
Mathematically Structuring Programming

Languages

Cambridge Programming Research Group Lectures, May 2010

Dominic Orchard1

1 Introduction

Defining the semantics of a programming language is a mathematical task
that is made succinct and general by the use of abstract mathematical struc-
tures. Furthermore, programming can be made succinct and general by us-
ing abstract mathematical structures to abstract and restructure parts of
a program. In this lecture, we intersect both activities, of programming
and defining semantics, using the functional language Haskell as a meta lan-
guage to describe a simple arithmetic language E. Using Haskell as a meta
language gives us a semantical definition of E and an interpreter for free,
where E is a shallow embedded DSL (see Lecture 2). We then extend the
language E with exceptions, a kind of computational effect, and employ the
category theoretic notion of a monad to abstract the handling of exceptions,
rendering our semantics clean and concise. Monads are a useful tool to have
in our programming/semantics toolbox.

Knowledge of Haskell is not necessary, although might help. Up-to-date
notes, slides, errata, and examples can be found on the author’s homepage1.

1.1 Objectives

After completing this lecture students should:

• have gained a feel for using a language as a meta language to describe
another,

• understand the concept of a monad and the use of monads for struc-
turing effects, in particular exceptions,

• understand the merit of using abstract mathematical structures to help
structure programs and language semantics.

1Homepage: http://www.cl.cam.ac.uk/~dao29

1

2 Meta Programming a Simple Language

2.1 Simple arithmetic language E

Consider the following simple, prefix, arithmetic language with expressions
E defined by the grammar:

E := add E1 E2 | sub E1 E2 | div E1 E2 | mul E1 E2 | n

The denotational semantics of E could be defined by the following function
JK mapping the syntactic category of expressions E to some domain D:

J K : E → D

Jadd e1 e2K = Je1K + Je2K
Jsub e1 e2K = Je1K− Je2K

Jdiv e1 e2K =
Je1K
Je2K

Jmul e1 e2K = Je1K ∗ Je2K
JnK = n

On the right hand side of JK we give the semantics of E-expressions in terms
of another language on the domain D. Here we presume standard math-
ematical definitions of integer arithmetic, but there is one caveat which is
often a point of contention: for any value of x, what should the behaviour
of x

0 be?

2.2 Defining an executable semantics

We describe the semantics of E in domain D using a meta-language, and if
such a language happens to be an executable programming language then
defining JK gives us an executable semantics, and thus an interpreter for free.
Functional programming languages, such as ML and Haskell, are suitable
candidates for such a meta-language as they tend to have clean, lightweight
syntax and semantics that are similar to that of functions and sets in the
mathematical sense. The additional features of pattern matching makes the
business of dealing with syntax trees much more straightforward; the above
mathematical definition is not far off ML or Haskell syntax.

For the rest of this lecture we will assume that our meta-language is
Haskell, but ML would be just as suitable. If you are more familiar with
ML but not Haskell, Appendix A provides a few brief pointers.

As our grammar is suitably simple, where productions fit an applicative-
style: e1 e2, we can encode the language as a shallow embedding in Haskell,
using function definitions for each non-terminal of our grammar 1:

1All code samples can be downloaded from the author’s homepage: http://www.cl.

cam.ac.uk/~dao29/cprg-lecture.html

2

add x y = x + y
sub x y = x - y
div x y = x ‘Prelude.div‘ y
mul x y = x * y

We can the write programs in Haskell in the E sub-language, and evalu-
ate E programs to Haskell values which could be passed to further Haskell
code. The definition also provides a typed version of E for free, as we
reuse Haskell’s type inference and type checking by shallow embedding the
language as functions. As such, only well-typed E are well-formed, e.g:

add (mul 4) 5

is not well-formed, and is not accepted as it raises a type error: Couldnt
match expected type ‘Int’ against inferred type ‘Int -> Int’.

Haskell infers some fairly general types for our operations, such as:

add :: Num a⇒ a→ a→ a

This type comes from the type of + in Haskell which is overloaded for any
types which are a member of the Num class, i.e. the types for which + has
been defined (for more on Haskell type classes see http://www.haskell.
org/tutorial/classes.html). For our language we constrain the opera-
tions to be just those on the built-in type Int in Haskell. We give our first
definition of E in Figure 1. Compare the definition to that of JK above
and note how succinct and clean the definition is. In defining semantics we
would like to keep our definitions fairly succinct, and as we add features
to the language we would like the semantics of the new features to be as
decoupled from the existing semantics as possible, even if the new features
are not completely orthogonal.

add :: Int -> Int -> Int
add x y = x + y

sub :: Int -> Int -> Int
sub x y = x - y

div :: Int -> Int -> Int
div x y = x ‘Prelude.div‘ y

mul :: Int -> Int -> Int
mul x y = x * y

Figure 1: Semantics of E

Example The following expressions:

3

x = add 1 2
y = add (mul 3 4) 5
z = div 1 0

evaluate to integer results where x = 3 and y = 17, except z which does not
evaluate to a value but instead causes a Haskell exception: *** Exception:
divide by zero.

2.3 Adding exceptions

Instead of raising an exception in our meta language we want to handle and
output exceptions within the language E. We can encode the fact that div
possibly returns an exception by returning a sum type, such as

Z + e

where e is the type of an exception, or error. In Haskell we can construct
arbitrary sum types using algebraic datatypes, but we also have the built-in
Either type, which provides a binary sum type:

Either a b = a+ b

with injections to this type via the value constructors Left and Right :

Left :: a→ Either a b
Right :: b→ Either a b

We redefine div to return a string with an error message if the denominator
is 0, else return the integer result of the division:

div :: Int -> Int -> Either Int String
div x y = if y==0 then Right "Divide by zero"

else Left (x ‘Prelude.div‘ y)

Example Evaluating the following expressions:

x = add 1 2
y = add (mul 3 4) 5
z = div 1 0

gives x = 3, y = 17, and z = Right “Divide by zero”. What does w evaluate
to in the following definition?

w = add 1 (div 1 0)

4

The right hand side of w is not well-typed and will not be accepted by
Haskell because div returns a value of type Either Int String while the
second parameter of add should be of type Int, thus a type mismatch occurs.

In order to propagate our exceptions through the expression language we
need to accept possible exceptions as parameters to any of the operations
and to thread possible exceptions through. We give the definition of E with
this extension in Figure 2.

add :: Either Int String -> Either Int String -> Either Int String

add x y = case x of

Right e -> Right e

Left x’ -> case y of

Right e’ -> Right e’

Left y’ -> Left (x’ + y’)

sub :: Either Int String -> Either Int String -> Either Int String

sub x y = case x of

Right e -> Right e

Left x’ -> case y of

Right e’ -> Right e’

Left y’ -> Left (x’ - y’)

div :: Either Int String -> Either Int String -> Either Int String

div x y = case x of

Right e -> Right e

Left x’ -> case y of

Right e’ -> Right e’

Left y’ -> if y’==0 then

Right "Divide by zero"

else

Left (x’ ‘Prelude.div‘ y’)

mul :: Either Int String -> Either Int String -> Either Int String

mul x y = case x of

Right e -> Right e

Left x’ -> case y of

Right e’ -> Right e’

Left y’ -> Left (x’ * y’)

Figure 2: Semantics of E with exceptions

We can now thread exceptions through expressions, but we have to lift
integers to the Either type using the Left injection.

Example The following expressions:

x = add (Left 1) (Left 2)
y = add (mul (Left 3) (Left 4)) (Left 5)

5

z = div (Left 1) (Left 0)
w = add (Left 1) (div (Left 1) (Left 0))

evaluate to x = Left 3, y = Left 17, and both z and w evaluate to Right
“Exception: Divide by zero”.

2.4 Adding exceptions with abstraction

We have now added exceptions, but at the cost of making our semantics
significantly more complicated and hard to understand. The code for han-
dling exceptions is the same in each definition, apart from the inner case
where a value is computed, thus we can abstract the exception handling
code to try and make our semantics succinct once again. We could use
macros as discussed in Lecture 2, but in functional languages we can use
higher-order functions to much the same effect because we don’t need to
deconstruct the parameter of the “macro”. We define such a “macro” as the
higher-order function handle which takes a function over which to handle
exceptions. Figure 3 gives the semantics. (Note: we now use the point-free,
or pointless, style of function definition for add etc.)

add :: Either Int String -> Either Int String -> Either Int String

add = handle (\x y -> Left (x + y))

sub :: Either Int String -> Either Int String -> Either Int String

sub = handle (\x y -> Left (x - y))

div :: Either Int String -> Either Int String -> Either Int String

div = handle (\x y -> if y==0 then Right "Exception: Divide by zero"

else Left (x ‘Prelude.div‘ y))

mul :: Either Int String -> Either Int String -> Either Int String

mul = handle (\x y -> Left (x * y))

handle :: (a -> a -> Either String a) -> Either String a -> Either String a

-> Either String a

handle f x y = case x of

Right e -> Right e

Left x’ -> case y of

Right e’ -> Right e’

Left y’ -> f x’ y’

Figure 3: Semantics of E with abstracted exception handling

Example The following expressions:

x = add (Left 1) (Left 2)
y = add (mul (Left 3) (Left 4)) (Left 5)

6

z = div (Left 1) (Left 0)
w = add (Left 1) (div (Left 1) (Left 0))

evaluate to x = Left 3, y = Left 17, z = Right “Exception: Divide by zero′′,
and w = Right “Exception: Divide by zero′′.

2.5 Further abstraction

We must still inject values going into our language, but we have a much
shorter definition of the semantics now, with the handle performing the
exception threading for us. Yet, there is still some code duplication: we have
to check both arguments for exceptions, with essentially the same code. Can
we do better? Consider the following function extend which is similar to
the handle function but only handles unary functions as opposed to binary:

extend :: (a -> Either a e) -> Either a e -> Either a e
extend f x = case x of Right e -> Right e

Left x -> f x

We can then rewrite the binary handle function from before in terms of the
unary extend function:

handle f x y = extend (\x’ -> extend (\y’ -> f x’ y’) y) x

Instead of keeping all the definitions of add, mul, etc. in terms of handle,
we now express all operations in a simpler form where we only consider
exceptions in the return value, and not on any of the inputs:

add :: Int -> Int -> Either Int String
add x y = Left (x + y)

We can apply add to simple integers, or if we are applying it to the result
of another computation which may have returned an exception then we can
lift the parameters using extend, thus we move the handling of exceptions
outside of the function. E.g.

w = extend (\a -> add 1 a) (div 1 0)

The first argument to extend has correct type: (Int→ Either Int String). If
the second argument is an exception value (Right value) then extend passes
on the exception without even calling the function (\a -> add 1 a), or if
the second argument is a Left value, then extend unwraps it from the Left
constructor and passes the value to the first argument function.

7

Figure 4 gives the full semantics using extend, with extra functions
return (of type a → Either a b) and exception (of type b → Either a b)
wrapping the Left and Right constructors making it easier to read and un-
derstand the intention of the add, sub, div, and mul definitions.

return x = Left x

exception x = Right x

extend :: (a -> Either a e) -> Either a e -> Either a e

extend f x = case x of Right e -> Right e

Left x -> f x

add :: Int -> Int -> Either Int String

add x y = return (x + y)

sub :: Int -> Int -> Either Int String

sub x y = return (x - y)

div :: Int -> Int -> Either Int String

div x y = if y==0 then exception "Exception: Divide by zero"

else return (x ‘Prelude.div‘ y)

mul :: Int -> Int -> Either Int String

mul x y = return (x * y)

Figure 4: Semantics of E with further abstracted exception handling

Example The following expressions

x = add 1 2
y = extend (\a -> add a 5) (mul 3 4)
z = div 1 0
w = extend (\a -> add 1 a) (div 1 0)
v = extend (\a -> extend (\b -> mul a b) (add 2 4)) (add 4 3)

evaluate to x = Left 3, y = Left 17, z = Right “Exception: Divide by zero′′,
and w = Right “Exception: Divide by zero′′ as before, and v = Left 42,
showing how extend can be used for handling exceptions on both arguments
of an operator.

The definition of our semantics for E with exception in Figure 4 is now
considerably simpler and easier to read than our previous attempts in Fig-
ure 2 and Figure 3. However, writing expressions in E is now much more
cumbersome, with lambda abstractions and calls to extend everywhere. We
will improve this ugliness later.

The definition in Figure 4 actually uses a monad structure to define
the handling of exceptions; we now introduce monads.

8

3 Monads

Whilst we have been abstracting the semantics of our language we have
essentially defined the operations of a structure called a monad. The concept
of a monad comes from a branch of abstract mathematics called category
theory. Category theory essentially provides a framework for talking about
relationships, such as equality, between mathematical structures, such as
groups and sets, but at a higher level of abstraction. Since the early ‘90s,
computer scientists have realised that structures in category theory give
succinct ways to describe certain types of computation, and whose laws
and operations correspond to many features in our languages. As such,
these structures can an extremely useful tools for structuring and reasoning
in programming and theoretical programming language research. We will
not discuss the category theoretic understanding of monads (although a
brief introduction is given in Appendix B) but will instead give a functional
programming interpretation. For further reading see [1, 2].

Monads provide a succinct way to structure computations which have
some kind of effect. A function with an effect can be thought of as a normal
function along with some extra information contained, or associated, with
its return value e.g. f ′ : a → M b is a function a → b with a wrapper M
containing information about some effects along with the return value b.

In our example language, the effect is exceptions, but there are many
other types of effect which can be similarly structured by monads such as
state, input/output, and non-determinism.

Monads will give us a tool in our toolbox of programming/semantics
tricks for handling effects. As a warm-up exercise to thinking about mathe-
matical structures we will first recall a more well-known example: monoids

Definition A monoid is a triple (S, •, e) of a set S, a binary operation
• : S × S → S, and an element e : S with the following axioms:

• [identity] ∀x . x • e = x = e • x

• [associativity] ∀xyz . x • (y • z) = (x • y) • z

The following are example monoids:

• (N,+, 0)

• (N,×, 1)

• ([a],++, [])

The following are not monoids as the associativity axiom does not hold:

• (N,−, 0)

9

• (Z, \, 1)

Definition A monad M is a functor, which means, in the functional pro-
gramming interpretation, a monad is a data structure M , parameterised by
an element type a along with an operation:

Mmap : (a→ b)→M a→M b

which lifts a function to operate on the elements of the monad (cf. map
on lists – lists are functors with the normal list map function). The Mmap

function preserves the monad’s information/structure from the argument in
the return monad. We could think of a monad as a kind of container for
values of type a. For the M functor to be a monad it must be equipped
with the following two polymorphic functions:

• η : a→M a

• µ : M(M a)→M a

Where η is often called unit or return in FP and µ is often often called join
in FP.

A monad is a bit like a monoid, but instead of operating on a set S, we
are operating on M a values, where:

• η constructs an identity element

• µ is the binary operation but instead of taking a pair of values like
the monoid • : S × S → S the pair is now compositions of M , µ :
M(M a)→M a

As such, we have similar identity and associativity laws, although they
look slightly different and are a bit harder to understand so we will not delve
into them here (see Appendix B).

If we want to use monads to structure our computations in E then we
need to be able to compose functions with types like a → M b. As we
saw earlier, functions of this type do not compose well, e.g. if we have
f : a→M b and g : b→M c, we get a type mismatch if we try to do g (f x)
as the return type of f does not match the parameter type of g.

The operations of our monad give us a way to construct such a composi-
tion by turning g : b→M c into the function g′ : M b→M c. An operation
called extend provides this construction and is derived from the monad2.

extend : (a→M b)→M a→M b

extend f = µ ◦ (Mmap f)

2See Appendix B for more details of this construction which comes from a Kleisli
category of a monad.

10

e.g. when applied to g:

Mmap g : M b→M(M b)
µ ◦ (Mmap g) : M b→M c

Thus we can compose f and g by writing:

µ ◦ (Mmap g) ◦ f : a→M c

⇒ (extend g) ◦ f : a→M c

The extend operation essentially lifts a function of type (a → M b) to be
a function of type (M a → M b), over the monad. The type of the first
argument to extend means that we do not have to deconstruct or understand
the monad structure M in our functions – we can only construct effects, not
take them apart. The extend function looks like it deconstructs the monad
for us, giving us a value a out of the monad M . In fact, as we can see
from the derivation above, extend actually uses Mmap to lift our function to
one that takes a monad M a and returns a new monad that wraps the old
monad M(M b) which join combines together for us. Thus incoming effects
are combined with outgoing effects.

The extend operation also has its own laws for preserving identity and
associativity:

• {Left identity}
extend f (unit x) ≡ fx

• {Right identity}
extend unit x ≡ x

• {Associativity}
extend g (extend f x) ≡ extend (λx′ . extend g (fx′)) x

In our semantics for E we have been using the monad of a sum type
– Either in this case. We have already defined the unit (which we called
return) and extend function in the Figure 4. Check their signatures to
see that they match the signatures of unit and extend above. Thus, we
are using extend in a form not derived from the underlying Mmap and join
operations. To be sure we have really defined correct operations of a monad,
and that the sum types can really be a monad, we must verify the axioms
of identity and associativity. Here we verify the laws in terms of extend as
these laws are slightly easier to understand, but we can do the same for the
monad identity and associativity laws.

Theorem 3.1 A sum type F a b = a+ b is a monad.

11

Proof Take the operations unit and extend to be those defined in Figure
4, using two definitions for extend in a pattern matching style instead of a
case expression, and injections inl : ∀ab . a→ a+ b and inr : ∀ab . b→ a+ b
(equivalent to Left and Right constructors in Haskell):

unit = inl
extend f (inl x) = fx

extend f (inr e) = inr e

• Proof of left identity: extend f (unit x) ≡ fx

extend f (unit x)
⇔ extend f (inl x) {definition of unit}
⇔ fx {definition of extend - case 1}

The sum-monad satisfies the left identity property. �

• Proof of right identity: extend unit x ≡ x
x may be of form (inl x′) or (inr x′) thus we consider both cases.

(1) extend unit (inl x′)
⇔ unit x′ {definition of extend}
⇔ inl x′ {definition of unit}

(2) extend unit (inr x′)
⇔ inr x′ {definition of extend}

∴ extend unit x
⇔ x {(1) and (2)}

The sum-monad satisfies the right identity property. �

• Proof of associativity: left as an exercise (hint: express extend with
case expressions instead of pattern matching as in Figure 4, then
expand out the definitions, and use the associativity of nested case
expressions:

case (case e of b1 → e1 . . .) of case e of
b′1 → e′1 ⇔ b1 → (case e1 of b′1 → e′1 . . .)
.

The sum-type ∀ab . a+ b is a monad. �.

12

3.1 Monads in Haskell

As monads structure effects, Haskell provides an embedded imperative lan-
guage in its syntax, which is parameterisable by a monad describing the way
that effects are handled through the computation. This syntax considerably
improves programming with monads, as expressions such as:

v = extend (\a -> extend (\b -> mul a b) (add 2 4)) (add 4 3)})

can be difficult to read and write. The above example written in the monadic
do notation, as it is called, becomes the more readable and writable:

v = do a <- add 4 3
b <- add 2 4
mul a b

The binding construction: <- takes a computation and binds it to a variable,
which is accessible by future computations with effects handled by the extend
operation. The syntax:

do y <- f x
g y

is desugarded into:

extend (\y -> g y) (f x)

In Haskell, the extend operation is the (>>=) operator, called bind, which
has its arguments reversed, thus has type:

>>= : M a→ (a→M b)→M b

as opposed to our extend function which had type:

extend : (a→M b)→M a→M b

This operator, (>>=), can be used infix, conveying the intuition that extend
pushes a monadic value into a computation that takes a pure argument e.g.

extend (\a -> mul 3 a) (add 2 4)

≡ (add 2 4) >>= (\a -> mul 3 a)

In the do-notation the monad laws make even more intuitive sense:

• {Left identity}

do x’ <- return x
f x’ = do f x

• {Right identity}

13

do x <- m
return x = do m

• {Associativity}

do y <- do { x <- m = do x <- m
f x do { y <- f x

} g y
g y }

= do x <- m
y <- f x
g y

3.2 E with Haskell monads and do notation

Haskell defines a monad type class, providing a way to overload the built-in
>>= and return monad operations for some type that they are not cur-
rently defined for. Haskell’s type class mechanism allows overloading in the
language, where a function can have multiple definitions indexed by the
types of their parameters. The do notation is implicitly parameterised by a
monad whose operations are chosen based on the types of the parameters.
We implement an instance of Haskell’s monad type class to give our final
semantics, which is not only succinct in its definition because of the use
of monads, but which let’s us write E expressions succinctly using the do
notation.

Figure 5 gives the code for the executable semantic definition. We use
the custom data type Value for clarity, which is essentially the Either type,
but with more appropriate names than Left and Right.

Example The following expressions:

x = add 1 2
y = do a <- mul 3 4

add a 5
z = div 1 0
w = do a <- div 1 0

add 1 a
v = do a <- add 4 3

b <- add 2 4
mul a b

evaluate to x = Value 3 and y = Value 17, and both z and w evaluate to
Exception ”Divide by zero”, and v = Value 42.

14

data Value a = Value a | Exception String deriving Show

instance Monad Value where

return x = Value x

x >>= f = case x of Exception e -> Exception e

Value x -> f x

add :: Int -> Int -> Value Int

add x y = return (x + y)

sub :: Int -> Int -> Value Int

sub x y = return (x - y)

div :: Int -> Int -> Value Int

div x y = if y==0 then Exception "Divide by zero"

else return (x ‘Prelude.div‘ y)

mul :: Int -> Int -> Value Int

mul x y = return (x * y)

Figure 5: Semantics of E with exceptions using Haskell monads

4 Concluding Remarks

Monads provide a way to structure computations with some kind of effect.
They provide modularity, allowing us to describe simpler computations with-
out repeating code for threading or combining effects; they provide isolation
for effects, and give a clear definition of how these effects are sequenced.

A particular useful monad is the IO monad which structures input/output
effects, describing how these effects are sequenced thus giving a clear seman-
tics for the ordering of input/output. e.g.

do putStr "Enter a number:"
x <- getLine
double_x <- return ((read x) * 2)
putStr ("Double your number = " ++ (show double_x))

The two functions putStr and getLine have types:

putStr :: String→ IO ()
getLine :: IO String

thus produce effects, which the extend/bind, combines together, sequencing
the effects in the correct order, which is especially vital for input/output, but
which might not normally be provided by a language with lazy evaluation
such as Haskell. Note the use of return in the third line to inject the pure
computation ((read x) * 2) into the IO monad, producing an empty IO
effect.

15

The IO monad is a special case of the more general state monad, which
describes state-changing effects. The monad is of type:

State a = s→ s× a

where s is the type of some state value. Thus a State a value takes a state
of type s and return s anew state (which may be an altered version of the
argument state) along with a result value. Reading and writing to memory
is another effect that can be structured using a state monad. Other monads
include non-determinism, choice, and continuations. For further reading see
[1, 2].

In this lecture we have introduced a small arithmetic language E, and
have described its semantics using Haskell as a meta-language, gaining an
interpreter for free. The definition of E was given in a shallow style: essen-
tially a syntax-directed approach to semantics where we gave definitions by
way of Haskell function definitions for each terminal in the language, thus
providing a shallow embedded DSL. We added exceptions to the language
using the abstraction of a monad, succinctly describing the handling of ex-
ceptions in E. We then reused Haskell’s monadic do notation to hide the
operations of the monad in E expressions.

In these notes we arrived at describing exceptions with a monad ourselves
by trying to abstract and reuse code. Now that we are equipped with the
knowledge that monads structure effects we can jump straight to using a
monad anytime we realise we are dealing with effectful computations in a
program, saving time and improving the quality of our code.

References

[1] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991.

[2] Philip Wadler. Comprehending monads. In Mathematical Structures in
Computer Science, pages 61–78, 1992.

A Notes on Haskell for ML Programmers

A few quick notes on some syntactic differences between ML and Haskell.
While ML expresses anonymous functions (lambda abstractions) with the
syntax:

(fn x => x)

Haskell syntax is:

(\x -> x)

16

The parametrically polymorphic list type in ML may be written:

’a list

whilst in Haskell is is written:

[a]

In general, type parameters are written in postfix style in Haskell, whereas
they are prefix in ML, e.g. ’a ’b Either in ML vs. Either a b in Haskell.

B Monads: Categorically

Definition Briefly, a monad is a triple of an endofunctor M : C → C and
two natural transformations: (M,η, µ) where:

[M1] η : 1C ⇒M

[M2] µ : M2 ⇒M

[M3] Coherence condition:

• µ ◦Mµ = µ ◦ µM (akin to associativity)
• µ ◦Mη = µ ◦ ηM = 1M (akin to identity)

Definition Given a monad M for a category C, a Kleisli category CM is a
category whose objects are the objects of C and whose morphisms fM : A→
B are the morphisms f : A → MB in C. Identity in the CM is arises from
the η natural transformation, and composition fM : A → B, gM : B → C,
g ◦M f : A → C composes morphisms in C of f : A → MB, g :: B → MC
to g ◦ f : A→MC.

Extension within the Kleisli category is provided by an operator extend
which takes a Kleisli morphism in CM and extends the method in the un-
derlying category C from a monad to a monad i.e.

extend : ∀a, b . (a→M b)→ (M a→M b)

The extend operation can be derived from the monad’s functor M and µ as
such:

extend f = µ ◦M f

The application of the functor M to f has type M f : M a → M(M b)
creating a nested monad over b which µ combines to M b.

The extend operation of a monad can be used to define composition in
the Kleisli category:

∀x . (g ◦M f) x ≡ extend g (fx)

A Kleisli category provides a framework for working with monads. Using
monadic do notation in Haskell is like working in a Kleisli category.

17

