
Modularity: what, why and how

Stephen Kell
Stephen.Kell@cl.cam.ac.uk

Computer Laboratory

University of Cambridge

Modularity. . . – p.1/33

Some problematic code

Imagine implementing a syntax tree evaluator.

+

-

6

×

7 6

Your tree must

� support many kinds of node

� support many functions on nodes

� beextensiblein amodularway

Modularity. . . – p.2/33

Functional programmer’s solution

If you like functional programming, use an ADT:

data Expr = Lit Int
| Add Expr Expr

| Neg Expr

| Mul Expr Expr;

eval (Lit i) = i

eval (Add l r) = eval l + eval r

eval (Neg e) = − eval e

eval (Mul l r) = eval l ∗ eval r

Adding a new function is easy.

print (Lit i) = putStr(show i) −− etc. for other kinds of node

What about new kinds of node?

Modularity. . . – p.3/33

Object-oriented programmer’s solution

If you like object-oriented programming, use interfaces:

interface Expr { int eval (); }

class Lit implements Expr { // field and constructor omitted ...

int eval () { return i ; } }

class Add implements Expr { // ...

int eval () { return l .eval () + r .eval (); } }

class Neg implements Expr { // ...

int eval () { return −e.eval(); } }

class Mul implements Expr { // ...

int eval () { return l .eval () ∗ r .eval (); } }

Adding new kinds of node is easy. New functions?

Modularity. . . – p.4/33

The expression problem

“A new name for an old problem.”

(Wadler, “The expression problem”,
a mail tojava-genericity, 1998.)

A good solution would

� keep related changes together

� . . . rather than scattered throughout code

� avoid edits to existing code

� . . . which might create maintenance problems

Why are these good? Something to do withmodularity. . .
Modularity. . . – p.5/33

Outline of this lecture

� Expression problem intro

� What is modularity?

� Founding wisdom

� Openness-based approaches

� More postmodern approaches

� Notions ofmodule

� Assorted research approaches

Modularity. . . – p.6/33

What is modularity?

“Modularity” usually conflates a few related goals.

� keep related things together

� don’t repeat yourself
� if you have to, keep the repetitions close together

� keep unrelated things separate

� avoid tangling concerns
� avoid embedding change-prone assumptions

Why?

� fewer chances to make a mistake

� change confined to one place (ditto)

� maximise compositionality Modularity. . . – p.7/33

On the criteria. . .

“It is almost always incorrect
to begin the decomposition of a system
into modules on the basis of a flowchart.

“We propose instead
that one begins with a list of . . . design
decisions which arelikely to change. . . ”

(Parnas, “On the criteria to be used in decomposing systems
into modules”, CACM 15(12), 1972.)

Use modularity forchange-robustness.
Information hiding→ data abstraction→ CLU →

� . . .→ private, protected etc.
Modularity. . . – p.8/33

Modular decomposition in our example (1)

The modular decomposition in Haskell looks like this.

ADT eval print someOther
Lit pattern pattern pattern
Neg pattern pattern pattern
Add pattern pattern pattern
Mul pattern pattern pattern

Each outlined box denotes a “closed” definition in the
language.

Modularity. . . – p.9/33

Modular decomposition in our example (2)

The modular decomposition in Java looks like this.

interface eval print someOther

Lit method method method

Neg method method method

Add method method method

Mul method method method

Here, decomposition is along a differentdimension.

Modularity. . . – p.10/33

Structured design

“Mr Constantine
has observed that programs that were the
easiest to implement and change were those
composed of simple, independent modules.

“Problem solving
is hardest when all aspects of the problem
must be considered simultaneously.”

(Stevens, Myers & Constantine,“Structured design”, IBM
R&D Journal vol 13, 1974.)

This introduced the ideas ofcouplingandcohesion.
Modularity. . . – p.11/33

Coupling and cohesion

Coupling is bad: minimise it.

� the extent to whichchangesin one module. . .

� . . . entail changes in another

Cohesion is good: maximise it.

� the extent to which the various contents of a single
module. . .

� . . . are related to one another

Modularity. . . – p.12/33

Problems with coupling and cohesion

Cohesion is underspecified:whatshould cohere?

� coherence occurs along different dimensions. . .

� . . . as shown by expression problem

Low coupling is trickier than it sounds.

� anyvocabulary (for data, functions) entails coupling. . .

� . . . but can’t avoid choosingsomevocabulary!

Both trade off against a hidden enemy: too many modules

Modularity. . . – p.13/33

An incremental solution to the expression problem

Languages offering “open” constructs enable “no editing”.

−− Don’t use an ADT (closed); use a ”type class ” (open)

class Exp x

−− Declare each kind of node as its own ADT (one constructor only)

data (Exp x, Exp y) => Add x y = Add x y

−− ...

−− Declare each such ADT to be an instance of the type class

instance (Exp x, Exp y) => Exp (Add x y)

−− ...

−− Define a type class for each function

class Exp x => Eval x where eval :: x −> Int
−− Code is defined per−function, per−kind−of−node

instance (Eval x, Eval y) => Eval (Add x y)

where eval (Add x y) = eval x + eval y

Modularity. . . – p.14/33

The finer-grained decomposition

Exp typeclass Eval Print SomeOther

Lit instance instance instance

Neg instance instance instance

Add instance instance instance

Mul instance instance instance

Modularity. . . – p.15/33

Incrementality: locality lost

These solutions work by

� breaking previously “closed”completedefinitions. . .

� . . . into “open”partial definitions;

A corollary: what was once together is now separate.

� we have cohesion only at a small scale

� imaging binning eachinstance declaration in the
Haskell code. . .

� . . . into one of a smaller set of source files
� would you decompose by node kind, or by

operation?

Modularity. . . – p.16/33

Separation of concerns

In the same year as Stevens, Dijkstra wrote:

“To study in depth an
aspect of one’s subject matter in isolation
. . . all the time knowing that [it is] only
one of the aspects. . . is what I sometimes
have called ‘the separation of concerns’.”

(Dijkstra, “On the role of scientific thought”, EWD447,
1974.)

Modularity. . . – p.17/33

Locality regained?

Why need there beone true decompositionof a system?
Instead,

� describe different parts of a system. . .

� . . . using different decompositions!

� compose in a separate step

This is the basis ofmulti-dimensional separation of
concerns(Tarr et al., ICSE 1999).

� “hyperslice” notion of decomposition

� tool support foron-demand remodlarization

� Hyper/J implementation for Java

Modularity. . . – p.18/33

Multi-dimensional separation of concerns (1)

This is a by-node decomposition

� good for adding new kinds of node

Could also have sliced by method. . .

Modularity. . . – p.19/33

Multi-dimensional separation of concerns (2)

Slices are more general than “by function” or “by class”:

� Here we slice some common code out ofdisplay()

� . . . to isolate code shared between nodes of given arity

Modularity. . . – p.20/33

Aspect-oriented programming (1)

The expression problem is hard because

� nooneseparation of the two dimensions is sufficient

� . . . MDSoC’s power is the ability to pick and choose

Often our problem is simpler:

� a system can be factored into “base” and “extension”

� . . . where the extensions are mostly independent. . .

� . . . but would ordinarily require “scattered” code

Modularity. . . – p.21/33

AspectJ (2)

AspectJ exploits the “base” versus “extension” distinction.

� idea: describe extensions separately, then . . .

� . . . splice the code in at compile time

� “pointcuts” are expressions defining points in execution

� e.g.call(void Point.setX(int))
� matches just before any call toPoint.setX(int))
� a sort of query over events at run time

� “advice” is code that is spliced in (“woven”) at these
points

� e.g.before(): System.out.println(”about to
move”);

Modularity. . . – p.22/33

Uses of AOP

Applications of AOP:

� canonical, dull example: adding logging

� real, exciting example: prefetching in BSD 3.3!
� Coady, ESEC/FSE 2001

� any “extension”-style feature or extrafunctional
change. . .

� . . .

Modularity. . . – p.23/33

Quantification and obliviousness

Aspects have some useful modularity properties

� quantification

� “for all join points matchingP , do this. . . ”
� enables locality

• gather in one place related logic that applies to
many

� obliviousness

� implies non-invasiveness
� also impliesunanticipatedness(stronger)

• original code needn’t bedesigned forextension
· cf. the Haskell typeclass expression example

� see Filman & Friedman, 2000
Modularity. . . – p.24/33

The “paradox” (trade-off) of AOP

AOP is controversial.

� e.g. Steimann, “The paradoxical success of AOP”
(Onward! ’06)

� to gain some modularity (less scattering of feature
code). . .

� AOP trades off some other (strong coupling between
aspect and class)

� This can sometimes be a good-value trade. . . not
always.

It prompts us to investigate notions ofmodule.

Modularity. . . – p.25/33

Overview and interval

� Expression problem intro

� What is modularity?

� Founding wisdom

� Openness-based approaches

� More postmodern approaches

� Notions of module

� Assorted research approaches

Modularity. . . – p.26/33

Information hiding again

Spot the difference:

before() call (void Point.setX(int)):

{ System.out.println(”about to move”); }

−−− a/Pos.java 2001−01−26 23:30:52.000000000 +0000

+++ b/Pos.java 2008−05−09 15:05:39.396998000 +0100

@@ −36,7 +36,12 @@

// update our position

+ System.out.println(”about to move”);

myPoint.setX(42);

� patches are a kind of module. . .

� . . . if a bad one—very brittle!

� patches and aspects have something in common. . .Modularity. . . – p.27/33

Information hiding lost

Aspects are an improvement on patches. . .

� . . . better localised, more abstract, less syntactic

� but still, pointcuts can range overanycode internals

� double-edge: enough power to blow off both feet

Call this awhite-boxapproach

� cf. black-box, where [some] internals arehidden

� (reality: many shades of grey)

Modularity. . . – p.28/33

White- versus black-box composition

White-box examples:

� patches

� slices (incl. hyperslices)

� aspects

� superimpositions (Apel, 2009)

Black-box examples:

� abstract data types

� most PLs’ “module” (and sim.) constructs

� mixins, features, virtual classes, processes, actors, . . .

� adapters (see Yellin & Strom, OOPSLA 1994)
Modularity. . . – p.29/33

Cake (1): separating the concern of integration

Modularity is hard.
PLs make simplifying assumptions.

� code in ground-up order

� components fit perfectly. . .

� & are homogeneous (wrt lang)

� interfaces don’t change

� components are never replaced

Reality: none of the above!

Modularity. . . – p.30/33

Cake (2): interface relations

client library

Don’t write wrappers (tedious); describecorrespondences.

client ↔ library

{

// initialization

mpeg2 init() → { avcodec init ();

av register all (); }

// data structure representing an open stream

values FILE ↔ AVFormatContext {};

// ...

}

Modularity. . . – p.31/33

Conclusions

Modularity is a deceptively subtle problem which:

� balance many different goals

� locality (avoid repetition; high cohesion)
� change-robustness (compositionality; low coupling)
� other aspects: obliviousness / anticipation. . .
� hidden issues: performance, complexity

� influences many aspects of language and tool design

� open versus closed abstractions
� white-box versus black-box composition
� special-purpose languages . . .

Modularity. . . – p.32/33

Bibliography and acknowledgements

Papers to read:

� Parnas, 1972

� Stevens, 1974

� Harrison, 1992

� Kiczales, 1997

� Tarr, 1999

� Filman & Friedman, 2000

� Steimann, 2006

� Kell 2009a, 2009b⌣̈

Acknowledgements:
Ostermann and Laemmel paper
photo attributions Modularity. . . – p.33/33

	Some problematic code
	Functional programmer's solution
	Object-oriented programmer's solution
	The expression problem
	Outline of this lecture
	What is modularity?
	On the criterialdots {}
	Modular decomposition in our example (1)
	Modular decomposition in our example (2)
	Structured design
	Coupling and cohesion
	Problems with coupling and cohesion
	An incremental solution to the expression problem
	The finer-grained decomposition
	Incrementality: locality lost
	Separation of concerns
	Locality regained?
	Multi-dimensional separation of concerns (1)
	Multi-dimensional separation of concerns (2)
	Aspect-oriented programming (1)
	AspectJ (2)
	Uses of AOP
	Quantification and obliviousness
	The ``paradox'' (trade-off) of AOP
	Overview and interval
	Information hiding again
	Information hiding lost
	White- versus black-box composition
	Cake (1): separating the concern of integration
	Cake (2): interface relations
	Conclusions
	Bibliography and acknowledgements

