Mathematically Structuring Programming Languages

Cambridge Programming Research Group Lectures 2010 Dominic Orchard

Simple Arithmetic Language E

$E:=\operatorname{add} E_{1} E_{2}\left|\operatorname{sub} E_{1} E_{2}\right| \operatorname{div} E_{1} E_{2}\left|\operatorname{mul} E_{1} E_{2}\right| \mathbb{Z}$

Semantics of E

$$
\begin{aligned}
& \llbracket-\rrbracket: E \rightarrow \mathbb{Z} \\
& \llbracket \text { add } \mathrm{e} 1 \mathrm{e} 2 \rrbracket=\llbracket e 1 \rrbracket+\llbracket e 2 \rrbracket \\
& \llbracket \text { sub e1 e2】 }=\llbracket e 1 \rrbracket-\llbracket e 2 \rrbracket \\
& \llbracket \operatorname{div} \text { e1 e2】 } \frac{\llbracket e 1 \rrbracket}{\llbracket e 2 \rrbracket} \longrightarrow \frac{\llbracket e 1 \rrbracket}{0}=\text { ? } \\
& \llbracket \mathrm{mul} \mathrm{e} 1 \mathrm{e} 2 \rrbracket=\llbracket e 1 \rrbracket * \llbracket e 2 \rrbracket \\
& \llbracket n \rrbracket=n
\end{aligned}
$$

Shallow EDSL in Haskell

- Haskell as meta language
- Terminals in grammar = functions
- Semantic definition + interpreter for free

$$
\begin{aligned}
& \text { add } \mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y} \\
& \text { sub } \mathrm{x} y=\mathrm{x}-\mathrm{y} \\
& \operatorname{div} \mathrm{x} y=\mathrm{x} \text { 'Prelude.div' } \mathrm{y} \\
& \text { mul } \mathrm{x} y=\mathrm{x} * \mathrm{y}
\end{aligned}
$$

The types guarantee wellformed programs

```
add :: Int -> Int -> Int
add x y = x + y
sub :: Int -> Int -> Int
sub x y = x - y
div :: Int -> Int -> Int
div x y = x 'Prelude.div' y
mul :: Int -> Int -> Int
mul x y = x * y
```

E.g.
mul (add 34) 6
\Downarrow
42
add (mul 4) 5

Couldn't match expected type 'Int' against inferred type 'Int -> Int'

Adding Exceptions (I)

div :: Int -> Int -> Int div x y $=x$ 'Prelude.div' y

$$
\begin{gathered}
\text { div } 10 \\
\Downarrow
\end{gathered}
$$

*** Exception: divide by zero

Adding Exceptions (2)

- We want to return either an Int or an exception string: Either Int String
- Sum type: Either $a b \cong a+b$

$$
\begin{aligned}
& \text { Left }:: a \rightarrow \text { Either } a b \\
& \text { Right }:: b \rightarrow \text { Either } a b
\end{aligned}
$$

Adding Exceptions (3)

$$
\begin{aligned}
& \text { div : : Int -> Int -> Int } \\
& \text { div } \mathrm{x} y=\mathrm{x} \text { 'Prelude.div' } \mathrm{y}
\end{aligned}
$$

div :: Int -> Int -> Either Int String $\operatorname{div}(x, y)=i f$ y==0 then Right "Divide by zero" else Left (x 'Prelude.div' y)

Now the types don't match

add 1 (div 10)

\Downarrow
Couldn't match expected type 'Int' against inferred type 'Either Int String'
In the second argument of 'add', namely '(div I 0)'

Extending each operation to pass exceptions through is bad

- Tedious
- Complicates semantics/code

```
add :: Either Int String -> Either Int String -> Either Int String
add x y = case x of
    Right e -> Right e
    Left x' -> case y of
    Right e' -> Right e'
    Left y' -> Left (x' + y')
```

- x4 (sub, div, and mul too)

Exercise

- Can we write a higher-order function to abstract the checking of exceptions in the parameters to add, sub, mul, div?

```
add :: Either Int String -> Either Int String -> Either Int String
add x y = case x of
    Right e -> Right e
    Left x' -> case y of
    Right e' -> Right e'
    Left y' -> Left (x' + y')
```


Possible Solution

$$
\begin{aligned}
& \text { handle : : (a -> a -> Either String a) -> Either String a } \\
& \text {-> Either String a } \\
& \text {-> Either String a } \\
& \text { handle } f \text { x } y=\text { case } x \text { of } \\
& \text { Right e -> Right e } \\
& \text { Left } x^{\prime} \text {-> case } y \text { of } \\
& \text { Right e' }->\text { Right e' } \\
& \text { Left } y^{\prime} \text {-> } f x^{\prime} y^{\prime}
\end{aligned}
$$

Exceptions are a kind of

 effect$f: a \rightarrow b$
Function

$$
f^{\prime}: a \rightarrow M b
$$

Function + effect M

- Many kinds of effect: state, input/output, errors, exception, traces, non-determinism
- Monads, from category theory, can be used to structure effects
- Allow us to compose functions with effects

Warm up... Monoids

Not the one-eyed aliens from 1960s 'Dr.Who'

Warm up... Monoids

(S, \bullet, e)
where

- : $S \times S \rightarrow S$
$e: S$
and

$$
\begin{array}{ll}
\forall x . x \bullet e=x=e \bullet x & \text { identity } \\
\forall x y z \cdot x \bullet(y \bullet z)=(x \bullet y) \bullet z & \text { associativity }
\end{array}
$$

e.g.

$$
(\mathbb{N},+, 0) \quad(\mathbb{N}, *, 1) \quad([a],++,[])
$$

Monads

(M, η, μ)
where (M is a functor):

$$
M: C \rightarrow C \quad \begin{aligned}
& \text { like a data type e.g. } \\
& \text { data } \mathrm{M} \mathrm{a}=\ldots
\end{aligned}
$$

$M_{\text {map }}:(a \rightarrow b) \rightarrow M a \rightarrow M b$
and (monad part):
$\eta: a \rightarrow M a$
$\mu: M(M a) \rightarrow M a \quad$ like the monoid's • operation

Monads

- Monads are monoids in a different category to where we usually use them (monoids in the "Set" category)
- Identity and associativity? (see course notes)

$$
\forall x . x \bullet e=x=e \bullet x \quad \text { identity (monoid) }
$$

$\forall x y z . x \bullet(y \bullet z)=(x \bullet y) \bullet z \quad$ associativity (monoid)

$$
\begin{array}{ll}
\mu \circ(M \eta x)=x=\mu \circ\left(\eta_{M} x\right) & \text { identity (monad) } \\
\mu \circ M \mu=\mu \circ \mu_{M} & \text { associativitv (mor }
\end{array}
$$

Monads

- Going to use monad operations for composing functions that return monads:

$$
\begin{gathered}
f: a \rightarrow M b \quad g: b \rightarrow M c \\
M_{\text {map }} g: M b \rightarrow M(M c) \\
\mu \circ\left(M_{\text {map }} g\right): M b \rightarrow M c \\
\mu \circ\left(M_{\text {map }} g\right) \circ f: a \rightarrow M c \\
\text { extend }:(a \rightarrow M b) \rightarrow M a \rightarrow M b \\
\text { extend } f=\mu \circ\left(M_{\text {map }} f\right)
\end{gathered}
$$

Monads in FP

- A structure (data type): data $M a=\ldots$
- Inject values into the monad (null effect) (η)

$$
\text { unit }:: a \rightarrow M a
$$

- Lift functions to work on the monad

$$
\text { extend }::(a \rightarrow M b) \rightarrow M a \rightarrow M b
$$

- We will implement extend directly, not using μ

Exception Monad

- Structure: Either a String $\cong a+$ String
- Unit operation:
unit : $a \rightarrow$ Either a String
unit $=$ Left

Exception Monad (2)

- Extend operation:

$$
\begin{aligned}
\text { extend }: & (a \rightarrow \text { Either b String }) \rightarrow \text { Either a String } \\
& \rightarrow \text { Either } b \text { String } \\
\text { extend } f & (\text { Left } x)=f x \\
\text { extend } f & \text { (Right e })=\text { Right e }
\end{aligned}
$$

Handles the exception in the first argument of f

Intuition of extend

$$
\text { extend }::(a \rightarrow M b) \rightarrow M a \rightarrow M b
$$

- extend deconstructs a monad for us
- but it doesn't really when derived it uses Mmap, lifting a function to $M a->M(M b)$ which is combined back into M b
- combines incoming effects with outgoing
- no need to duplicate code for handling effects in parameters

E with monadic exceptions

```
add :: Int -> Int -> Either Int String
add x y = unit (x + y)
sub :: Int -> Int -> Either Int String
sub x y = unit (x - y)
mul :: Int -> Int -> Either Int String
mul x y = unit (x * y)
div :: Int -> Int -> Either Int String
div x y = if y==0 then Right "Divide by zero"
                        else unit (x 'Prelude.div' y)
```


E with monadic exceptions

 Exerciseextend (λ a.extend (λ b.mul $a b)(a d d 25))(a d d 34)$

49

... however

extend complicates expressions in E

Compare
extend (λ a . extend ($\lambda \mathrm{b}$. mul a b) (add 24)) (add 43)
with
mul (add 2 4) (add 3 4)

Haskell can make extend implicit with the do notation

extend (λa. extend (λb. mul $a b)(a d d 24)$) (add 43$)$
\downarrow
do $\quad a \leftarrow$ add 43
$b \leftarrow$ add 24
mul ab
Rule:

$$
\text { do } \quad y \leftarrow f x \quad \equiv \quad \operatorname{extend}(\lambda y \ldots)(f x)
$$

Haskell do notation is

 parameterised by a monad- unit $=$ return
- extend $=\gg=$ (with parameters flipped)

$$
\begin{aligned}
& \text { extend }::(a \rightarrow M b) \rightarrow M a \rightarrow M b \\
& \gg=:: M a \rightarrow(a \rightarrow M b) \rightarrow M b
\end{aligned}
$$

User-defined Monads as an instance of a type class

- A type class specifies a set of methods
- Types are made instances of a class by defining all of the methods in the class

User-defined Monads as an instance of a type class

class Monad m where
return : : a $->\mathrm{m}$ a
$(\gg=):: \mathrm{m}$ a $->(\mathrm{a}->\mathrm{m} \mathrm{b})->\mathrm{mb}$
instance Monad (Either a String) where return $\mathrm{x}=$ Left x
(Right e) $\gg=f=$ Right e
(Left x) $\gg=f=f x$

Correct monad instance for do notation is chosen based on the types

$$
\begin{aligned}
&\qquad \text { Int } \rightarrow \text { Int } \rightarrow \text { Either Int String }) \\
& \text { do } \quad a \leftarrow a d d 43 \\
& b \leftarrow a d d 24 \\
& \text { mul } a b
\end{aligned}
$$

Selects our Either instance of the monad for the do notation

Other Monads: State, IO

```
do putStr "Enter a number:"
    x <- getLine
    double_x <- return ((read x) * 2)
    putStr ("Double your number = "
        ++ (show double_x))
```

- Sequences input/output effects

$$
\begin{aligned}
& \text { putStr }:: \text { String } \rightarrow \text { IO () } \\
& \text { getLine }:: \text { IO String }
\end{aligned}
$$

- IO is abstract so cannot be deconstructed, only by extend of IO monad

Conclusion (I)

- Monads can be used to structure effectful computations

$$
\begin{array}{ll}
(M, \eta, \mu) & \eta: a \rightarrow M a \\
& \mu: M(M a) \rightarrow M a
\end{array}
$$

- FP interpretation: data type +2 operations

$$
\begin{aligned}
& \text { unit }:: a \rightarrow M a \\
& \text { extend }::(a \rightarrow M b) \rightarrow M a \rightarrow M b
\end{aligned}
$$

- sum-type (Either) monad describes exceptions

Conclusion (2)

- Haskell as a meta language, describing another language
- Executable semantics
- Monads used to simplify semantics considerably
- Can apply monads for any kind of computational effect

