢/ — p) — p) (where

p & fo(d,¢)).

def
e Negation: =¢ = ¢ — false.

e Existential quantification: 3 p () def v/ (Vp(¢— p)— p’)

(where p’ ¢ fu(¢, p)).

Slide 60

Type-inference versus proof search

Type-inference: “given I' and M, is there a type o such that
I'EM:o?

(For PLC/2IPC this is decidable.)

Proof-search: “given I" and o, is there a proof term M such that
I'=M:o?

(For PLC/2IPC this is undecidable.)

Slide 61

5.2 Dependent types 67
5.2 Dependent types

Consider programming a functiaaut that takes im-ary boolean operations (in “curried”
form)

f = bool — bool — - - - bool— bool

~
n arguments

and returngrue if f is atautology, i.e. has valueue for all of its 2™ possible arguments, and
returnsfalse otherwise. One might try to progrataut in Standard ML as on Slide 62. This is
algorithmically correct, but does not type-check in ML. WHytuitively, the type oftaut n
for each natural number = 0, 1,2, ... is the typebool —" bool of “n-ary curried boolean
functions” defined (by induction on) on Slide 62. Thusaut is really adependently typed
function—the type of its result depends on thalue of the argument supplied to it—and so
it is rejected by the ML type-checker.

In general alependent typis a family of types indexed by individual values of a dat&typ
(In the above example the family of typésol —"™ bool is indexed by values of a type of
numbers.) Typing rules for dependent function types arergomn Slide 63. Note that the
usual typing rules for function types — 7’ are the special case where the typéhas no
dependency on values.

A tautology checker

fun taut n f = if n = Othen f else
(taut(n — 1)(f true))
andalso (taut(n — 1)(f false))
Defining types

{bool —9 pool def bool

bool —"*+ bool % bool — (bool —™ bool)

then taut n has type bool —"™ bool, i.e. the result type of the function
taut depends upon the value of its argument.

Slide 62

68 5 FURTHER TOPICS

Dependent function types (x : 7) — 7’

Do:7HM:7
FEAXz:7(M):(x:7)—7

if x ¢ dom (L") U fo(T")

r-M:(z:7)—7 TEM :7
T MM 7'M [q]

7/ may “depend” on z, i.e. have free occurrences of .

(Free occurrences of in 7/ are bound in (z : 7) — 7))

Slide 63

Type systems featuring dependent types are able to expretsmore refined properties
of programs than ones without this feature. So why don’t theyyused in programming
languages? The answer lies in the fact that type-checkitiy e@pendent types naturally
involves checking equalities between the data values upuohathe types depend; in a
Turing-powerful language such value-equality tends to hdegidable and hence static
type-checking becomes impossible. How to get round thiblpro is an active area of
research. For example the Cayenne language (Augustssoh th888 a general-purpose,
pragmatic, but incomplete approach; whereas (Xi and Pignh®98) uses dependent types
for a specific task, namely static elimination of run-timeagrbound checking, by resticting
dependency to a language of integer expressions whereingesduality reduces to solving
linear programming problems. In machine-assisted reag@ystems, decidability of type-
checking is not such an important issue (since the user hgside the system to proofs of
other kinds of undecidable property anyway). Type theosigls dependent types have been
used extensively in computer systems for formalising nratites, for proof construction,
and for checking the correctness of proofs. In this respeattitLof’s intuitionistic type
theory (which first popularised the notion of “dependent type”) bagn highly influential:
see Nordstim, Petersson, and Smith 1990 for an introduction to it.

5.3 Current areas of research

The study of types forms a very vigorous area of computernseigesearch, both for
computing theory and in the application of theory to praeticThis course has aimed

5.3 Current areas of research 69

at reasonably detailed coverage of a few selected topig#yeck around the notion of
polymorphism in programming languages. To finsh, | enumeesaime other topics which
are of interest in the development of the theory and apphicaif type systems in computer
science, together with some pointers to the literature.

Concurrency and distributed systems The typing of languages involving concurrent
threads of computation and associated notions of mobititicastribution is so current a topic
of research that it is difficult to give pointers to well-dgged accounts. A basic motivation
for the use of type systems here is the same as for more tnaalitenguages: to avoid unsafe
or undesirable behaviour via static checks. However thdsof unsafe behaviour are now
much more complicated, or at least, less well-understoodekample, there are type systems
which can ensure that locks are used correctly (FlanagaAbadi 1999); and in distributed
(and possibly mobile) settings, there are a number of tyjsgesys which further classify
values by the place at which they reside in a network andéordbources to which they have
access—(Hennessy and Riely 2002), for example. This is rigteovery interesting and a
very challenging area, but also one of rather immediatetioedconcern.

Security Extending the idea mentioned in the Introduction of compikensuring whole-
language safety through static type-checking, type systara the foundation of several
systems for deciding whether compiled code obtained fronotarpially untrustworthy
source is safe to execute. Both Sun’s Java Virtual MachindMjJshd Microsoft’'s .NET
Common Language Run-time (CLR) include type-checkersvéoifiery, which are run
before compiled code is executed. A nice overview of therias of JVM verification
has been written by Leroy (2003). The correctness of hi¢gat security operations (such
as the management of explicit permissions to perform piaignrtinsafe operations) relies on
the typability of any untrusted code which will be allowedsixecute. Type systems are also
being used to formalise and check properties which are memergy-specific. One line of
research classifies the inputs and outputs of a programhess gigh-security or low-security.
A type system can then be used to ensure that high-secufatymation cannot affect low-
security outputs (imagine downloading a banking applcatvhich has to communicate over
the network to retrieve current tax rates, etc., but whiawish to be sure will not leak any
of your personal information). See Volpano, Smith, andlevf1996) for example.

Low-level languages Traditionally, sophisticated type systems are usecdhigh-level
programming languages, i.e. ones that abstract away frenotrlevel details of machine
services. Low-level languages such as C or assembler hage dmwith either no types
or type systems which are both inexpressive and unsafe. ricyar, high-level, safe,
typed languages have been compiled into low-level, untypedafe ones. Recent years
have seen a great deal of research activity on typed assdargyage (TAL) and type-
preserving compilation (Morrisett, Walker, Crary, and Gl΃). The idea here is to
compile an ML program, for example, into a typed assemblgl@age program in such a
way that checking the types on the assembly code gives the safaty guarantees as one

1Some of this material is taken from Nick Benton’s 2003 versibthese notes.

70 5 FURTHER TOPICS

gets from the ML type system with respect to a high-level apenal semantics for ML.
This is clearly similar to the use of bytecode verificationadissed above; the difference is
that the intermediate languages of the JVM and CLR are faigig-tevel, so verification is
similar to type checking Java o Gource (and therefore not too difficult) but the interpreter
or JIT compiler which rungfter the verifier has to be part of the “trusted computing base”
(TCB). In the type-preserving compilation approach, the $yf@ad hence the type checker)
for the low-level code tend to be rather more complex—indaed require the use of the kind
of “impredicative” polymorphism we studied in Section 4)tlonly the type-checker need
be part of the TCB: bugs or maliciousness in the compiler ateeeibenign or yield TAL
programs which fail to typecheck; see also workmnof-carrying code such as Necula
(1997). An active area of related work concerns designink€tanguages with safe type
systems (and which may be compiled to TAL). Examples inclo@eired (Necula, McPeak,
and Weimer 2002) and Cyclone (Jim, Morrisett, Grossman, $JiCkeney, and Wang 2002).
These languages vary in their degree of compatibility wethelcy C code and in the extent to
which safety is ensured by static, rather than dynamic,lchec

Database query languages Schema for relational databases or DTDs for XML documents
are a kind of type. The last few years have seen a great desdedirch on integrating types for
these sorts of data into the type systems of (new and exjginogramming languages. This
has many potential advantages, such as being able to cltedakly that a program which
transforms XML documents always produces valid output. (egll-formed HTML) from
valid input. Languages such as XDuce, CDuce (Benzaken, Castagd Frisch 2003) and
Xtatic have types which can express regular expressionst@e structured data; language
inclusion thus induces a subtype relation, and type infexemd checking involve computing
with these regular expressions.

References

Aho, A. V., R. Sethi, and J. D. Ullman (1986Fompilers. Principles, Techniques, and
Tools Addison Wesley.

Augustsson, L. (1998). Cayenne—a language with dependges.tyin ACM SIG-
PLAN International Conference on Functional ProgramminGFP 1998, Balti-
more,Maryland, USAACM Press.

Benzaken, V., G. Castagna, and A. Frisch (2003). CDuce: An Xkhttc general-
purpose language. IRroceedings of the 8th ACM International Conference on
Functional Programming (ICFP’03), Uppsala, Swedep. 51-64.

Cardelli, L. (1987). Basic polymorphic typecheckirfgcience of Computer Program-
ming 8 147-172.

Cardelli, L. (1997). Type systems. ®RC Handbook of Computer Science and Engineer-
ing, Chapter 103, pp. 2208-2236. CRC Press.

Chirimar, J., C. A. Gunter, and J. G. Riecke (1996). Referencetoapas a computational
interpretation of linear logiclournal of Functional Programming(8), 195-244.

Church, A. (1940). A formulation of the simple theory of typdsurnal of Symbolic
Logic 5 56—68.

Damas, L. and R. Milner (1982). Principal type schemes foctional programs. liProc.
9th ACM Symposium on Principles of Programming Lanuagps207—-212.

Davis, R. and F. Pfenning (1996). A modal analysis of stagedptaation. INACM
Symposium on Principles of Programming Languages, Strd®etey Beach, Florida
pp. 258-270. ACM Press.

Flanagan, C. and M. Abadi (1999). Types for safe lockin@tmEuropean Symposium on
Programming (ESOP '99)_ecture Notes in Computer Science, pp. 91-108. Springer-
Verlag.

Girard, J.-Y. (1972).Interprétation fonctionelle etélimination des coupures dans
I'arithmetique d’ordre supgrieur. Ph. D. thesis, Univerd@tParis VII. These de doc-
torat détat.

Girard, J.-Y. (1987). Linear logidlheoretical Computer Science,533-101.

Girard, J.-Y. (1989)Proofs and Type<Cambridge University Press. Translated and with
appendices by Y. Lafont and P. Taylor.

Gordon, M. J. C. and T. F. Melham (1993htroduction to HOL. A theorem proving
environment for higher order logicCambridge University Press.

Harper, R. (1994). A simplified account of polymorphic referes.Information Process-
ing Letters 51201-206.

Harper, R. and C. Stone (1997). An interpretation of Standatd iMtype theory.
Technical Report CMU-CS-97-147, Carnegie Mellon UniversitysiBurgh, PA.

Hennessy, M. and J. Riely (2002). Resource access controstarag of mobile agents.
Information and Computation 1782-120.

71

72 REFERENCES

Hindley, J. R. (1969). The principal type scheme of an objactambinatory logic.
Transations of the American Mathematical Society, 285-40.

Jim, T., G. Morrisett, D. Grossman, M. Hicks, J. Cheney, antang (2002). Cyclone:
A safe dialect of C. IWSENIX Annual Technical Conferengm. 275-288.

Lamport, L. and L. C. Paulson (1999). Should your specificeamguage be typed®CM
Transactions on Programming Languages and Syster{®,202-526.

Leroy, X. (2003). Java bytecode verification: Algorithmsldarmalizations.Journal of
Automated Reasoning 3935-2609.

Mairson, H. G. (1990). Deciding ML typability is completerfdeterministic exponential
time. InProc. 17th ACM Symposium on Principles of Programming Lagggap.
382-401.

Milner, R., M. Tofte, and R. Harper (19900he Definition of Standard MIMIT Press.

Milner, R., M. Tofte, R. Harper, and D. MacQueen (199Me Definition of Standard ML
(Revised)MIT Press.

Mitchell, J. C. (1996) Foundations for Programming Languagdsoundations of Com-
puting series. MIT Press.

Morrisett, G., D. Walker, K. Crary, and N. Glew (1999). Froms&m F to typed assembly
language ACM Transactions on Programming Languages and Systei{8),2328—
569.

Necula, G. (1997). Proof-carrying code. 2dth Annual ACM Symposium on Principles
of Programming Languages (POPIACM Press.

Necula, G., S. McPeak, and W. Weimer (2002). CCured: Typers#fefitting of legacy
code. In29th Annual ACM Symposium on Principles of Programming Laggs
(POPL), pp. 128-139.

Nordstbm, B., K. Petersson, and J. M. Smith (199jogramming in Martin-Ibf’'s Type
Theory Oxford University Press.

Pierce, B. C. (2002)Types and Programming Languag®48lT Press.

Rémy, D. (2002). Using, understanding, and unravelling tteed language: From prac-
tice to theory and vice versa. In G. Barthe, P. Dybjer, andhi@a(Eds.) Applied Se-
mantics, Advanced Lecturedolume 2395 ol_ecture Notes in Computer Science, Tu-
torial, pp. 413-537. Springer-Verlag. International Summer SERPPSEM 2000,
Caminha, Portugal, September 9-15, 2000.

Reynolds, J. C. (1974). Towards a theory of type structurePdris Colloquium on
Programming Volume 19 of Lecture Notes in Computer Sciengep. 408-425.
Springer-Verlag, Berlin.

Robinson, J. A. (1965). A machine oriented logic based ondkelution principleJour.
ACM 12 23-41.

Russell, B. (1903)The Principles of Mathematic€ambridge.

Rydeheard, D. E. and R. M. Burstall (1988omputational Category Theargeries in
Computer Science. Prentice Hall International.

REFERENCES 73

Strachey, C. (1967). Fundamental concepts in programmimguiges. Lecture notes for
the International Summer School in Computer Programmingge@loagen.

Tofte, M. (1990). Type inference for polymorphic referesidaformation and Computa-
tion 89 1-34.

Tofte, M. and J.-P. Talpin (1997). Region-based memory mamagt.Information and
Computation 13@), 109-176.

Volpano, D., G. Smith, and C. Irvine (1996). A sound type syster secure flow analysis.
Journal of Computer Security(3), 167-187.

Wells, J. B. (1994). Typability and type-checking in the seborder A-calculus are
equivalent and undecidable. Rroceedings, 9th Annual IEEE Symposium on Logic
in Computer Scienc¢daris, France, pp. 176-185. IEEE Computer Society Press.

Wright, A. K. (1995). Simple imperative polymorphisilSP and Symbolic Computa-
tion 8, 343-355.

Wright, A. K. and M. Felleisen (1994). A syntactic approaclioe soundnessnforma-
tion and Computation 11538-94.

Xi, H. and F. Pfenning (1998). Eliminating array bound chegkthrough dependent
types. InProc. ACM-SIGPLAN Conference on Programming Language Demigh
Implementation, Montreal, Canagpp. 249-257. ACM Press.

74

REFERENCES

