Introduction to the Cambridge Programming
Research Group Lectures

Max Bolingbroke, Stephen Kell, Robin Message, Dominic Orchard

May 2010

1 Introduction

Immense productivity can be derived from computer technology by applying
computational and algorithmic thinking through programming. Program-
ming languages are the medium in which we express our ideas to aid our own
understanding of a problem, to explicate difficult concepts, to communicate
with others, to reuse previous solutions and ideas, and (usually!) to com-
pute some result. The design of programming languages is a multi-faceted
and deep field; so far there have been thousands of languages and still more
are being added to this number.

The following four lectures, presented by members of the Cambridge
Programming Research Group (CPRG), scratches the surface of program-
ming language research and development. This introduction provides some
discussion of language design but is by no means definitive or exhaustive.

1.1 Lecture Plan
1. Modularity: what, why and how - Stephen Kell

Most programming languages claim to support some kind of modu-
larity. This lecture will explore several different goals which underly
this claim, beginning with foundational literature on modularity and
continuing by contrasting various approaches proposed by subsequent
research.

2. Meta Programming and You - Robin Message

Meta-programming is a general term for code that creates, manip-
ulates or influences other code. This lecture will introduce meta-
programming, and look specifically at meta-programming for creating
domain specific languages within Java, Ruby and Lisp.

3. Mathematically Structuring Programming Languages - Dominic Or-
chard

This lecture introduces an example of the application of concepts from
abstract mathematics to the semantics of programming languages.
This is done in the context of using a functional programming lan-
guage as a meta language to describe and embed another language,
giving a semantical definition and an interpreter in one program.

4. Optimising Functional Programming Languages - Max Bolingbroke

This lecture discusses the rich equational theory of purely functional
programming languages, and shows how it gives rise to program opti-
misations that are simultaneously simple to implement and extremely
powerful.

2 A Model of Programming

The act of programming can be discussed in terms of the information flow
between actors in a system. The most simple such system comprises three
actors: a programmer, an evaluator, and a computer. We consider that
research in the fields of semantics, programming languages, types, compilers,
interpreters etc. are a function of the information flow between some or all
of the actors in this model. Of course, this model is a simplification of the
real world, where there may be many programmers, many languages, many
evaluators, and many computers interacting.

language L byte-code B
[———— B e —
programmer evaluator computer

Figure 1: The simple model

In this simple model, illustrated in Figure 1, information is forward flow-
ing: a programmer writes a program in a language L, which the evaluator
converts into a representation for execution on the target computer (the so
called byte-code representation B). The evaluator may be a compiler, trans-
lating a program into a binary format comprising low-level primitives of the
computer, or an interpreter, converting a program on-the-fly into running
code, or even a hybrid of the two, compiling and executing code dynamically.

Program development is usually not so linear and forwards leaning, as
the simple model suggests, but usually proceeds in an iterative fashion.
Information flowing back to the programmer from the evaluator may drive
the revision of code, as the evaluator may reject a program (Figure 2).

The feedback F' may be a number of things:

e Syntax errors

language L byte-code B

R P e ——
programmer evaluator computer

feedback F
Figure 2: The simple model with evaluator feedback

e Semantic errors: most usually type errors in a statically typed language
e Semantic warnings

For a statically typed language type errors or warnings may be returned
from the compiler, but for a dynamically typed language, type errors may
occur at runtime.

language L byte-code B
—TTTTTTTTT T T — T T
programmer evaluator computer

~— e
feedback F'

execution feedback F”’

Figure 3: The simple model with evaluator feedback and computer feedback

A further type of feedback can be added to the model, from the computer
to programmer, containing information about how the program is running,
not just output, but perhaps debugging information or information that re-
veals the inner, low-level workings of a program, such as resource utilisation
(Figure 3). The semantic distance from computer to programmer is much
greater than, say, evaluator to programmer, thus information is usually un-
certain and/or unpredictable, requiring more experimental techniques to
gain an understanding of behaviour. For some applications resource usage
may not be important, but for others resource usage, and patterns of usage,
may be extremely important.

Furthermore, some evaluation systems are dynamic, perhaps comprising
an interpreter, run-time system, or a JIT (Just-In-Time) compiler. Such
evaluators may tune their behaviour based on feedback from the running
code, giving another form of execution feedback mechanism between the
computer and the evaluator (Figure 4).

2.1 Information Content

The program in its byte-code format B contains all the implementation-level
information required for evaluation of a program. The abstract program, in
the mind of the programmer, may contain much more information about

language L byte-code B

R
programmer evaluator _____~ computer

<~
static feedback F' execution feedback F’/

execution feedback F’

Figure 4: The simple model + evaluator feedback + computer feedback +
execution feedback

the deep structure of a program, about its properties, and computational
patterns. The information contained in the written program, in language L,
lies somewhere in-between the two extremes of abstract and physical, con-
taining some information relating to the implementation and some relating
to the structure of the problem, in proportions depending on the level of
information hiding in the language.

The more high level a language, the further its syntax and semantics are
from the low-level instructions of hardware, thus hiding low-level execution
information. The amount of information gained during evaluation may be
vast or negligible depending on the level of abstraction in the language i.e.
the semantic “distance” between B and L.

Information hiding in programming languages is necessary for the pro-
ductive programming of ever complex programs on ever complex hardware
with larger and larger teams of developers. In Lecture 1, abstraction and
information hiding will be discussed further. Abstraction with the aim of
succinct programming will be a motivating factor in Lectures 2 and 3.

2.2 Expressivity and Information Loss

Depending on the language, information about a program’s structure, com-
putational patterns, abstractions, and properties may be lost in the process
of transcription from mind to syntax. Further information about the pro-
gram may be lost in its conversion to byte-code which may have facilitated
more efficient implementation via specialised optimisation had the higher-
level information been known. For example, certain equational properties
may hold for a program, e.g.

fz)+0=0

However, in a language with side effects, such as C, it is in general unde-
cidable to decide whether a function is in fact pure (free from side effects).
In a language which is inherently pure, with pure constructions, this kind
of equational property is guaranteed by the language definition, hence can
be used to rewrite a program with a view to optimising its run-time be-
haviour. Pure languages tend to be much more amenable to a mathematical

treatment, which greatly aids equational reasoning and optimisation. This
property will be exploited in Lecture 4, where equational rewrites are used
for optimisation, and in Lecture 3 for proving that programs satisfy certain
mathematical properties.

There also exists an information impedance between the computer and
the programmer. For some applications the programmer may be concerned
about execution details such as speed, latency, throughput, and memory us-
age. However such operational details may be hidden from the programmer
i.e. the execution feedback (F’ in Figure 4) is minimal and unpredictable.
For example, in lazy languages it can be very hard to reason about space
usage at compile time; the information is not well represented in the lan-
guage. A clear mental model of the execution behaviour of a language aids
the programmer in optimising further than algorithmic changes. For some
languages, such as C, the distance between the language and the target ar-
chitecture is significantly small that translation is fairly direct, allowing a
good mental model of the mapping from program constructs to execution
behaviour. However, for some languages and architectures the distance is
significant, leading to a more complicated translation, or run-time system,
which may render understanding of execution behaviour intractable for the
programmer.

Automatic optimisation of our programs by the evaluation system is usu-
ally desirable, particularly for those languages with abstract models that are
very different than the target architecture. Unfortunately, this optimisation
can compound the issue of a tractable cost-model for a language. Many
static program analyses are in general undecidable, thus approximations
must be used. However, many such approximated analyses, and transfor-
mations from the analysed results, can lead to discontinuous execution be-
haviour which can be a significant frustration for the programmer who is
trying to hand-optimise their program.

2.3 Domain Specific Languages

Domain specific languages (DSLs) provide constructions that are specialised
to a certain domain of use which may be easier to program for a non-expert
but may also capture more specialised-information about a program than a
general purpose language. Thus, DSLs can provide domain specific expres-
sivity and domain specific optimisation.

Embedded domain specific languages are those that can be used inside of
another language. The term, embedded domain specific languages, is fairly
broad and can even be applied to libraries which provide a kind of language
inside of another. DSLs will be discussed further in Lecture 2 in the context
of meta programming.

3 Summary

The development of programming languages, and abstraction away from
machine code, has greatly aided software development. Programming lan-
guages are a conduit between man and machine, with much of programming
language research aiming to improve this interaction and to help us better
express our ideas. We can attempt to improve languages for ease of reading,
ease of writing, and ease of reasoning, and improve our evaluation systems
to use less resources (whether it be processor time, memory, power, etc.)
whilst still providing a predictable system. Such facets of programming
language design are often non-orthogonal, thus a language designer must
trade-off certain improvements for others. Often, a motivating application
domain or purpose can help distill which features of a language are most
important. This lecture series should give some food for thought in various
areas of general programming and programming language design.

