
Meta-programming & you

Robin Message∗

April 6, 2010

1 What is meta-programming?

Meta-programming is a term used in several different ways. Definitions
include:

� Metaprogramming is the writing of computer programs that write or
manipulate other programs (or themselves) as their data, or that do
part of the work at compile time that would otherwise be done at
runtime.1

� A metaprogram is a program that manipulates other programs (or
itself) as its data. The canonical example is a compiler.2

� Meta-programming, by which is meant that one constructs an inter-
preter for a language close to the problem and then writes problem
solutions using the primitives of this language.3

I’m going to define meta-programming as “code that creates, manipu-
lates or influences other code.”

2 Why do meta-programming?

There are three main reasons to do meta-programming. Firstly, to generate
code that is specialised to a particular problem or environment, usually as a
performance optimisation. Secondly, to add abstraction to programs where
the abstraction cannot be expressed by a primary abstraction mechanism in
the language the program is written in. Thirdly, to enable programs to be
written in a language that better expresses the intentions of the author.

∗Thanks to Dominic Orchard, Boris Feigin, Max Bolingbroke and Stephen Kell for
their helpful comments. This pdf is available at http://www.cl.cam.ac.uk/∼rhm31/

mplecture/handout.pdf
1http://en.wikipedia.org/wiki/Metaprogramming
2http://c2.com/cgi/wiki?MetaProgramming
3Alan Mycroft On integration of programming paradigms ACM Computing Surveys

28.2 (1996) http://doi.acm.org/10.1145/234528.234735

1

http://www.cl.cam.ac.uk/~rhm31/mplecture/handout.pdf
http://www.cl.cam.ac.uk/~rhm31/mplecture/handout.pdf
http://en.wikipedia.org/wiki/Metaprogramming
http://c2.com/cgi/wiki?MetaProgramming
http://doi.acm.org/10.1145/234528.234735

2.1 Optimisation

By meta-programming, we can do some of the work of the compiler within
our program. We can also do analyses and optimisations that the compiler
cannot do, either because it was not designed to do them, or because they
depend on domain-specific knowledge.

For example, the fast fourier transform is easiest to code up for power-of-
two sized instances. It can also be done for non-power-of-two instances, but
this is tricky and each one is different. However, it is also algorithmic, so a
machine can easily do it if we write a program to do so. A program writing a
program – sounds like meta-programming to me! It is also possible to unroll
small FFT instances (which larger ones are made from) to produce faster
code. Again, there is no need for this to be done by hand, and it is nice
to be able to integrate small unrolled transformations into automatically
generated code.4

2.2 Abstraction

Most programming languages provide one or more mechanisms for abstrac-
tion. For example, Java provides subclassing and generics, and ML provides
higher-order functions, polymorphism and a module system. However, these
abstraction mechanisms are always insufficient. Whatever abstraction mech-
anism you have, there will always be parts of your program that it doesn’t
work for[citation needed].

By using meta-programming we can add new abstraction mechanisms
that are not built into the language. For example, aspect-orientated pro-
gramming5 is a technique for expressing cross-cutting concerns. A concern
is a particular behaviour or set of behaviours in a system. Normally, the sys-
tem is decomposed into parts based on some particular set of concerns. For
example, a medical records application might be divided up into different
sections for different users, and subdivided into screens for doing different
things to records for each user. A cross-cutting concern would then be a
concern that affect multiple other concerns and can’t be slotted neatly into
the dominant decomposition. In the medical records example, the logging
of who has viewed and edited each record anywhere in the system is such
a concern, and aspect-orientated programming gives a way to express such
cross-cutting concerns.

Aspect-orientated programming adds advice, which is program code
adding a new behaviour or mediating another behaviour, and join points,
which are ways of expressing where advice should be applied to other parts

4These things are all implemented by FFTW, Fastest Fourier Transform in the West.
http://www.fftw.org/

5Kiczales et al. Aspect-Oriented Programming In Proc. of ECOOP ’97 http://www.

cs.ubc.ca/∼gregor/papers.html

2

http://www.fftw.org/
http://www.cs.ubc.ca/~gregor/papers.html
http://www.cs.ubc.ca/~gregor/papers.html

of the program. Advice and join points are weaved with a program to pro-
vide a program that implements all the behaviours in the original program
as well as the behaviours in the cross-cutting concerns.

A popular aspect-orientated system is Aspect/J6 which adds aspect-
orientated to the object-orientation of Java. Aspect/J runs by preprocessing
the Java source code with the aspect source code to produce Java source
code. Hence, Aspect/J is a form of meta-programming.

Another simple example of meta-programming for abstraction is the new-
style for loop added in Java 1.5. This just abstracts the pattern:

f o r (Iterator i=collection . iterator () ; i . hasNext () ;) {
Element e=i . next () ;
// code

}

into

f o r (Element e : collection) {
// code

}

This new control structure abstraction is elegant and useful – why did we
have to wait to get it? Why can’t we describe new syntax and control
structures in some kind of meta-Java?

This is also a good point to note that there is no actual difference be-
tween abstraction and the subject of the next section, expressiveness. It is
just a question of degree. However, one handy rule of thumb seems to be ab-
straction generally involves only rewriting based on context-free grammars,
whereas expressiveness requires computation.

2.3 Expressiveness

Meta-programming can also be used to express programs that not only can’t
be properly abstracted in your current programming language, but can’t be
represented at all.

A good example is a Prolog interpreter. A prolog program is nothing
like a program in another programming language. Nor is it anything like
machine code. Therefore, we can see a prolog interpreter or compiler as
a meta-program that turns a prolog program into a program in another
language that is expressed in a completely different way.

Note a library could add a feature like a prolog interpreter to a language
without such a facility. However, libraries do not appear integrated into the
language in the same way as what we are trying to achieve.

The remainder of these notes will concentrate on meta-programming for
expressiveness, under the title of domain-specific languages (DSLs).

6http://www.eclipse.org/aspectj/

3

http://www.eclipse.org/aspectj/

3 Domain Specific Languages

In many ways, these are the most useful and common meta-programs.
Configuration files, embedded scripting languages, Javascript+DOM in the
browser, Excel – these are all domain specific languages. Generally, do-
main specific languages are more human readable, more structured, and less
expressive than general purpose programming languages.

From our perspective, the most useful DSLs are those embedded into
a general purpose programming language. This is for two reasons: a) so
there are no limitations on the power of the embedded language – existing
abstraction mechanisms are available; and b) to ease implementation – no
need for a separate compiler.

By embedded, we mean that the DSL is valid code in the language it
is embedded in, as well as expressing some domain specific concepts. This
enables it to be parsed by our existing compiler/interpreter, and allows us
to use the full power of the general purpose language in the DSL. The other
aspect of embedding is we use the same type system in the DSL as the
language we are embedded into. This is simple, but can cause us problems
in two ways: a) It might be difficult or impossible to give a type to DSL
elements, which causes problems for languages with a static type checker;
and b) if we have type checking, we’d like it to check the DSL too, but
concepts in the DSL might not be expressible in the type system From here
on in, DSL will refer to an embedded DSL.

4 Let’s get on with the code!

We’ll now look at embedded DSLs in a number of languages and con-
sider how amenable that language is to implementing a DSL. As a run-
ning example we will try to make a little language of mathematical ex-
pressions. Such a language could be useful in, for example, a user in-
terface for layout constraints. The expression we will try to capture is:
area = (width + 8) ∗ (height + 4)

4.1 Java

Back in the days of fanfold, there was a type of programmer who
would only put five or ten lines of code on a page, preceded by
twenty lines of elaborately formatted comments. Object-oriented
programming is like crack for these people: it lets you incorporate
all this scaffolding right into your source code.7.

— Paul Graham
7http://www.paulgraham.com/noop.html

4

http://www.paulgraham.com/noop.html

Java is a pretty standard Bondage and Discipline language8, so we are
not going to achieve any miracles with the syntax. The most useful technique
for writing DSLs in Java is method chaining. This means returning an object
from all of our DSL methods, usually this. Sometimes it makes more sense
to return another object or a new object that allows you to do some kind
of scoped actions. Note that the JVM is flexible and powerful, and with
features like dynamic-classloading and reflection we can do almost anything
on top of Java (for example, Clojure and Scala both run on top of the JVM
and could be expressed in Java) but I’d argue that these things are not really
Java.

ab s t r a c t c l a s s Expression {
ab s t r a c t double calculate (Map<String , double> env) ;
Expression add (Expression b) {

r e turn new Add (th i s , b) ;
5 }

Expression mul (Expression b) {
r e turn new Mul (th i s , b) ;

}
}

10 c l a s s Add extends Expression {
pr i va t e Expression a , b ;
Add (Expression _a , Expression _b) {

a=_a ; b=_b ;
}

15 double calculate (Map<String , double> env) {
r e turn a . calculate (env)+b . calculate (env) ;

}
}
c l a s s Mul extends Expression {

20 pr i va t e Expression a , b ;
Mul (Expression _a , Expression _b) {

a=_a ; b=_b ;
}
double calculate (Map<String , double> env) {

25 r e turn a . calculate (env) *b . calculate (env) ;
}

}
c l a s s Var extends Expression {

pr i va t e String name ;
30 Var (String _n) {

name=_n ;
}
double calculate (Map<String , double> env) {

r e turn env . get (name) ;
35 }

}
c l a s s Num extends Expression {

pr i va t e double num ;
Num (double _n) {

40 num=_n ;
}
double calculate (Map<String , double> env) {

r e turn num ;
}

45 }

8http://c2.com/cgi-bin/wiki?BondageAndDisciplineLanguage

5

http://c2.com/cgi-bin/wiki?BondageAndDisciplineLanguage

s t a t i c Expression add (Expression a , Expression b) { r e turn new Add (a , b) ;}
s t a t i c Expression variable (String name) { r e turn new Var (name) ;}
s t a t i c Expression number (double n) { r e turn new Num (n) ;}

50 Expression area=add (variable (”width”) , number (8)) . mul (variable (” he ight ”
) . add (number (4))) ;

area . calculate (env) ;

There are several points to note in this example. Firstly, we generate ex-
pressions either using static functions on lines 46–48, or the method chaining
methods in the Expression class on lines 3 and 6. This causes duplication,
which is ugly, but unfortunately unavoidable.

Secondly, we are having to wrap variable names and numbers into classes.
We could get around this by overloading all the mul and add functions, but
that would quickly get tedious.

Thirdly, we have the classic expression problem here, which makes it
difficult to add new processing methods. It is also impossible to add methods
to chain any new binary operators like we have done for add and mul.

However, we do have a tree structure which we could do manipulations
on. Overall, this isn’t much of an embedded DSL since we have explicit
wrapping of values and are just constructing a tree in memory.

4.2 ML & Haskell

Since ML is called Meta-Language, we would hope it is reasonably amenable
to meta-programming! And it is amenable to meta-programming, but with
the caveat the syntax is quite restrictive. If we are willing to write our
DSL as data constructors forming trees, then we have an excellent system
for building a compiler or interpreter, but not an embedded DSL. ML was
designed for expressing tactics for theorem proving, not designing embedded
DSLs.

Haskell has more lighter weight syntax, operator overloading, and lazy
evaluation make it quite usable for embedded DSLs. Dominic Orchard’s
lecture, Mathematically Structuring Programming Languages, will look at
construction a DSL in Haskell.

4.3 Ruby

Ruby is simple in appearance, but is very complex inside, just
like our human body9.

— Yukihiro “matz” Matsumoto

Ruby is a dynamically-typed, object-orientated scripting language10. Par-
ticular features that make ruby useful for creating DSLs are its lightweight

9http://www.ruby-lang.org/en/about/
10http://www.ruby-lang.org/

6

http://www.ruby-lang.org/en/about/
http://www.ruby-lang.org/

syntax, code blocks, symbols, and its overloading and dymanic method dis-
patch features, in particular method missing.

c l a s s Expression

de f initialize b

@block=b

end
5 de f calculate environment

@env=environment

instance_eval &@block

end
de f method_missing name ,* args

10 i f args . length==0
@env [name]

e l s e
super name ,* args

end
15 end

end

de f Expression &block

Expression . new block

20 end

area=Expression {
(width+8) * (height+4)

}
25

area . calculate : width => 100 , : height => 5

Here we create an Expression class that will hold our expressions, and
three functions within it. The first just saves a parameter in an instance vari-
able “@block”. Instance variables are always written with an @ in front of
them, and are the same as member variables in Java. The second calculates
the result of an expression in an environment by saving the environment in
an instance variable and evaluating the expression inside the current object,
by calling “instance eval”. The third function handles any method calls that
aren’t recognised. This is a very handy Ruby meta-programming feature.
We use it here to fetch parameters in the expression from the environment.

After that, we have a top-level function to make creating Expression
instances neater. The “area” variable is initialised to an Expression that
does our calculation. In this case, we are writing our expression in Ruby
itself, so the only bit of meta-programming is being able to look up any
variables in the expression correctly.

Finally, we evaluate the expression in an environment. It should be
noted that this DSL is perhaps more fragile than the Java example. For
example, if one of your variables was called “true”, this code would not
function correctly. More generally, there is a trade-off in shallow embedding
of DSLs – it is easy to confuse DSL features with language features. In some
cases, this is deliberate, for example to generate part of a DSL using the full
power of the language, but as in the example above can lead to errors.

Ruby is good for embedded DSLs, as long as the DSL does not attempt to

7

express something very different to what can be expressed in Ruby. Features
like blocks, method missing and eval make it very powerful for expressing
code-like DSLs very succinctly. For example, the Rails web toolkit is very
powerful partly due to its extensive use of Ruby meta-programming for
things like ORM, routing and HTML generation.

4.4 Lisp

Copyright Randall Munroe11

What discussion of meta-programming would be complete without Lisp?
Lisp is more of a family of languages than one in particular. There are
two main ecosystems – Common Lisp and Scheme. Common Lisp seems
more traditional and has an advanced object system. Scheme is smaller,
more functional and has continuations and a hygienic macro system. If
you are interested in running this code, it runs in the “Pretty Big” mode
of DrScheme12. Lisp has never really broken through as a popular pro-
gramming language, but it has always been influential. Particular features
that make it good for meta-programming and DSLs are its macro system,
lightweight syntax and very small core language.

Anyway, on with the code! We wish to represent mathematical expres-
sions like (width + 8) ∗ (height + 4), so lets see the Lisp code to process
expressions in that form:

(define (deinfix exp)
(cond

((and (l i s t ? exp) (equal ? 3 (l ength exp))) (l i s t (cadr exp) (
deinfix (car exp)) (deinfix (caddr exp))))

(else exp)
5))

(define (calculate exp env)
(map (lambda (v) (eva l `(define , (car v) , (cdr v)))) env)
(eva l exp)

10)

(define area ' ((width + 8) * (height + 4)))
(calculate area ' ((width . 100) (height . 50)))

11http://xkcd.com/224/
12http://www.plt-scheme.org/

8

http://xkcd.com/224/
http://www.plt-scheme.org/

This code defines a function “deinfix” that converts infix expressions
into the prefix style Lisp uses, by recursively examining the expressions and
turning any three part lists like (a ∗ b) into (* a b), and doing the same
to a and b. Next, we define a calculate function. This function takes a
Lisp expression and an environment, and evaluates the expression in that
environment. Finally, we see how our area calculation can be expressed and
how the environment is specified.

Hopefully, despite the lack of clear syntax, you can see how the program
works. Now we’d like to fix some bugs, the first being the fact we only accept
well-bracketed operators and we’d rather accept general mathematics. The
second problem is our syntax for starting expressions and processing them
is a bit ugly.

(define ˆ expt)

(define (munge exp)
(cond ((> (l ength exp) 4) (munge-prec (car exp) (cadr exp) (caddr

exp) (cadddr exp) (cddddr exp)))
5 ((equal ? 1 (l ength exp)) (car exp))

(else exp)
))
(define (prec op)

(case op

10 ('+ 1) ('− 1) (' * 2) ('/ 2) ('ˆ 3) (else 0)
))
(define (r a s s o c op)

(eq? op 'ˆ)
)

15 (define (munge-prec a op1 b op2 r e s t)
(l e t ((p1 (prec op1)) (p2 (prec op2)))

(cond
((< p1 p2) (munge (cons a (cons op1 (munge (l i s t * b op2 r e s t))))

))
((and (eq? p1 p2) (r a s s o c op1)) (l i s t a op1 (munge (l i s t * b op2

r e s t))))
20 (else (munge (l i s t * (l i s t a op1 b) op2 r e s t)))

)))

(define-syntax expression

(syntax-rules ()
25 ((_ exp . . .)

(deinfix (munge ' (exp . . .)))
)))

(calculate (expression (width + 8) * (height + 4)) ' ((width . 100) (
height . 50)))

In this section of code, first we define ^ to be the exponentiation opera-
tor. Next, we define the “munge” function, which implements an operator
precedence parser with precedences defined by “prec” and right-associativity
by “rassoc”13.

The “define-syntax” part of the program declares that any expression
13There is a small bug in the operator precedence parser – (x+y∗z) goes into an infinte

loop. A prize to the best solution that implements operator precedence parsing correctly.

9

beginning (expression...) should be parsed with the “munge” function, fol-
lowed by the “deinfix” function from earlier. This means we can express our
expressions naturally within the programming language. The next thing
to note is, since our expressions are structured data, we can process them.
Let’s demonstrate this by differentiating our expressions.

(define (diff exp var)
(cond

((symbol ? exp) (if (eq? exp var) 1 0))
((number ? exp) 0)

5 ((equal ? 3 (l ength exp)) (diff-binop (car exp) (cadr exp) (caddr
exp) var))

(else (raise (string-append ”Not an exp r e s s i on ” exp)))
))
(define (diff-binop op a b var)

(cond ((equal ? '+ op) `(+ , (diff a var) , (diff b var)))
10 ((equal ? '− op) `(− , (diff a var) , (diff b var)))

((equal ? '* op) `(+ (* , (diff a var) , b) (* , a , (diff b var)))
)

((equal ? 'ˆ op) (if (number ? b)
(if (eq? b 0) 0 (diff-binop '* a `(ˆ , a

,(− b 1)) var))
(raise ”ˆ not a non−number”)

15))
(else (raise (string-append ``Can ' t differentiate ' ' (symbol->

s t r i n g op))))
))

These are some simple rules of differentiation. The “diff” function han-
dles symbols and numbers, and the “diff-binop” function handles operators.
However, the output of “diff” is full of multiplications by 1 and 0, and
additions of 0. Let’s simplify the expressions it returns.

(r e qu i r e scheme/match)
(define (simplify exp)

(cond
((and (l i s t ? exp) (equal ? 3 (l ength exp))) (simplify-binop (car

exp) (cadr exp) (caddr exp)))
5 (else exp)

))
(define (simplify-binop op ina inb)

(define a (simplify ina))
(define b (simplify inb))

10 (match (l i s t op a b)
((l i s t '+ a 0) a)
((l i s t '− a 0) a)
((l i s t '+ 0 b) b)
((l i s t '+ a a) `(* 2 , a))

15 ((l i s t '− a a) 0)
((l i s t '* a 0) 0)
((l i s t '* 0 b) 0)
((l i s t '* a 1) a)
((l i s t '* 1 b) b)

20 ((l i s t 'ˆ a 0) 1)
((l i s t 'ˆ a 1) a)
(else (l i s t op a b))

))

25 (simplify (diff (expression x ˆ 2 − 2 * x + 1) ' x))

10

Here we pattern match on the binary operations, simplifying them where
possible. The “match” syntax allows us to do powerful pattern matching
like ML and unification like Prolog – but note that it is just a library in
Lisp.

I hope this has demonstrated some of the power of Lisp for DSLs and
for programming in general.

Lisp is worth learning for the profound enlightenment experience
you will have when you finally get it; that experience will make
you a better programmer for the rest of your days, even if you
never actually use Lisp itself a lot.

— Eric S. Raymond, “How to Become a Hacker”

11

	What is meta-programming?
	Why do meta-programming?
	Optimisation
	Abstraction
	Expressiveness

	Domain Specific Languages
	Let's get on with the code!
	Java
	ML & Haskell
	Ruby
	Lisp

