
Steganography

Alex Toumazis

December 3, 2009

1 Introduction

This paper is based on “Attacks on Steganographic Systems” by Andreas Westfeld and Andreas Pfitz-
mann. This paper surveys and described several attack on common production steganographic utili-
ties. Although the techniques and systems discussed are somewhat dated, they provide a good general
introduction to the principles and weaknesses of steganography.

1.1 A Brief Introduction to Steganography

Steganography is the embedding of messages within an innocuous cover work in a way which can
not be detected1 by anyone without access to the appropriate steganographic key. Wikipedia calls
steganography, incorrectly, a form of “security through obscurity”. This is not true as a correctly
designed, key-based system will resist attackers that know the details of the algorithm but not the
key. Steganalysis is the study of attacking such systems, analagous to cryptanalysis of cryptographic
systems.

A threat model consists of a attack scenarios we use to evaluate steganographic techniques. In this
paper, the threat model is that of a passive warden — someone who can see and analyze the data but
cannot alter it in an attempt to destroy the hidden message. Therefore, the techniques aim to hide the
existence of a message, without worrying too much about robustness.

2 Method

2.1 Steganography Techniques

This paper discusses several simple steganographic algorithms used by widely available information-
hiding utilities. These techniques have in common the goal of embedding data in perceptually indis-
tinguishable parts of an image.

1Note that this is a much stronger property than encoding a message in a way which cannot be read; cryptography does
this but does not hide the presence of the message

1

2.1.1 EzStego

EzStego embeds data in GIF images, by altering the colors of pixels. To do this imperceptibly, it sorts
the image’s palette to minimize the perceptual distance between consecutive colors. This is achieved
by finding the shortest-path between the palette colors within the RGB color space cube. Then, the
message is embedded by altering pixels, in order, so that the least significant bits of the pixels’ indexes
into the sorted palette are the message bits.

2.1.2 Steganos

Steganos embeds data in the least significant bits of image files. It replaces this data completely
in the cover image, regardless of message length. This is identical to the naive least significant bit
steganography described in section 3.1 below.

2.1.3 JSTEG

JSTEG embeds each message bit into more than one bit of the cover image, to reduce the detectible
effects of the embedding. This is achieved through transforming the image by dividing it into blocks
and applying the discrete cosine transform, and then altering coefficients and transforming back. This
results to each message bit affecting an entire block in the cover image, making it harder to detect the
changes.

3 Experiment

3.1 LSB

3.1.1 Implementation

I implemented least-significant bit steganography in Matlab by replacing the green channel of a cover
image with the message bitstream XORed with a pseudorandom key. The message I used was a 1-bit
image of equal size to the cover image, but this technique can be used for messages of any length up to
3NM in a N by M color image. By using messages smaller than the image and spreading the message
out in a simple way, for example skipping a key-determined pseudorandom number of pixels, some
of the described attacks can be defeated. The results of such embedding is visually indistinguishable,
as shown in Figure 1. Although simple, this technique, with some variation, is widely used; Steganos
uses it, and EzStego is basically the extension of this technique to the GIF palette.

3.1.2 Visual Attacks

As mentioned previously, least-significant bits are not in fact pseudorandom. Therefore, changing
these bits in an image to pseudorandom noise should be detectible. This can be shown by simply
amplifying and examining the least-significant bits of the image, as shown in Figure 2. If embedding
had been performed in all three color channels, the effect would be even more pronounced.

2

I = cover image
M = message
K = pseudorandom keystream
I = I − mod(I,2);
T=xor(M,K);
I=I+T

Figure 1: Pseudocode demonstrating simple LSB embedding

(a) Unmodified Image (b) Image with embedded data

Figure 2: Visual effect of least significant bit embedding

3.1.3 Chi-square attack

This attack can be automated using statistical techniques. As the embedded data is pseudorandom and
the natural image data is not, a test for randomness should let us differentiate between a natural image
and one with pseudorandom data embedded in it. The chi-squared statistic is a measure of fit between
two discrete distributions, and is:

χ2 =
k∑
i=1

(ni − n∗i)
2

n∗i
(1)

To apply it here, we measure the frequency of pixels of each value, then derive an expected value
for each using the assumption that the least-significant bits are random; with this assumption, the
expected value for f2k is:

f∗2i =
fk + fk+1

2
(2)

We then a distribution with i/2 bins, each of which contains the frequency of the even bit values. The
expected frequencies for each bin are calculated as shown above, and the χ2 value is then calculated
by:

χ2 =
k/2∑
i=1

(f2i − f∗2i)
2

f∗2i
(3)

To use this value to give a probability of embedding, we integrate to find the area under the probability
density function:

p = 1 − 1

2
k−2
4 Γ(k−2

4)

∫ χ2

0
e−

x
2
x

k−2
4 −1

dx (4)

3

(a) Unmodified Image

(b) Image with embedded data

Figure 3: Visual effect of least significant bit embedding: least-significant bits of each image

4

I implemented this as shown in Figure 4 and tested it on several images with varying lengths of embed-
ded message. Figure 5 shows graphs of the probability of embedding against the cumulative number
of rows being examined. This method clearly and unambiguously differentiates between modified and
original images, and the case of partial embedding detects the point where the embedding stops.

3.2 JSTEG

3.2.1 Implementation

My JSTEG implementation consists of two nested parts. The outer part applies the DCT, quantizes
the coefficients, and inverts the transform. In between quantization and the inversion, the inner stage
embeds the message in the least significant bits of the coefficients. There are a couple of subtleties;
the algorithm avoids embedding data in coefficients whose value is zero, as this usually is due to
quantization, which means that values other than zero will raise suspicion, and recompression (with
the same quantization table) will destroy the message bit. JSTEG is more fragile than the previous
technique described for this reason, as a change leading to non-zero coefficients becoming zero will
lead to the output bitstream becoming out of sync, while with simple LSB embedding changes can
just lead to flipped bits in the output.

3.2.2 Visual Attacks

Images with messages embedded using JSTEG are not susceptible to the simple visual attacks demon-
strated above. This is because the changes to the coefficients do not simply alter bits in the final image
in a predictable manner, but instead affect entire blocks of the image in ways that cannot easily be
perceived, even when examining the least-significant bits of the image. Figure 8 shows the least-
significant bits of a cover image, the same image passed through the DCT/inverse DCT algorithm
without having any of its coefficients altered (i.e. there is no embedded message), and the image with
a message embedded. Although there is a visible difference between the latter two images, it is not
apparent that one is more random than the other, and in general human observers cannot determine
whether pseudorandom data has been inserted into the DCT coefficients.

3.2.3 Chi-square attack

Although the least-significant bits of the image do not exhibit pseudorandom properties, the DCT co-
efficients into which message bits were hidden do. Therefore, if we know the transform performed —
in this case the discrete cosine transform with an 8 × 8 block size — we can recreate the coefficients
and analyze them to determine if they are drawn from a pseudorandom distribution. The embedding
algorithm is reversed to extract the least-significant bit of each coefficient which is not zero or max-
imum, and then the chi square statistic and embedding probability are computed as in the simpler
attack described above.

Figure 9 shows the resulting graphs; (a) shows the original image, (b) shows the probability graph
resulting from applying the algorithm without a message, i.e. performing the transform and then
inverting it, to show that this doe not cause false positives, and (c) shows the graph of an image with
an embedded message.

5

G = imread(’image. tif ’);
Bins(256)=0;
tsize =size (G);
Chis(tsize (1))=0;
P(tsize (1))=0;
for i=1: tsize (1),
%count pixel frequencies

for j=1: tsize (2),
Bins(G(i , j)+1)=Bins(G(i , j)+1)+1;
end
%calculate chi squared
chi2=0;
for k=1:127
nexp=(Bins(2∗k−1)+Bins(2∗k))/2;
if (nexp>5)
chi2=chi2+((Bins(2∗k)−nexp)ˆ2)/nexp;
end
end
Chis(i)=chi2 ;

end
%calculate P
xu=chi2;
r=127;
rOver2 = 0.5∗r ;
gammaval = gamma(rOver2);
F = @(x) x .ˆ(rOver2−1).∗exp(−0.5∗x)/gamma(rOver2)/2ˆrOver2;
if xu == inf

prob = 1
else

prob = quad(F,0,xu);
end
P(i)=1−prob;
end
%plot graph
plot (P);

Figure 4: Matlab code for computing probability of LSB consisting of pseudorandom data

6

(a) Unmodified Image

(b) Image with message embedded

(c) Message embedded in first half of image

Figure 5: LSB: Cumulative probabilities of embedding, derived from χ2

I = cover image
M = message
K = pseudorandom keystream
T = DCT(I, blocksize)
quantize (T, quantization table)
progress=0
for each element i of T:

if (i!=0 && i != max i)
setLSB(i , M(progress))
progress++

end
if (progress>size(M)) break

end
I=inverseDCT(T, blocksize)

Figure 6: Pseudocode demonstrating JSTEG embedding

7

(a) Unmodified Image (b) Image with embedded data

Figure 7: Visual effect of JSTEG embedding

4 Further results

The results I’ve presented here mirror several of the results shown in the paper. It also dealt with
EzStego, which acts on GIF images in a similar way to the least significant bit technique described
above, with an additional step of sorting the palette by finding the shortest path through it in the RGB
cube. The LSBs then used for message encoding are the LSBs of the index into this sorted palette. By
recreating this palette and the indexes, both the visual and statistical attacks described in Section 3.1
can be applied.

S-Tools is also discussed in the paper. This technique spreads the message across the entire image,
and with small message sizes relative to image size the technique foils the simple visual and statistical
tests. If the algorithm by which the pixels selected to be used is known, the same attacks should work,
subject to the caveat that the message must be long enough for statistical analysis to be applied.

5 Conclusion

What can we take from these findings? Well, the simple point is that steganography is not easy;
with knowledge of the algorithm/method (which we should always assume), it is very hard to hide
messages in an undetectable way. This difficulty increases with the size of the message and the desired
robustness of the scheme — a single bit could be hidden trivially (and not robustly) by changing a
random LSB of the image to alter the parity of the image’s bits, but once we want to encode enough
pseudorandom data to make a statistical attack possible, things swiftly become more difficult. The
flaw in the systems discussed is that they assumed certain parts of an image (either least significant
bits of LSBs or DCT coefficients) were pseudorandom when they in fact are not. A possible approach
to future techniques is to investigate ways of finding pseudorandom data in cover works, possibly
by applying focussed tests such as the chi-square test, and inserting information in those parts of the
image. Unfortunately, the amount of such data in most cover works is likely to be small, as natural
data tends to not be truly random, and good compression schemes will destroy such pseudorandom
data, as it carries no important perceptual information that cannot be recreated. Even if, for example,
we hide data in the thermal noise in a digital photo, this may change or destroy properties of the sensor
fingerprint, and by examining other images from the same camera, the modification may be detected.

8

(a) Image after DCT/inverse DCT application, no message embedded

(b) Image with embedded message

Figure 8: JSTEG: Least significant bits

9

(a) Unmodified Image

(b) Image after DCT/inverse DCT application, no message embedded

(c) Image with embedded message

Figure 9: JSTEG: Cumulative probabilities of embedding, derived from χ2

10

