CFA Interpolation Detection

Leszek Świrski

October 15, 2009

Leszek Świrski CFA Interpolation Detection

イロン イヨン イヨン イヨン

æ

CFA Introduction

Example Interpolation

Interpolation Detection

Methods Examples Identifying Forged Regions

CFA Pattern Synthesis

Reasoning Methods

< 17 >

★ E → < E →</p>

æ

Example Interpolation

CFA?

- "Colour Filter Array"
- Photosensors have no wavelength specificity
- So filter RGB onto array of photosensors
- e.g. Bayer filter

・ロト ・日本 ・モート ・モート

Example Interpolation

Target Image

Example Interpolation

Filters

Example Interpolation

Sensor Data

Example Interpolation

Coloured Sensor Data

Example Interpolation

Coloured Sensor Data (Detail)

Example Interpolation

Why interpolate?

- Each pixel is only R, G or B
- Want full colour, full size image
- So guess interpolate!

イロト イヨト イヨト イヨト

æ

Example Interpolation

Nearest Neighbour

Leszek Świrski CFA Interpolation Detection

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Example Interpolation

Nearest Neighbour

Example Interpolation

Nearest Neighbour

Example Interpolation

Bilinear (and other polynomials)

・ロト ・日本 ・モート ・モート

Example Interpolation

Bilinear (and other polynomials)

Example Interpolation

Bilinear (and other polynomials)

Example Interpolation

Smooth Hue Transition

Separate luminance (G) and chrominance (R and B). Interpolate G bilinearly

$$G' = G * rac{1}{4} egin{bmatrix} 0 & 1 & 0 \ 1 & 4 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

For *R* (and similarly for *B*), interpolate the ratio $R''_{ij} = \frac{R_{ij}}{G'_{ij}}$, and pointwise multiply by *G*

$$R'_{ij} = G_{ij} imes \left(R'' * rac{1}{4} egin{bmatrix} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{bmatrix}
ight)_{ij}$$

Example Interpolation

Smooth Hue Transition

Example Interpolation

Smooth Hue Transition

Example Interpolation

Median filter

- Bilinearly filter R, G, B to get R'', G'', B''.
- ► Calculate pairwise differences (R'' G'', R'' B'', G'' B'')
- Median filter these to get M_{rg} , M_{rb} , M_{gb}
- Each resulting pixel is CFA pixel image plus/minus appropriate median.

e.g. (1,0) is a green pixel in CFA, so

$$\begin{aligned} R_{1,0}' &= G_{1,0} + (M_{rg})_{1,0} \\ G_{1,0}' &= G_{1,0} \\ B_{1,0}' &= G_{0,0} - (M_{gb})_{1,0} \end{aligned}$$

Example Interpolation

Median filter

Example Interpolation

Median filter

Example Interpolation

Gradient-Based

- \blacktriangleright Want to preserve edges, so 'adaptively' interpolate G
- Approximate horizontal and vertical second derivatives of R and B and take absolutes, e.g.

$$\left|\frac{\partial^2 R}{\partial x^2}\right|_{i,j} \approx \left|\frac{R_{i,j-2} + R_{i,j+2}}{2} - R_{i,j}\right|$$

Compare these H and V. If H_{i,j} < V_{i,j}, (i,j) is a horizontal edge, so interpolate horizontally.

$$G_{i,j}' = \begin{cases} \frac{G_{i,j-1} + G_{i,j+1}}{2} & H_{i,j} < V_{i,j} \\ \frac{G_{i-1,j} + G_{i+1,j}}{2} & H_{i,j} > V_{i,j} \\ \frac{G_{i,j-1} + G_{i,j+1} + G_{i-1,j} + G_{i+1,j}}{4} & H_{i,j} = V_{i,j} \end{cases}$$

Example Interpolation

Gradient-Based

Example Interpolation

Gradient-Based

Example Interpolation

And more...

Adaptive Colour Plane

Has adaptive interpolation for G using first order derivative of luminance and second order derivative of chrominance, and uses adaptive interpolation <u>again</u> for R and B.

Threshold-Based Variable Number of Gradients Eight gradient samples taken from a 5 × 5 neighbourhood of each pixel, averages are calculated for each gradient, gradients of values less than a (dynamic!) threshold are averaged, and averages are added to/subtracted from the CFA values.

(Though both are similar in principle to the gradient-based)

Methods Examples Identifying Forged Regions

Why detect?

- Image/Camera verification
- Identification of forged regions
- Recognition of PRCG (PhotoRealistic Computer Generated images)

イロン イヨン イヨン イヨン

Methods Examples Identifying Forged Regions

General idea

- Interpolation creates correlation
- Most CFA interpolation is regular and approximately linear (especially for G)
- If can determine some regular correlation, image is interpolated

Methods Examples Identifying Forged Regions

EM Algorithm

- 'Expectation-Maximisation'
- Simulataneously estimate parameters of correlation (i.e. what interpolation is used) and which points are correlated to their neighbours
- Two-step iterative algorithm
- Creates a separable parameter space

Methods Examples Identifying Forged Regions

A statistical Achilles' Heel

- Interpolation creates correlation
- Correlation decreases variance
- Variance can be measured!
- Periodic low variance is indicative of interpolation

Methods Examples Identifying Forged Regions

A statistical Achilles' Heel

σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2
$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$
σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2
$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$
σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2
$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$
σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2	$\frac{\sigma^2}{4}$	σ^2

Leszek Świrski CFA Interpolation Detection

・ロン ・四 と ・ ヨ と ・ モ と

æ

Methods Examples Identifying Forged Regions

Gallagher and Chen

First, high-pass filter:

$$h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

 Estimate variance using mean of absolutes along anti-diagonals

$$m(d) = \frac{\sum_{x+y=d} |(h*i)_{x,y}|}{N_d}$$

イロン イヨン イヨン イヨン

Methods Examples Identifying Forged Regions

Gallagher and Chen

- Want to find periodicity, so DFT to get $|M(e^{i\omega})|$
- Significant peaks demonstrate periodicity
- \blacktriangleright Green channel interpolates every other pixel, so expect a peak at $\omega=\pi$
- Quantify peak s as:

$$s = rac{\left| M(e^{i\omega})
ight|_{\omega=\pi}}{{
m median}_{\omega}\{\left| M(e^{i\omega})
ight|\}}$$

Methods Examples Identifying Forged Regions

Gallagher and Chen example 1

Original

・ロト ・回ト ・ヨト ・ヨト

Methods Examples Identifying Forged Regions

Gallagher and Chen example 1

i =

Methods Examples Identifying Forged Regions

Gallagher and Chen example 1

$$(h * i) =$$

・ロト ・回ト ・ヨト

< ∃⇒

Methods Examples Identifying Forged Regions

Gallagher and Chen example 1

m(d) =

Methods Examples Identifying Forged Regions

Gallagher and Chen example 1

Methods Examples Identifying Forged Regions

Gallagher and Chen example 1

$$s = \frac{|M(e^{i\omega})|_{\omega=\pi}}{\text{median}_{\omega}\{|M(e^{i\omega})|\}} \\ = \frac{79.2337}{0.1191} \\ = 665.0172$$

・ロト ・回ト ・ヨト ・ヨト

æ

Methods Examples Identifying Forged Regions

Gallagher and Chen example 2

Original

Leszek Świrski CFA Interpolation Detection

イロン イヨン イヨン イヨン

Methods Examples Identifying Forged Regions

Gallagher and Chen example 2

i =

Leszek Świrski CFA Interpolation Detection

イロン イヨン イヨン イヨン

Methods Examples Identifying Forged Regions

Gallagher and Chen example 2

$$(h * i) =$$

イロン 不同と 不同と 不同と

Methods Examples Identifying Forged Regions

Gallagher and Chen example 2

m(d) =

Methods Examples Identifying Forged Regions

Gallagher and Chen example 2

Methods Examples Identifying Forged Regions

Gallagher and Chen example 2

$$s = \frac{|M(e^{i\omega})|_{\omega=\pi}}{\text{median}_{\omega}\{|M(e^{i\omega})|\}}$$
$$= \frac{0.2546}{0.1688}$$
$$= 1.5081$$

< □ > < □ > < □ > < □ > < □ > .

æ

Methods Examples Identifying Forged Regions

Gallagher and Chen example 3

Original

Leszek Świrski CFA Interpolation Detection

< ∃⇒

Methods Examples Identifying Forged Regions

Gallagher and Chen example 3

i =

Methods Examples Identifying Forged Regions

Gallagher and Chen example 3

(h * i) =

Leszek Świrski CFA Interpolation Detection

-≣->

Methods Examples Identifying Forged Regions

Gallagher and Chen example 3

m(d) =

Methods Examples

Gallagher and Chen example 3

CFA Interpolation Detection

Methods Examples Identifying Forged Regions

Gallagher and Chen example 3

$$s = \frac{|M(e^{i\omega})|_{\omega=\pi}}{\text{median}_{\omega}\{|M(e^{i\omega})|\}}$$
$$= \frac{6.1377}{0.0574}$$
$$= 106.8595$$

Leszek Świrski CFA Interpolation Detection

・ロト ・回ト ・ヨト ・ヨト

æ

Methods Examples Identifying Forged Regions

Gallagher and Chen example 4

Original

Leszek Świrski CFA Interpolation Detection

< ≣⇒

Methods Examples Identifying Forged Regions

Gallagher and Chen example 4

i =

Methods Examples Identifying Forged Regions

Gallagher and Chen example 4

(h * i) =

Leszek Świrski CFA Interpolation Detection

Methods Examples Identifying Forged Regions

Gallagher and Chen example 4

m(d) =

Methods Examples Identifying Forged Regions

Gallagher and Chen example 4

Methods Examples Identifying Forged Regions

Gallagher and Chen example 4

$$s = \frac{|M(e^{i\omega})|_{\omega=\pi}}{\text{median}_{\omega}\{|M(e^{i\omega})|\}}$$
$$= \frac{2.8713}{0.0637}$$
$$= 45.1039$$

・ロン ・四 と ・ ヨ と ・ モ と

æ

Methods Examples Identifying Forged Regions

Problems (that aren't)

Non-linear interpolation makes this less simple

- JPEG introduces compression
- The demonstrated method doesn't give the interpolation parameters
- Can't you fake CFA interpolation?

Methods Examples Identifying Forged Regions

Problems (that aren't)

- Non-linear interpolation makes this less simple But non-linear interpolation is still locally sufficiently linear, so it's close enough
- JPEG introduces compression
- The demonstrated method doesn't give the interpolation parameters
- Can't you fake CFA interpolation?

Methods Examples Identifying Forged Regions

Problems (that aren't)

- Non-linear interpolation makes this less simple But non-linear interpolation is still locally sufficiently linear, so it's close enough
- JPEG introduces compression
 But high-quality JPEG leaves enough information
- The demonstrated method doesn't give the interpolation parameters
- Can't you fake CFA interpolation?

Methods Examples Identifying Forged Regions

Problems (that aren't)

- Non-linear interpolation makes this less simple But non-linear interpolation is still locally sufficiently linear, so it's close enough
- JPEG introduces compression
 But high-quality JPEG leaves enough information
- The demonstrated method doesn't give the interpolation parameters No, but we don't need them just for detection
- Can't you fake CFA interpolation?

Methods Examples Identifying Forged Regions

Problems (that aren't)

- Non-linear interpolation makes this less simple But non-linear interpolation is still locally sufficiently linear, so it's close enough
- JPEG introduces compression
 But high-quality JPEG leaves enough information
- The demonstrated method doesn't give the interpolation parameters No, but we don't need them just for detection
- Can't you fake CFA interpolation? Sure, but adding such a method of detection makes forgery harder

Methods Examples Identifying Forged Regions

Identifying Forged Regions

- Can identify forged regions by running the above algorithm locally on each pixel
- ▶ For each pixel, estimate local (within radius *n*) variance

$$m(x,y) = \frac{\sum_{i=-n}^{n} |(h*i)_{x+i,y+i}|}{2n+1}$$

For each pixel, calculate local DFT, and from it the peak s_{xy}

• Low values of s_{xy} means pixel (x, y) part of forged region

Reasoning Methods

Tamper hiding

- Tampering with a photo destroys CFA correlations
- Restoring CFA-like correlations hides tampering
- Want an image of similar size and quality

Reasoning Methods

Naïve method

- ► Can simply sample image into CFA image, and reinterpolate
- Problem: Throws away $\frac{2}{3}$ of pixel data!
- Similar information loss to linear kernel smoothing (e.g. Gaussian)

Reasoning Methods

'Ideal' method

Can represent linear interpolation as matrix operation

$\mathbf{y} = \mathbf{H}\mathbf{x}$

Manipulated image adds an additive residual signal

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}$$

For given **H**, want to find **x** which minimises $\|\epsilon\|$

Reasoning Methods

'Ideal' method

This is a least squares problem, with solution

$$\mathbf{x} = \underbrace{(\mathbf{H}^{T}\mathbf{H})^{-1}\mathbf{H}^{T}}_{\mathbf{y}} \mathbf{y}$$

Moore-Penrose Pseudoinverse

Can therefore synthesise a least error CFA pattern

$$\mathbf{y}_{\mathsf{CFA}} = \mathbf{H}(\mathbf{H}^{\mathsf{T}}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{y}$$

• But calculating $(\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T$ efficiently is tricky...