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1 The Problem

Forensically linking an image to a particular camera can be very useful. In a court of
law, the origin of a particular photo may be crucial evidence in a case against child
pornographers or industrial espionage. There are a number of approaches that can
be taken, but most have severe issues. Metadata in the header may be lost if the
image is saved into a different format and can be easily forged. Police needing to
verify the authenticity of their images can use special cameras that embed fragile
watermarks or store a hash of the image on a secure memory card, but in most
situations the image will have been taken on a normal consumer camera.

What's needed then is a way to link the image data itself to the camera. In this
essay I will be examining the method proposed by Lukas et al. to identify cameras
by their unique sensor pattern noise [5]. Previous approaches include an investi-
gation into the use of supervised learning based on a vector of numerical features
extracted from the spatial and wavelet domains [4]. However, this only achieved
95% accuracy even in the best case; not good enough for most forensic work. An-
other research project looked at identifying cameras by pixel defects [2] but these are
often eliminated in the post-processing of modern cameras and as there are some
cameras without any defects in the sensor, this is again suboptimal.

2 Modelling the Camera

In a digital camera, light passes through a lens and hits an imaging sensor. This
is divided into pixels, with a colour filter array in front so that each pixel detects a
single colour. The data is then interpolated to get full colour and the resulting signal
undergoes further post processing for white balance, colour correction, sharpening
and gamma correction. Finally, the image is written out to a memory card, possibly
after lossy compression.

There are sources of noise at various stages of the image capturing process. Shot
noise is caused by the number of photons hitting the sensor for a particular pixel
varying by a random amount, modelled by the Poisson distribution. Expensive
cameras have larger sensors, so that there are more photons hitting each pixel; this



means the the small differences cause less variation so there is less shot noise. Pat-
tern noise on the other hand is deterministic and will be approximately the same if
multiple pictures of the same scene are taken by the same camera.

Pattern noise consists of two main components. Fixed pattern noise is caused by
dark currents, the small electric current that leaks from photodiodes in each pixel
even when no photons are hitting it. This is an additive noise, often suppressed
in better cameras by subtracting a ‘dark frame’ from every image. It is dependent
on exposure time and temperature. Photo-response non-uniformity noise (PRNU) is
the dominant part of pattern noise. This is mainly caused by pixel non-uniformity
(PNU) — different pixels have different sensitivities to light due to imperfections in
the silicon and manufacturing process. It is therefore very unlikely for two sensors
to have correlated patterns and this noise is not affected by temperature or humidity.

Putting all this together, we can make a mathematical model for the image ac-
quisition process:

Yij = fij(wij + nij) + cij + €

where y;; is the output of the sensor, z;; denotes the photon counts actually hitting
the sensor, 7);; is the shot noise, ¢;; is the dark current, ¢;; is the additive random
noise and f;; is a multiplicative factor close to 1 that captures the PRNU noise. If
we can determine f we can use it as our fingerprint for the camera. Some astronom-
ical cameras actually attempt to remove f from the raw sensor data by a technique
known as flat fielding; they estimate f by averaging images of a uniformly lit scene
then divide the pixel data before further processing. However, this is not done in
consumer digital cameras so this is not an issue for our intended use case.

3 Identification

The basic algorithm for linking a camera to an image is quite simple. First we calcu-
late the camera reference patterns (essentially an approximation to f), then we look
for a correlation between each of these patterns and the noise of an image.

The easiest way to calculate an approximation to the camera reference pattern is
to average multiple images. To speed up this process we can first remove the scene
content using a denoising filter and then average the noise residuals instead. Based
on experimentation, Lukas et al. found a wavelet-based filter gave the best results
as it removed the most traces of the scene. The technique also works better with
uniformly lit images with no features so we only get noise from the sensor. The
larger the number of images we average over, the more we suppress random noise
and the impact of any scene data; a minimum of 50 images is recommended.

Once we have established this reference pattern, we can see if there is a correla-
tion with the noise of a particular image. To find the noise, we employ the same trick
as before: Use the denoising filter to approximate the noise-free image and subtract
this (on a pixel-wise basis) from the original, leaving only the noise residual. We
then find the correlation between this noise n and a particular reference pattern r



using the standard formula:

(n—mn)-(r—71)
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corr(n,r) =

By experimentally determining the distribution of this correlation for images
taken with a camera and images not taken with that camera we can find a threshold
for acceptance and estimate the false rejection rate, subject to an upper bound on
the false acceptance rate.

4 Experiment

For my experiment I used images captured with a LogiTech webcam. Images were
captured in YUYV format, but we discarded the colour data to get 960x720 px
greyscale images. As this was actually a video camera, we could just point it at some
white paper and get it to capture a stream of 100 photos from which to calculate
the reference pattern. The MATLAB script (presented in Listing 1), follows the al-
gorithm described in Section 3 but uses a simple 3 x3 median filter instead of the
complicated wavelet-based filter described in the original paper.

Listing 1: Calculating the Reference PRNU Pattern

width = 960;

height = 720;

a = zeros( height, width );

for n = [0:99]
i = im2double( imread( sprintf( ’'frame%@3d.png’, n ) ) );
a=a+ (1i-medfilt2( i, ’'symmetric’ ) );

end

prnu = a / 100;

save 'prnu-reference’ width height prnu;

4.1 Experiment1

I took 5 different images from the same camera and 10 other images from a variety
of different cameras, including a high end DSLR as well as several consumer point-
and-shoot machines. For each of these, I used the same technique to extract the
noise residual and then calculated the correlation with the reference pattern for the
webcam, using the MATLAB code in Listing 2.

The results are presented in Figure 1. There is an order of magnitude differ-
ence in the correlation with the reference image between the images from the same
camera and the others. Remembering the original researchers found better results
with a more complicated denoising algorithm, we can look at this as a lower bound
on performance. This is obviously not an extensive evaluation and we can’t use it to



Listing 2: Calculating the Correlation with the Reference Pattern

load 'prnu-reference.mat’;

% Make it a flat vector rather than a matrix

prnu_vector = reshape( prnu, 1, numel( prnu ) );

% Calculate the mean PRNU value

mean_prnu = mean( prnu_vector );

p = prnu_vector — mean_prnu;

% Look for correlation with each test image

cor = [];

for n = [1:15]
image = im2double( imread( sprintf( ’testimg-%02d.png’, n ) ) );
image_vector = reshape( image - medfilt2( image ), 1, numel( prnu ) );
mean_image = mean( image_vector );
i = image_vector - mean_image;
correlation = (i x (p’ ) ) / (sqrt( i x i’ ) x sqrt( p *x p’ ) );
cor( n ) = correlation;

end

cor % Print list of correlations

calculate any clear thresholds, but it shows that the method definitely works and has
the potential to differentiate very accurately between images taken by a particular
camera and images not captured by it.
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Figure 1: Correlation Values for Images from the Same and Different Cameras

4.2 Experiment 2

To simulate the effect of correlating with a large database of reference patterns, we
also looked at cross-correlating a portion of an image taken by the webcam with its
reference pattern, using the MATLAB code in Listing 3.

Viewing the result as a greyscale image it is a fairly uniform noisy grey (see
Figure 2), except for a single white peak where the image is aligned in the correct
place with the reference pattern (i.e. it is in the position it was cropped from); see the
zoomed image in section in Figure 3. This is an indicator that the method is quite



Listing 3: Cross-Correlating a Portion of the Image With the PRNU Reference

load 'prnu—-quickcam.mat’

prnu = single( prnu( 1:720, 1:720 ) );

i = single( imread( ’image.png’ ) ); % Read image

i =i( 100:399, 100:399 ); Extract portion
n=1- medfilt2( i ); Find noise residue

x = xcorr2( n, prnu ); Cross-correlate
imagesc( x ); And display the result
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reliable; there is only likely to be significant correlation with the reference pattern
from the camera that actually took the image.

Figure 2: Cross-Correlation of Image Slice With Reference Pattern

5 Results

The authors of the original paper [5] evaluated this technique using 9 different cam-
eras, including two of the same type and taking around 320 images from each. The
pictures were taken over a span of 5 years, under a wide range of temperature, hu-
midity and lighting conditions and saved into a variety of formats. The reference
pattern for each camera was calculated from 300 images.



Figure 3: The Single Correlating Position

For every image they tested, the correlation was always highest with the refer-
ence pattern for the camera which took the image and the distributions were always
well separated. Using a generalised Gaussian model fit, they estimate the false rejec-
tion rates for each camera given a false acceptance rate of 103 and find them to vary
between 4.68 x 1073 in the worst case down to less than 10~!? in the best. Further
experiments show that gamma correction has very little impact on the reliability of
identification and compression into JPEG actually resulted in some cameras get-
ting slightly more accurate results; they hypothesise that the compression removes
the small positive correlations between the reference patterns, which may be due
to cameras having similar sensors. They look at images taken over 5 years from a
camera to show that the patten noise remains stable over time.

6 Improved Model and Algorithm

Further research into digital camera identification was carried out by most of the
researchers who worked on the original paper. The result, presented in a later pa-
per [1], is a more theoretically sound method plus a number of post-processing
tweaks to improve accuracy.

The new method is based upon a more accurate sensor model:

I=¢" [1+K)Y+A+0,+0,]"+06,



where I is the signal recorded by the sensor, g is the gain, 7y is the gamma correction
factor (typically = 1/2.2), K is a zero-mean multiplicative factor (the PRNU pat-
tern), Y is the light intensity, A is the dark current noise, O is the shot noise, ©,
is the read out noise and ©, is the quantisation noise (caused by having finite bits
to represent an analog voltage digitally). From this they derive a maximum likeli-
hood estimator for the PRNU value K; rather than just averaging the residuals, they
start with a linearised model of the camera output and formulate the problem as
parameter estimation in noisy observations, assuming the corrupting noise sources
are Gaussian. Detecting a match is treated as binary hypothesis testing. The image
is divided into blocks, each of which is fed into a correlation predictor so that the
acceptance threshold required for a correlation is adaptive to the image content.

Before testing the estimated K for correlation with images, the authors pre-
process it to remove some of the components due to colour interpolation, JPEG
compression and on-sensor signal transfer. Unlike the PRNU, these are not unique
to a particular camera, therefore they may cause increased false positives by increas-
ing the correlation of the reference pattern with images from other cameras. To re-
move the effect of CFA colour interpolation, they zero out the means of rows and
columns in the estimated PRNU; this is done by subtracting the column averages
from each pixel in a each column then doing the same for the rows. This also re-
moves a linear pattern introduced by the row-wise/column-wise operation of sen-
sors and image processing circuits. To remove JPEG blockiness and remaining pe-
riodic patterns, they transform the zero-meaned PRNU estimation into the Fourier
domain, subtract a Wiener filtered version of this and then apply an inverse Fourier
transform. These techniques reduce the correlation between reference patterns for
different cameras by up to 2 orders of magnitude.

7 Large scale test results

To evaluate the reliability of this improved algorithm, Goljan et al. conducted an ex-
tensive test [3] using over a million images drawn from the Flickr image database.
The images came from over 6,800 different cameras encompassing 150 different
camera models. The camera fingerprints were calculated from 50 random images
taken by that camera.

Because they didn’t have physical access to the cameras being tested, they couldn’t
take reference images of neutral scenes. Also, some images may have had digital
zoom or other post-processing applied, therefore we can treat this data as an upper
bound on the error rates. Despite this, the false rejection rate was estimated to be
less than 0.0238 with a false acceptance rate below 2.4x 1075, Testing 145 random
images, each from a different camera model, against the database of 6,827 finger-
prints correctly identified the source camera in all but four cases.



8

Conclusion

The techniques described in this essay summarise a novel approach to digital cam-
era identification, based on a strong theoretical foundation with good empirical
evidence supporting its reliability. Forensic signal analysis will always be a game of
cat and mouse, with new techniques sure to be developed to remove or even forge
PRNU fingerprints on images. For now, though, we have a fairly reliable method
for linking images to a source camera.
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