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Objectives

• Explore optimisation of functional 
programming languages using the 
framework of equational rewriting

• Compare some approaches for deforestation 
of functional programs



Making FP fast is important
• The great promise of functional programming is 

that you can write simple, declarative 
specifications of how to solve problems

wordCount :: String -> Int
wordCount = length . words

sumSquares :: String -> Int
sumSquares = sum . map square . words
  where square x = x * x

• Unfortunately, simple and declarative programs 
are rarely efficient

• If we want functional programming to displace 
the imperative style it needs to be somewhat fast
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Pure λ-calculus is almost 
embarrassingly easy to optimise

• “Optimisation” consists of applying rules 
derived from the axioms of the calculus

• Things are much more complicated if the 
language has impure features such as 
reference cells (sorry, ML fans!)



let x = e1 in
let y = e2 in
e3

let y = e2 in
let x = e1 in
e3

(x n.f. in e2)

Pure

λ-calculus

Impure

let x = e1
in ... x ...

let x = e1
in ... e1 ...

(\x -> e1) e2 let x = e2 in e1

case Just e1 of
  Just x -> e2
  Nothing -> e3

let x = e1 in e2

let x = e1
in e2 e2

(x n.f. in e2)

Pure, CBV



Artificial example of equational optimisation
let fst = \pair -> case pair of (a, b) -> a
    (.) = \f g x -> f (g x)
in (\y -> y + 1) . fst

let fst = \pair -> case pair of (a, b) -> a
    (.) = \f g x -> f (g x)
in (.) (\y -> y + 1) fst

(desugar operator)

(\f g x -> f (g x)) (\y -> y + 1) (\pair -> case pair of (a, b) -> a)

(inline)

let f = \x -> x + 1
    g = \pair -> case pair of (a, b) -> a
in \x -> f (g x)

(β-reduce)

\x -> (\y -> y + 1) ((\pair -> case pair of (a, b) -> a) x)

(inline)

\x -> let y = case x of (a, b) -> a
      in y + 1

(β-reduce)

\x -> (case x of (a, b) -> a) + 1

(inline)

\x -> case x of (a, b) -> a + 1(+ is strict)



Equational optimisation is the bread and 
butter of a functional compiler

• Equational optimisation is the number one most 
important optimisation in a functional language 
compiler

• Inlining to remove higher order functions 
(e.g. in the arguments to the composition (.) 
function) is a particularly large win

• Remove need to allocate closures for those functions

• Eliminates some jumps through a function pointer (which 
are hard for the CPU to predict)

• Allows some intraprocedural optimisation



Simple equational optimisation 
is not sufficient

Consider the following reduction sequence:

map (\y -> y + 1) (map (\x -> x + 1) [1, 2, 3, 4, 5])

[3, 4, 5, 6, 7]

Input list

Output list

Intermediate list.
Is this really 

necessary?

map (\y -> y + 1) [2, 3, 4, 5, 6]



Idea: use higher level 
equations to optimise!

• We could build some facts about library 
functions into the compiler

• These can be in the form of extra 
equations to be applied by the compiler 
wherever possible, just like those derived 
from the axioms of λ-calculus



Example

∀ f g xs. map f (map g xs) = map (f . g) xs

However, if the compiler realises that:

It can then spot the (inefficient) original expression at 
compile time and equationally rewrite it to:

map (\y -> y + 1) (map (\x -> x + 1) [1, 2, 3, 4, 5])

map ((\y -> y + 1) . (\x -> x + 1)) [1, 2, 3, 4, 5]

Before, we had this expression, which allocates a useless 
intermediate list:

• Since there is only one call to map there is no 
intermediate list

• If f and g have side effects this rule isn’t always 
true - purity pays off



Removing intermediate data is 
important for a FP compiler

• In a purely functional programming 
language, you can never update an 
existing data structure

• Instead, the program is constantly 
allocating brand new data structures

• A whole family of optimisations known as 
deforestation have sprung up to 
remove intermediate data structures (we 
just saw a very simple deforester)



Deforestation in practice
• Naively you might imagine that you need the compiler to know 

(at least) one equation for all possible pairs of composed 
functions (map of a map, sum of a map, map of a enumFromTo, etc.)

• The main implementation of the Haskell programming language 
implements a type of deforestation called foldr/build fusion 
based on a single equational rewrite rule

• This is a (much) more general version of the map/map fusion I showed 
earlier

• Knowing just a single equation, the compiler is able to deforest 
compositions of all sorts of list functions!

sumSq x = sum (map (\x -> x * x) (enumFromTo 1 x))

sumSq x = if 1 > x then 0 else go 1
  where go y = if y == x then y * y else (y * y) + go (y + 1)

(deforestation)

n.b: no lists - instead, we have a simple loop!



foldr/build fusion
The idea (Gill et al., FPLCA 1993):

1. Write all your list consumers (sum, 
length, etc.) by using the foldr function

2. Write all your list producers (e.g. 
enumFromTo) by using the build function

3. Provide a clever equational optimisation 
rewriting an application of a foldr to 
build (i.e. a consumer to a producer), 
which will cause the intermediate list to be 
removed



Writing a foldr list consumer
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n []     = n
foldr c n (x:xs) = c n (foldr c n xs)

foldr c n (e1 : e2 : ... : em : []) = foldr c n ((:) e1 ((:) e2 (... ((:) em []))))
                              =            c   e1 (c   e2 (... (c   em n )))

In case you’ve forgotten:

Intuitively, foldr c n on a list replaces all the cons (:) 
in the list with c and nil [] with n:

Lots of useful list consumers can be written as a foldr:
sum :: [Int] -> Int
sum = foldr (\x y -> x + y) 0

sum (1 : 2 : 3 : [])

foldr (\x y -> x + y) 0 (1 : 2 : 3 : [])

1 + 2 + 3 + 0

(inline)

(foldr replaces cons and nil in the list)



Lots of useful list consumers 
can be defined using foldr

length :: [a] -> Int
length = foldr (\_ y -> y + 1) 0

unzip :: [(a, b)] -> ([a], [b])
unzip = foldr (\(a,b) (as,bs) -> (a:as,b:bs)) ([],[])

length (1 : 2 : 3 : [])

foldr (\_ y -> 1 + y) 0 (1 : 2 : 3 : [])

1 + 1 + 1 + 0

(inline)

(foldr replaces cons and nil in the list)

Another example:

Another (more complicated) consumer:



Writing a build list producer
The build function is apparently trivial:

build g = g (:) []

The real magic is in the type signature:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

You might be wondering what that forall means. 
Don’t worry! You’ve secretly used it before:

id :: forall a. a -> a
map :: forall a b. (a -> b) -> [a] -> [b]
foldr :: forall a b. (a -> b -> b) -> b -> [a] -> b
(.) :: forall a b c. (b -> c) -> (a -> b) -> a -> c

The types written above are just the normal types for 
those functions, but with the forall quantification 
written in explicitly.



Writing a build list producer
id :: forall a. a -> a
map :: forall a b. (a -> b) -> [a] -> [b]
foldr :: forall a b. (a -> b -> b) -> b -> [a] -> b
(.) :: forall a b c. (b -> c) -> (a -> b) -> a -> c

The funny thing about these function types is that 
the forall quantification is always on the “left 
hand side” of the type.
• This is known as rank-1 polymorphism
• The person calling the function gets 

to choose what a,b,... are
• For example, in an expression like id 10, the 

caller has chosen that a should be Int



build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

In build, the forall quantification is nested within the 
argument type.

• This is known as rank-2 polymorphism
• The function itself gets to choose what b is
• (Types inferred by Hindley-Milner are always rank-1)

Writing a build list producer

build (\c n -> 1 : c 2 n) Does not typecheck!
• 1 : c 2 n requires that c returns a [Int]
• However, the rank-2 type enforces that all you know 

is that c returns a value of some type that build 
chooses (called b), which may or may not be [Int]! 

build (\c n -> c 1 (c 2 n)) Typechecks (builds a 2 element list)



Some intuition about build

• If we wrote list producers using (:) and [] all over the place, it would be 
hard for the compiler to spot and remove them if it wanted to stop an 
intermediate list being constructed

• Instead, λ-abstract our list producer functions over the “cons” 
and “nil” functions for building a list

• Now, by simply applying that function to different arguments we are able 
to do make the producer do something other than heap-allocate a 
cons/nil

• Just change the “cons” and “nil” we pass in

• e.g.  make “nil” be 0, and then have “cons” add 1 to its second 
argument (i.e. add 1 every time the producer tries to output a list 
cons cell) - this gives us the length function.

• The build function takes something abstracted over the cons and nil, 
and “fills in” the real (:) and []

• (The rank-2 type ensures that our abstracted version hasn’t cheated by 
using (:) and [] directly)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []



Writing a build list producer
enumFromTo :: Int -> Int -> [Int]
enumFromTo from to = build (go from)
  where go from c n = if from > to then n else c from (go (from + 1) c n)

enumFromTo from to = build (go from)
  where go from c n = if from > to then n else c from (go (from + 1) c n)

enumFromTo from to = go from (:) []
  where go from c n = if from > to then n else c from (go (from + 1) c n)

(inline build)

enumFromTo from to = go from
  where go from = if from > to then [] else from : go (from + 1)

(notice that c and n are invariant in the recursion)

So our enumFromTo does do the right thing. The version 
without build is easier to understand, but our deforestation 
equational rewrite will only understand list producers using 
build, so we use that version of enumFromTo.

“Proof”:



The magic foldr/build rule

• Intuitively:

• Take a g which has been abstracted over the cons 
and nil functions

• Where the list produced by build g is being 
immediately consumed by a foldr c n

• Finally, instead of building to produce that 
intermediate list and then consuming it, just 
instantiate the list “constructors” in the producer 
with the thing doing the consuming

∀ c n g. foldr c n (build g) = g c n



The magic foldr/build rule

∀ c n g. foldr c n (build g) = g c n

sum (enumFromTo 1 10)

foldr (\x y -> x + y) 0 (build (go 1))
  where go from c n = if from > 10
                      then n
                      else c from (go (from + 1) c n)

(inline sum and enumFromTo)

(apply the foldr/build equation)

go 1
  where go from = if from > 10
                  then 0
                  else from + go (from + 1)

The intermediate list has been totally eliminated



The foldr/build equation is type correct

The rank-2 polymorphism in the type of build is essential!
• If it weren’t polymorphic, we could only fuse if b = b’
• This would break most interesting deforestations

• e.g. when deforesting sum (enumFromTo 1 10) we need b = [Int] 
and b’ = Int

:: forall b. (a -> b -> b) -> b -> b

:: [a]

:: (a -> b’ -> b’) -> b’ -> b’

(instantiate b to b’)

:: a -> b' -> b'

:: b'
:: b'

∀ c n g. foldr c n (build g) = g c n



Functions which are both producers and 
consumers are defined using both build and foldr

map :: (a -> b) -> [a] -> [b]
map f xs = build (\c n -> foldr (\x ys -> c (f x) ys) n xs)

(++) :: [a] -> [a] -> [a]
xs ++ ys = build (\c n -> foldr c (foldr c n ys) xs)

• It all looks very weird, but it works!

• Upshot is that you can eliminate superfluous 
intermediate lists (and hence reduce allocation) for 
compositions of almost all of the common list functions

• The map/map deforestation example I showed at the 
start is a special case of the foldr/build rule



Extensions and alternatives

• The foldr/build framework can be generalised to data types other 
than simple lists (but that is not so useful in practice)

• The main issue with the framework is that zip-like functions 
(that consume two or more lists) cannot be deforested

• There is a categorically dual framework called unfoldr/destroy 
(Svenningsson, ICFP 2002) which can deal with such functions

• However, it can turn non-terminating programs into terminating 
ones (i.e. the unfoldr/destroy rule is not actually an equivalence)

• Fails to deforest some functions that will deforest with foldr/
build (such as filter and concatMap)

• Yet another approach is Stream Fusion (Coutts et al., ICFP 2007), 
which relies on the equation stream . unstream = id

• Can fuse everything that the above approaches can, except for 
concatMap



foldr/build unfoldr/destroystream/unstream

map

concatMap

concat

filter

zip

foldr

sum

The deforestation landscape



Deforestation by 
supercompilation

• There are many other approaches to 
deforestation, many of which don’t use a 
simple equational rewriting

• One such method is supercompilation 
(Turchin, PLS 1986)

• A supercompiler is based around an 
evaluator which is capable of evaluating 
expressions containing free variables



Deforestation by 
supercompilation

h0 xs = map (\x -> x + 1) (map (\x -> x + 2) xs)

h0 xs = case map (\x -> x + 2) xs of
            []     -> []
            (y:ys) -> y + 1 : map (\x -> x + 1) ys

(inline outer map)

h0 xs = case (case xs of
                 []     -> []
                 (z:zs) -> z + 2 : map (\x -> x + 2) zs) of
            []     -> []
            (y:ys) -> y + 1 : map (\x -> x + 1) ys

(inline inner map)

h0 xs = case xs of
            [] -> case [] of
                      []     -> []
                      (y:ys) -> y + 1 : map (\x -> x + 1) ys
            (z:zs) -> case z + 2 : map (\x -> x + 2) zs of
                          []     -> []
                          (y:ys) -> y + 1 : map (\x -> x + 1) ys

(case-of-case)



Deforestation by 
supercompilation

h0 xs = case xs of
            [] -> case [] of
                      []     -> []
                      (y:ys) -> y + 1 : map (\x -> x + 1) ys
            (z:zs) -> case z + 2 : map (\x -> x + 2) zs of
                          []     -> []
                          (y:ys) -> y + 1 : map (\x -> x + 1) ys

h0 xs = case xs of
            [] -> []
            (z:zs) -> z + 2 + 1 : map (\x -> x + 1) (map (\x -> x + 2) zs)

(evaluate both inner cases)

h0 xs = case xs of
            [] -> []
            (z:zs) -> z + 2 + 1 : h0 zs

(tie back, since the case branch which recursively calls map is just a 
renaming of what we started with, and thoughtfully called h0)



The deforestation landscape

foldr/build unfoldr/destroystream/unstream

map

concatMap

concat

filter

zip

foldr

sum

supercompile

direct 
recursion

compile time 
constants



Supercompilation
• Supercompilation is a very powerful 

transformation, which can achieve much 
more than just deforestation

• No need to define your library functions in 
a stylised way (e.g. in foldr/build you 
carefully use foldr for everything)

• Closely related to partial evaluation

• Currently, supercompilers are too slow to be 
practical (i.e. they can take on the order of 
hours to compile some simple examples)



Conclusion
• You can write beautiful, declarative functional 

programs which compile to very fast code!

• Deforestation is an important optimisation 
for achieving this, and can be achieved in 
practice using foldr/build

• The fact that we are optimising a pure and 
functional language makes such optimisations 
reliable and simple to do

• Removing intermediate data structures from 
e.g. C programs is much harder (but possible!)

• All programs should be written in Haskell :-)



Further Reading

• Shrinking lambda expressions in linear time (Appel et al., 
JFP 7:5)

• Call-pattern specialisation for Haskell programs (Peyton 
Jones, ICFP 2007)

• The worker/wrapper transformation (Gill et al., JFP 19:2)

• The source code to GHC! (http://hackage.haskell.org/
trac/ghc/)

http://hackage.haskell.org/trac/ghc/
http://hackage.haskell.org/trac/ghc/
http://hackage.haskell.org/trac/ghc/
http://hackage.haskell.org/trac/ghc/

