
Optimising Functional
Programming Languages

Max Bolingbroke,
Cambridge University CPRG Lectures 2010

Objectives

• Explore optimisation of functional
programming languages using the
framework of equational rewriting

• Compare some approaches for deforestation
of functional programs

Making FP fast is important
• The great promise of functional programming is

that you can write simple, declarative
specifications of how to solve problems

wordCount :: String -> Int
wordCount = length . words

sumSquares :: String -> Int
sumSquares = sum . map square . words
 where square x = x * x

• Unfortunately, simple and declarative programs
are rarely efficient

• If we want functional programming to displace
the imperative style it needs to be somewhat fast

FP vs Imperative Optimisation

Haskell CInput Program

Source AST

λ-calculus IR

Lowered AST

GENERIC

GIMPLE/RTLC--

Machine Code

Haskell Syn. C Syntax

x86/x64/...x86/x64/...

GNU C Compiler
Glasgow Haskell

Compiler

Pure λ-calculus is almost
embarrassingly easy to optimise

• “Optimisation” consists of applying rules
derived from the axioms of the calculus

• Things are much more complicated if the
language has impure features such as
reference cells (sorry, ML fans!)

let x = e1 in
let y = e2 in
e3

let y = e2 in
let x = e1 in
e3

(x n.f. in e2)

Pure

λ-calculus

Impure

let x = e1
in ... x ...

let x = e1
in ... e1 ...

(\x -> e1) e2 let x = e2 in e1

case Just e1 of
 Just x -> e2
 Nothing -> e3

let x = e1 in e2

let x = e1
in e2 e2

(x n.f. in e2)

Pure, CBV

Artificial example of equational optimisation
let fst = \pair -> case pair of (a, b) -> a
 (.) = \f g x -> f (g x)
in (\y -> y + 1) . fst

let fst = \pair -> case pair of (a, b) -> a
 (.) = \f g x -> f (g x)
in (.) (\y -> y + 1) fst

(desugar operator)

(\f g x -> f (g x)) (\y -> y + 1) (\pair -> case pair of (a, b) -> a)

(inline)

let f = \x -> x + 1
 g = \pair -> case pair of (a, b) -> a
in \x -> f (g x)

(β-reduce)

\x -> (\y -> y + 1) ((\pair -> case pair of (a, b) -> a) x)

(inline)

\x -> let y = case x of (a, b) -> a
 in y + 1

(β-reduce)

\x -> (case x of (a, b) -> a) + 1

(inline)

\x -> case x of (a, b) -> a + 1(+ is strict)

Equational optimisation is the bread and
butter of a functional compiler

• Equational optimisation is the number one most
important optimisation in a functional language
compiler

• Inlining to remove higher order functions
(e.g. in the arguments to the composition (.)
function) is a particularly large win

• Remove need to allocate closures for those functions

• Eliminates some jumps through a function pointer (which
are hard for the CPU to predict)

• Allows some intraprocedural optimisation

Simple equational optimisation
is not sufficient

Consider the following reduction sequence:

map (\y -> y + 1) (map (\x -> x + 1) [1, 2, 3, 4, 5])

[3, 4, 5, 6, 7]

Input list

Output list

Intermediate list.
Is this really

necessary?

map (\y -> y + 1) [2, 3, 4, 5, 6]

Idea: use higher level
equations to optimise!

• We could build some facts about library
functions into the compiler

• These can be in the form of extra
equations to be applied by the compiler
wherever possible, just like those derived
from the axioms of λ-calculus

Example

∀ f g xs. map f (map g xs) = map (f . g) xs

However, if the compiler realises that:

It can then spot the (inefficient) original expression at
compile time and equationally rewrite it to:

map (\y -> y + 1) (map (\x -> x + 1) [1, 2, 3, 4, 5])

map ((\y -> y + 1) . (\x -> x + 1)) [1, 2, 3, 4, 5]

Before, we had this expression, which allocates a useless
intermediate list:

• Since there is only one call to map there is no
intermediate list

• If f and g have side effects this rule isn’t always
true - purity pays off

Removing intermediate data is
important for a FP compiler

• In a purely functional programming
language, you can never update an
existing data structure

• Instead, the program is constantly
allocating brand new data structures

• A whole family of optimisations known as
deforestation have sprung up to
remove intermediate data structures (we
just saw a very simple deforester)

Deforestation in practice
• Naively you might imagine that you need the compiler to know

(at least) one equation for all possible pairs of composed
functions (map of a map, sum of a map, map of a enumFromTo, etc.)

• The main implementation of the Haskell programming language
implements a type of deforestation called foldr/build fusion
based on a single equational rewrite rule

• This is a (much) more general version of the map/map fusion I showed
earlier

• Knowing just a single equation, the compiler is able to deforest
compositions of all sorts of list functions!

sumSq x = sum (map (\x -> x * x) (enumFromTo 1 x))

sumSq x = if 1 > x then 0 else go 1
 where go y = if y == x then y * y else (y * y) + go (y + 1)

(deforestation)

n.b: no lists - instead, we have a simple loop!

foldr/build fusion
The idea (Gill et al., FPLCA 1993):

1. Write all your list consumers (sum,
length, etc.) by using the foldr function

2. Write all your list producers (e.g.
enumFromTo) by using the build function

3. Provide a clever equational optimisation
rewriting an application of a foldr to
build (i.e. a consumer to a producer),
which will cause the intermediate list to be
removed

Writing a foldr list consumer
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n [] = n
foldr c n (x:xs) = c n (foldr c n xs)

foldr c n (e1 : e2 : ... : em : []) = foldr c n ((:) e1 ((:) e2 (... ((:) em []))))
 = c e1 (c e2 (... (c em n)))

In case you’ve forgotten:

Intuitively, foldr c n on a list replaces all the cons (:)
in the list with c and nil [] with n:

Lots of useful list consumers can be written as a foldr:
sum :: [Int] -> Int
sum = foldr (\x y -> x + y) 0

sum (1 : 2 : 3 : [])

foldr (\x y -> x + y) 0 (1 : 2 : 3 : [])

1 + 2 + 3 + 0

(inline)

(foldr replaces cons and nil in the list)

Lots of useful list consumers
can be defined using foldr

length :: [a] -> Int
length = foldr (_ y -> y + 1) 0

unzip :: [(a, b)] -> ([a], [b])
unzip = foldr (\(a,b) (as,bs) -> (a:as,b:bs)) ([],[])

length (1 : 2 : 3 : [])

foldr (_ y -> 1 + y) 0 (1 : 2 : 3 : [])

1 + 1 + 1 + 0

(inline)

(foldr replaces cons and nil in the list)

Another example:

Another (more complicated) consumer:

Writing a build list producer
The build function is apparently trivial:

build g = g (:) []

The real magic is in the type signature:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

You might be wondering what that forall means.
Don’t worry! You’ve secretly used it before:

id :: forall a. a -> a
map :: forall a b. (a -> b) -> [a] -> [b]
foldr :: forall a b. (a -> b -> b) -> b -> [a] -> b
(.) :: forall a b c. (b -> c) -> (a -> b) -> a -> c

The types written above are just the normal types for
those functions, but with the forall quantification
written in explicitly.

Writing a build list producer
id :: forall a. a -> a
map :: forall a b. (a -> b) -> [a] -> [b]
foldr :: forall a b. (a -> b -> b) -> b -> [a] -> b
(.) :: forall a b c. (b -> c) -> (a -> b) -> a -> c

The funny thing about these function types is that
the forall quantification is always on the “left
hand side” of the type.
• This is known as rank-1 polymorphism
• The person calling the function gets

to choose what a,b,... are
• For example, in an expression like id 10, the

caller has chosen that a should be Int

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

In build, the forall quantification is nested within the
argument type.

• This is known as rank-2 polymorphism
• The function itself gets to choose what b is
• (Types inferred by Hindley-Milner are always rank-1)

Writing a build list producer

build (\c n -> 1 : c 2 n) Does not typecheck!
• 1 : c 2 n requires that c returns a [Int]
• However, the rank-2 type enforces that all you know

is that c returns a value of some type that build
chooses (called b), which may or may not be [Int]!

build (\c n -> c 1 (c 2 n)) Typechecks (builds a 2 element list)

Some intuition about build

• If we wrote list producers using (:) and [] all over the place, it would be
hard for the compiler to spot and remove them if it wanted to stop an
intermediate list being constructed

• Instead, λ-abstract our list producer functions over the “cons”
and “nil” functions for building a list

• Now, by simply applying that function to different arguments we are able
to do make the producer do something other than heap-allocate a
cons/nil

• Just change the “cons” and “nil” we pass in

• e.g. make “nil” be 0, and then have “cons” add 1 to its second
argument (i.e. add 1 every time the producer tries to output a list
cons cell) - this gives us the length function.

• The build function takes something abstracted over the cons and nil,
and “fills in” the real (:) and []

• (The rank-2 type ensures that our abstracted version hasn’t cheated by
using (:) and [] directly)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

Writing a build list producer
enumFromTo :: Int -> Int -> [Int]
enumFromTo from to = build (go from)
 where go from c n = if from > to then n else c from (go (from + 1) c n)

enumFromTo from to = build (go from)
 where go from c n = if from > to then n else c from (go (from + 1) c n)

enumFromTo from to = go from (:) []
 where go from c n = if from > to then n else c from (go (from + 1) c n)

(inline build)

enumFromTo from to = go from
 where go from = if from > to then [] else from : go (from + 1)

(notice that c and n are invariant in the recursion)

So our enumFromTo does do the right thing. The version
without build is easier to understand, but our deforestation
equational rewrite will only understand list producers using
build, so we use that version of enumFromTo.

“Proof”:

The magic foldr/build rule

• Intuitively:

• Take a g which has been abstracted over the cons
and nil functions

• Where the list produced by build g is being
immediately consumed by a foldr c n

• Finally, instead of building to produce that
intermediate list and then consuming it, just
instantiate the list “constructors” in the producer
with the thing doing the consuming

∀ c n g. foldr c n (build g) = g c n

The magic foldr/build rule

∀ c n g. foldr c n (build g) = g c n

sum (enumFromTo 1 10)

foldr (\x y -> x + y) 0 (build (go 1))
 where go from c n = if from > 10
 then n
 else c from (go (from + 1) c n)

(inline sum and enumFromTo)

(apply the foldr/build equation)

go 1
 where go from = if from > 10
 then 0
 else from + go (from + 1)

The intermediate list has been totally eliminated

The foldr/build equation is type correct

The rank-2 polymorphism in the type of build is essential!
• If it weren’t polymorphic, we could only fuse if b = b’
• This would break most interesting deforestations

• e.g. when deforesting sum (enumFromTo 1 10) we need b = [Int]
and b’ = Int

:: forall b. (a -> b -> b) -> b -> b

:: [a]

:: (a -> b’ -> b’) -> b’ -> b’

(instantiate b to b’)

:: a -> b' -> b'

:: b'
:: b'

∀ c n g. foldr c n (build g) = g c n

Functions which are both producers and
consumers are defined using both build and foldr

map :: (a -> b) -> [a] -> [b]
map f xs = build (\c n -> foldr (\x ys -> c (f x) ys) n xs)

(++) :: [a] -> [a] -> [a]
xs ++ ys = build (\c n -> foldr c (foldr c n ys) xs)

• It all looks very weird, but it works!

• Upshot is that you can eliminate superfluous
intermediate lists (and hence reduce allocation) for
compositions of almost all of the common list functions

• The map/map deforestation example I showed at the
start is a special case of the foldr/build rule

Extensions and alternatives

• The foldr/build framework can be generalised to data types other
than simple lists (but that is not so useful in practice)

• The main issue with the framework is that zip-like functions
(that consume two or more lists) cannot be deforested

• There is a categorically dual framework called unfoldr/destroy
(Svenningsson, ICFP 2002) which can deal with such functions

• However, it can turn non-terminating programs into terminating
ones (i.e. the unfoldr/destroy rule is not actually an equivalence)

• Fails to deforest some functions that will deforest with foldr/
build (such as filter and concatMap)

• Yet another approach is Stream Fusion (Coutts et al., ICFP 2007),
which relies on the equation stream . unstream = id

• Can fuse everything that the above approaches can, except for
concatMap

foldr/build unfoldr/destroystream/unstream

map

concatMap

concat

filter

zip

foldr

sum

The deforestation landscape

Deforestation by
supercompilation

• There are many other approaches to
deforestation, many of which don’t use a
simple equational rewriting

• One such method is supercompilation
(Turchin, PLS 1986)

• A supercompiler is based around an
evaluator which is capable of evaluating
expressions containing free variables

Deforestation by
supercompilation

h0 xs = map (\x -> x + 1) (map (\x -> x + 2) xs)

h0 xs = case map (\x -> x + 2) xs of
 [] -> []
 (y:ys) -> y + 1 : map (\x -> x + 1) ys

(inline outer map)

h0 xs = case (case xs of
 [] -> []
 (z:zs) -> z + 2 : map (\x -> x + 2) zs) of
 [] -> []
 (y:ys) -> y + 1 : map (\x -> x + 1) ys

(inline inner map)

h0 xs = case xs of
 [] -> case [] of
 [] -> []
 (y:ys) -> y + 1 : map (\x -> x + 1) ys
 (z:zs) -> case z + 2 : map (\x -> x + 2) zs of
 [] -> []
 (y:ys) -> y + 1 : map (\x -> x + 1) ys

(case-of-case)

Deforestation by
supercompilation

h0 xs = case xs of
 [] -> case [] of
 [] -> []
 (y:ys) -> y + 1 : map (\x -> x + 1) ys
 (z:zs) -> case z + 2 : map (\x -> x + 2) zs of
 [] -> []
 (y:ys) -> y + 1 : map (\x -> x + 1) ys

h0 xs = case xs of
 [] -> []
 (z:zs) -> z + 2 + 1 : map (\x -> x + 1) (map (\x -> x + 2) zs)

(evaluate both inner cases)

h0 xs = case xs of
 [] -> []
 (z:zs) -> z + 2 + 1 : h0 zs

(tie back, since the case branch which recursively calls map is just a
renaming of what we started with, and thoughtfully called h0)

The deforestation landscape

foldr/build unfoldr/destroystream/unstream

map

concatMap

concat

filter

zip

foldr

sum

supercompile

direct
recursion

compile time
constants

Supercompilation
• Supercompilation is a very powerful

transformation, which can achieve much
more than just deforestation

• No need to define your library functions in
a stylised way (e.g. in foldr/build you
carefully use foldr for everything)

• Closely related to partial evaluation

• Currently, supercompilers are too slow to be
practical (i.e. they can take on the order of
hours to compile some simple examples)

Conclusion
• You can write beautiful, declarative functional

programs which compile to very fast code!

• Deforestation is an important optimisation
for achieving this, and can be achieved in
practice using foldr/build

• The fact that we are optimising a pure and
functional language makes such optimisations
reliable and simple to do

• Removing intermediate data structures from
e.g. C programs is much harder (but possible!)

• All programs should be written in Haskell :-)

Further Reading

• Shrinking lambda expressions in linear time (Appel et al.,
JFP 7:5)

• Call-pattern specialisation for Haskell programs (Peyton
Jones, ICFP 2007)

• The worker/wrapper transformation (Gill et al., JFP 19:2)

• The source code to GHC! (http://hackage.haskell.org/
trac/ghc/)

http://hackage.haskell.org/trac/ghc/
http://hackage.haskell.org/trac/ghc/
http://hackage.haskell.org/trac/ghc/
http://hackage.haskell.org/trac/ghc/

