
Object Oriented Programming
Dr Robert Harle

IA NST CS and CST
Lent 2009/10

Handout 1

OO Programming

 This is a new course this year that absorbs what
was “Programming Methods” and provides a
more formal look at Object Oriented
programming with an emphasis on Java

 Four Parts
 Computer Fundamentals

 Object-Oriented Concepts

 The Java Platform

 Design Patterns and OOP design examples

If we teach Java in isolation, there’s a good chance that students
don’t manage to mentally separate the object-oriented concepts from

Java’s implementation of them. Understanding the underlying prin-
ciples of OOP allows you to transition quickly to a new OOP lan-
guage. Because Java is the chosen teaching language here, the vast
majority of what I do will be in Java, but with the occasional other
language thrown in to make a point.

Actually learning to program is best done practically. That’s why
you have your practicals. I don’t want to concentrate on the minu-
tiae of programming, but rather the larger principles. It might be
that some of this stuff will make more sense when you’ve done your
practicals; I hope that this material will help set you up to complete
your practicals quickly and efficiently. But we’ll see.

Java Ticks

 This course is meant to complement your practicals in
Java

 Some material appears only here

 Some material appears only in the practicals

 Some material appears in both: deliberately!

 A total of 7 workbooks to work through
 Everyone should attend every week

 CST: Collect 7 ticks

 NST: Collect at least 5 ticks

Books and Resources

 OOP Concepts
 Look for books for those learning to first program in an

OOP language (Java, C++, Python)
 Java: How to Program by Deitel & Deitel (also C++)
 Thinking in Java by Eckels
 Java in a Nutshell (O' Reilly) if you already know another

OOP language
 Lots of good resources on the web

 Design Patterns
 Design Patterns by Gamma et al.
 Lots of good resources on the web

Books and Resources

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/0910/OOProg/

There really is no shortage of books and websites describing the
basics of object oriented programming. The concepts themselves

are quite abstract, but most texts will use a specific language to
demonstrate them. The books I’ve given favour Java (because that’s
the primary language you learn this term). You shouldn’t see that
as a dis-recommendation for other books. In terms of websites, SUN
produce a series of tutorials for Java, which cover OOP:

http://java.sun.com/docs/books/tutorial/

but you’ll find lots of other good resources if you search. And don’t
forget your practical workbooks, which will aim not to assume any-
thing from these lectures.

Chapter 1

Computer
Fundamentals

What can Computers Do?

 The computability problem
 Given infinite computing 'power' what can we do?

How do we do it? What can't we do?
 Option 1: Forget any notion of a physical machine

and do it all in maths
 Leads to an abstract mathematical programming approach

that uses functions
 Gets us Functional Programming (e.g. ML)

 Option 2: Build a computer and extrapolate what it
can do from how it works
 Not so abstract. Now the programming language links

closely to the hardware
 This leads naturally to imperative programming (and

on to object-oriented)

λ

5

What can Computers Do?

 The computability problem
 Both very different (and valid)

approaches to understanding computer
and computers
 Turns out that they are equivalent
 Useful for the functional programmers since

if it didn't, you couldn't put functional
programs on real machines...

WWII spurred an interest in machinery that could compute. During
the war, this interest was stoked by a need to break codes, but also
to compute relatively mundane quantities such as the trajectory of
an artillery shell. After the war, interest continued in the abstract
notion of ‘computability’. Brilliant minds (Alan Turing, etc) began
to wonder what was and wasn’t ‘computable’. They defined this in
an abstract way: given an infinite computing power (whatever that
is), could they solve anything? Are there things that can’t be solved
by machines?

Roughly two approaches to answering these questions appeared:

Maths, maths, maths. Ignore the mechanics of any real machine
and imagine a hypothetical machine that had infinite compu-
tation power, then write some sort of ‘programming language’
for it. This language turned out to be a form of mathematics
known as ‘Lambda calculus’. It was based around the notion
of functions in a mathematical sense.

Build it and they will come. Understand how to build and use
a real computing machine. This resulted in the von Neumann
architecture and the notion of a Turing machine (basically what
we would call a computer).

It turned out that both approaches were useful for answering the
fundamental questions. In fact, they can be proven to be the same
thing now!

Imperative

 This term you transition from functional (ML) to
imperative (Java)

 Most people find imperative more natural, but
each has its own strengths and weaknesses

 Because imperative is a bit closer to the
hardware, it does help to have a good
understanding of the basics of computers.
 All the CST Students have this

 All the NST students don't... yet.

All this is very nice, but why do you care? Well, there’s a legacy
from these approaches, in the form of two programming paradigms:

Functional Languages. These are very mathematically oriented
and have the notion of functions as the building blocks of com-
putation.

Imperative or Procedural Languages. These have variables (state)
and procedures as the main building blocks1. Such languages
are well known—e.g. C—and include what we call object-
oriented languages such as C++ and Java.

Note that I have pluralised “Language” in the above sentences. Terms
like “Object-oriented” are really a set of ideas and concepts that var-
ious languages implement to varying degrees.

Last term you toured around Computer Science (in FoCS) and used a
particular language to do it (ML). Although predominantly a func-
tional programming language, ML has acquired a few imperative
‘features’ so you shouldn’t consider it as a pure functional language.
(For example, the ML reference types you looked at are not func-
tional!).

This term you will shift attention to an object-oriented language in
the form of Java. What we will be doing in this course is looking
at the paradigm of object-oriented programming itself so you can
better understand the underlying ideas and separate the Java from
the paradigm.

1.1 Hardware Fundamentals

As I said before, the imperative style of programming maps quite
easily to the underlying computer hardware. A good understand-
ing of how computers work can greatly improve your programming
capabilities with an imperative language. Thing is, only around a
half of you have been taught the fundamentals of a computer (the

1A procedure is a function-like chunk of code that takes inputs and gives
outputs. However, unlike a formal function it can have side effects i.e. can make
non-local changes to something other than its inputs and declared outputs.

CST half). Those people will undoubtedly be rather bored by what
follows in the next few pages, but it’s necessary so that everyone is
at the same point when we start to delve deeper into object-oriented
programming.

Computers do lots of very simple things very fast. Over the years
we have found optimisation after optimisation to make the simple
processes that little bit quicker, but really the fundamentals involve
some memory to store information and a CPU to perform simple
actions on small chunks of it.

We use lots of different types of memory, but conceptually only two
are of interest here. System memory is a very large pool of memory
(the 2GB or so you get when you buy a machine). Then there are
some really fast, but small chunks of memory called registers. These
are built into the CPU itself.

The CPU acts only on the chunks in the registers so the computer is
constantly loading chunks of data from system memory into registers
and operating on the register values.

The example that follws loads in two numbers and adds them. Those
doing the Operating Systems course will realise this is just the fetch-
execute cycle. Basically, there is a special register called the program
counter (marked P) that tells the computer where to look to get its
next instruction. Here I’ve made up some operations:

LAM. LOAD the value in memory slot A into register M
AMNO. ADD the values in registers M and N and put the result

in register O.
SMA. STORE the value in register M into memory slot A

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

1P

X

Y

Z
ALU

CPU

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

63

2P

X

Y

Z
ALU

CPU

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

12

63

3P

X

Y

Z
ALU

CPU

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

75

12

63

4P

X

Y

Z
ALU

CPU

All a computer does is execute instruction after instruction. Never
forget this when programming!

Memory (RAM)

 You probably noticed we view memory as a series of
slots
 Each slot has a set size (1 byte or 8 bits)
 Each slot has a unique address

 Each address is a set length of n bits
 Mostly n=32 or n=64 in today’s world
 Because of this there is obviously a maximum number of

addresses available for any given system, which means a
maximum amount of installable memory

Memory

0 1 2 3 4 5 6 7 8

We slice system memory up into 8-bit (1 byte) chunks and give each
one an address (i.e. a slot number).

Each of the registers is a small, fixed size. On today’s machines, they
are usually just 32 or 64 bits. Since we have to be able to squeeze a
memory address into a single register, the size of the registers dictates
how much of the system memory we can use.

Q1. How much system memory can we use if we have 8, 32 or 64
bit registers?

Big Numbers

 So what happens if we can’t fit the data into 8
bits e.g. the number 512?

 We end up distributing the data across
(consecutive) slots

 Now, if we want to act on the number as a whole,
we have to process each slot individually and
then combine the result

 Perfectly possible, but who wants to do that every
time you need an operation?

Memory

0 1 2 3 4 5 6 7 8

If I have two lots of 128-bits of data, how do I add them together
on a 32 bit machine? I can’t squeeze 128 bits into 32 bits. I have to
chop the 128 bits up into 32 bit chunks, add corresponding chunks
together and then put those new chunks back together again to get
a 128-bit answer.

Can you imagine having to do this every time you needed to do an
addition? Nasty.

High Level Languages

 Instead we write in high-level languages that are
human readable (well, compsci-readable anyway)

High-Level Source
Code (e.g. C++,

Java)

Binary executable
(i.e. CPU-speak)

Compiler

You already know the solution from FoCS and ML. We build up
layers of abstractions and write tools to drill down from one layer to
the next.

We program in high level code and leave it to the compiler to figure
out that when we say

c=a+b;

we actually mean “chop up a and b, load them into registers, add
them, look out for overflow, then put all the pieces back together in
memory somewhere called c”.

1.2 Functional and Imperative Revisited

We said imperative programming developed from consideration of
the hardware. Given the hardware we’ve just designed, the logical
thing to do is to represent data using state. i.e. explicit chunks of
memory used to store data values. A program can then be viewed
as running a series of commands that alter (‘mutate’) that state
(hopefully in a known way) to give the final result.

So c=a+b is referring to three different chunks of memory that rep-
resent numbers. Unlike in ML, it is perfectly valid to say a=a+b,
which computes the sum and then overwrites the state stored in a.

Functional programs, on the other hand, can be viewed as indepen-
dent of the machine. Strictly speaking, this means they can’t have
state in the same way since there’s simply nowhere to put it (no
notion of memory). Instead of starting with some data that gets
mutated to give a result, we only have an input and an output for
each function.

Of course, ML runs on real machines and therefore makes use of real
hardware components such as memory. But that’s because someone
has mapped the ideal mathematical processes in functional code to
machine operations (this must be possible because I said both the
mathematical view and the system view are equivalent). The key
point is that, although functional code runs on real hardware, it is
independent of it since it is really a mathematical construct.

Most people find the imperative approach easier to understand and,
in part, that is why it has gained such a stronghold within modern
programming languages.

1.3 Machine Architectures

Machine Architectures

 Actually, there’s no reason for e.g ARM and Intel to
use the same instructions for anything – and they
don’t!

 The result? Any set of instructions for one processor
only works on another processor if they happen to
use the same instruction set...
 i.e. The binary executable produced by the compiler is CPU-

specific

 We say that each set of processors that support a
given set of instructions is a different architecture
 E.g. x86, MIPS, SPARC, etc.

 But what if you want to run on different
architectures??

Compilation

 So what do we have? We need to write code
specifically for each family of processors...
Aarrggh!

 The ‘solution’:

Source Code (e.g. C+
+)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Remember those weird commands I made up when we did the fetch-
execute cycle? Well, not all CPUs are equivalent: newer ones have
cool new instructions to do things better. All that means is that a
set of instructions for CPU X won’t mean anything to CPU Y unless
the manufacturers have agreed they will.

Q2. Why do you think CPU manufacturers haven’t all agreed on a
single set of instructions?

There is one very popular set of machine instructions known as x86.
Basically, these were what IBM came up with for the original PC.
Now the term ‘PC’ has come to mean a machine that supports at
least the set of x86 instructions. Manufacturers like Apple tradition-
ally chose not to do so, meaning that Mac applications couldn’t run
on PC hardware and vice-versa.

Q3. Apple recently started using Intel processors that support x86
instructions. This means Apple machines can now run Mi-
crosoft Windows. However, off-the-shelf PC software (which
is compiled for x86) does not run on a Mac that is using the
Apple operating system compiled for the Intel processor. Why
not?

Enter Java

 Sun Microcomputers came up with a different solution
 They conceived of a Virtual Machine – a sort of idealised

computer.
 You compile Java source code into a set of instructions for

this Virtual Machine (“bytecode”)
 Your real computer runs a program (the “Virtual machine” or

VM) that can efficiently translate from bytecode to local
machine code.

 Java is also a Platform
 So, for example, creating a window is the same on any

platform
 The VM makes sure that a Java window looks the same on a

Windows machine as a Linux machine.

 Sun sells this as “Write Once, Run Anywhere”

Java compiles high-level source code not into CPU-specific instruc-
tions but into a generic CPU instruction set called bytecode. Ini-
tially there was no machine capable of directly using bytecode, but
recently they have started to appear in niche areas.

Therefore you usually run bytecode programs inside the virtual ma-
chine (which has been compiled specifically for your architecture).
This converts bytecode instructions into meaningful instructions for
your local CPU.

All the CPU-specific code goes into the virtual machine, which you
should just think of as a piece of intermediary software that translates
commands so the local hardware can understand.

SUN publishes the specification of a Java Virtual Machine (JVM)
and anyone can write one, so there are a plenty available if you want
to explore. Start here:

http://java.sun.com/docs/books/jvms/

1.4 Types

Types and Variables

 We write code like:

 The high-level language has a series of primitive
(built-in) types that we use to signify what’s in the
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

[See practicals]

You met the notion of types in FoCS and within ML. They’re impor-
tant because they allow the compiler to keep track of what the data
in its memory actually means and stop us from doing dumb things
like interpreting a floating point number as an integer.

In ML, you know you can specify the types of variables. But you
almost never do: you usually let the compiler infer the type unless
there’s some ambiguity (e.g. between int and double). In an imper-
ative language such as Java you must explicitly assign the types to
the variable.

For any C/C++ programmers out there: yes, Java looks a lot like
the C syntax. But watch out for the obvious gotcha — a char in C is
a byte (an ASCII character), whilst in Java it is two bytes (a Unicode
character). If you have an 8-bit number in Java you may want to
use a byte, but you also need to be aware that a byte is signed..!

You do lots more work with number representation and primitives in
your Java practical course. You do a lot more on floats and doubles
in your Floating Point course.

Reference Types (Classes)

 Lets imagine you’re creating a program that stores
info about someone doing CS

 You might create a set of variables (instances of
types) as follows:

 Now you need to represent two people so you add:

 Now you need to add more – this is getting rather
messy

 Better if we could create our own type – call it a
“Person”
 Let it contain two values: forename and surname

String forename = “Kay”;
String surname = “Oss”;

String forename2 = “Don”;
String surname2 = “Keigh”;

Reference Types (Classes)

 In Java we create a class which acts as a
blueprint for a custom type

 A class:
 Has attributes (things it is assigned e.g. name, age)
 Has methods (things it can do e.g. walk, think)

 When we create an instance of a class we:
 Assign memory to hold the attributes
 Assign the attributes

 We call the instance an object
 As in object-oriented programming

public class Person {
 String forename;
 String surname;
}

You’ve met things called ‘reference types’ in ML so hopefully the idea
of a reference isn’t completely new to you. But if you’re wondering

why classes are called reference types in Java, we’ll come to that
soon.

Definitions

 Class
 A class is a grouping of conceptually-related attributes

and methods

 Object
 An object is a specific instance of a class

Once we have compiled our Java source code, we end up with a set
of .class files. We can then distribute these files without their source
code (.java) counterparts.

In addition to javac you will also find a javap program which allows
you to poke inside a class file. For example, you can disassemble a
class file to see the raw bytecode using javap -c classfile:

Input:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");

}

}

javap output:

Compiled from "HelloWorld.java"
public class HelloWorld extends java.lang.Object{
public HelloWorld();

Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return

public static void main(java.lang.String[]);
Code:
0: getstatic #2; //Field java/lang/System.out:

//Ljava/io/PrintStream;
3: ldc #3; //String Hello World
5: invokevirtual #4; //Method java/io/PrintStream.println:

//(Ljava/lang/String;)V
8: return

}

This probably won’t make a lot of sense to you right now: that’s OK.
Just be aware that we can view the bytecode and that sometimes this
can be a useful way to figure out exactly what the JVM will do with
a bit of code. You aren’t expected to know bytecode.

1.5 Pointers and References

Pointers

 In some languages we have variables that hold
memory addresses.

 These are called pointers

 A pointer is just the memory address of the first
memory slot used by the object

 The pointer type tells the compiler how many
slots the whole object uses

xptr2

xxptr1
MyType x;
MyType *xptr1 = &x;
MyType *xptr2 = xptr1;

C++

A pointer is just the name given to memory addresses when we handle
them in code. They are very powerful concepts to work with, but
you need to take a lot of care.

Java doesn’t expose pointers to the programmer, so we’ll use some
basic C examples to make some points in the lectures. There are just
a few bits of C you may need to know to follow:

• int x declares a variable x that is a 32-bit signed integer
• int *p declares a pointer p that can point to an int in memory.

It must be manually initialised to point somewhere useful.
• p=&x Gets the memory address for the start of variable x and

stick it in p so p is a pointer to x.
• int a=*p declares a new int variable called a and sets its value to

that pointed to by pointer p. We say that we are dereferencing

p.

If it helps, we can map these operations to ML something like2:

C ML Comments
int x let val xm=0 in... xm is immutable
int *p let val pm=ref 0 in... pm is a reference to a vari-

able initially set to zero
p=&x val pm = ref xm
int a=*p val am = !pm

The key point to take away is that a pointer is just a number that
maps to a particular byte in memory. You can set that number to
anything you like, which means there’s no guarantee that it points
to anything sensible..! And the computer just obeys — if you say
that a pointer points to an int, then it doesn’t argue.

Working with pointers helps us to avoid needless copies of data
and usually speeds up our algorithms (see next term’s Algorithms I
course). But a significant proportion of program crashes are caused
by trying to read or write memory that hasn’t been allocated or
initialised...

2Now, if all that reference type stuff in ML confused you last term, don’t
worry about making these mappings just now. Just be aware that what will
come naturally in imperative programming has been retrofitted to ML, where it
seems a little less obvious! For now, just concentrate on understanding pointers
and references from scratch.

Java’s Solution?

 You can’t get at the memory directly.
 So no pointers, no jumping around in memory, no

problem.
 Great for teaching. 

 It does, however, have references
 These are like pointers except they are guaranteed to

point to either an object in memory or “null”.
 So if the reference isn’t null, it is valid

 In fact, all objects are accessed through
references in Java
 Variables are either primitive types or references!

Remember that classes are called Reference Types in Java. This is
because they are only handled by reference. Code like:

MyClass m = new MyClass();

creates an instance of MyClass somewhere in main memory (that’s
what goes on on the right of the equals). And then it creates a
reference to that instance and stores the result in a variable m.

A reference is really just a special kind of pointer. Remember that a
pointer is just a number (representing a memory slot). We can set a
pointer to any number we like and so it is possible that dereferencing
it gets us garbage.

A reference, however, always has a valid address or possibly a special
value to signify it is invalid. If you dereference a reference without
the special value in it, the memory you read will contain something
sensible.

In Java, the ‘special value’ is signified using the keyword null:

MyClass m = null; // Not initialised
...
m = new MyClass();

If you try to do something with a reference set to null, Java will bail
out on you. To test whether a reference is null:3

if (m==null) {
...

}

Q4. Pointers are problematic because they might not point to any-
thing useful. A null reference doesn’t point to anything useful.
So what is the advantage of using references over pointers?

3Note that the Java/C syntax uses = for assignment and == for comparison.
We’ll discuss this in more detail later.

References

P1 (50)

P2 (50)
Person object
(name=“Bob”)

r2

r1

P1 (50)

P2 (73)
Person object

(name=“Steve”)

r2

r1

int p1 = 50;
int p2 = p1;

Person r1 = new Person();
r1.name=“Bob”;
Person r2 = p;

p2 = 73;

r2.name=“Steve”;

So we have primitive types and reference types. A variable for a
primitive type can be thought of as being an instance of a type, so
each you assign something to it, the same bit of memory gets changed
as with P1 and P2 in the above slide.

A variable for a reference type holds the memory address. If you
assign something to it, what it used to be assigned to still exists in
memory (but your variable doesn’t link to it any more). Multiple
variables can reference the same object in memory (like r1 and r2
above).

Q5. Draw box diagrams like the one above to illustrate what hap-
pens in each step of the following Java code in memory:

Person p = null;
Person p2 = new Person();
p = p2;
p2 = new Person();
p=null;

Pass By Value and By Reference

A. “70 Bob”
B. “70 Alice”
C. “71 Bob”
D. “71 Alice”

void myfunction(int x, Person p) {
 x=x+1;
 p.name=“Alice”;
}

void static main(String[] arguments) {
 int num=70;
 Person person = new Person();
 person.name=“Bob”;

 myfunction(num, p);
 System.out.println(num+” “+person.name)
}

Now things are getting a bit more involved. We have added a function
prototype into the mix: void myfunction(int x, Person p). This means
it returns nothing (codenamed void) but takes an int and a Person
object as input.

When the function is run, the computer takes a copy of the inputs
and creates local variables x and p to hold the copies.

Here’s the thing: if you copy a primitive type, the value gets copied
across (so if we were watching memory we would see two integers in
memory, the second with the same value as the first).

But for the reference type, it is the reference that gets copied and
not the object it points to (i.e. we just create a new reference p and
point it at the same object).

When we copy a primitive value we say that it is pass by value. When
we send a reference to the object rather than the object, it is pass
by reference.

In my opinion, this all gets a bit confusing in Java because you have
no choice but to use references (unlike in, say C++). So I prefer to
think of all variables as representing either primitives or references
(rather than primitives and actual objects), and when we pass any
variable around its value gets copied. The ‘value’ of a primitive is its
actual value, whilst the ‘value’ of a reference is a memory address.
You may or may not like this way of thinking: that’s fine. Just
make certain you understand the different treatment of primitives
and reference types.

31

Chapter 2

Object-Oriented
Concepts

Modularity

 A class is a custom type

 We could just shove all our data into a class

 The real power of OOP is when a class corresponds to a
concept

 E.g. a class might represent a car, or a person

 Note that there might be sub-concepts here

 A car has wheels: a wheel is a concept that we might
want to embody in a separate class itself

 The basic idea is to figure out which concepts are useful,
build and test a class for each one and then put them all
together to make a program

 The really nice thing is that, if we've done a good job, we
can easily re-use the classes we have specified again in
other projects that have the same concepts.

 “Modularity”

Modularity is extremely important in OOP. It’s the usual CS trick:
break big problems down into chunks and solve each chunk. In this
case, we have large programs, meaning scope for lots of coding bugs.
We split the program into modules. The goal is:

• Modules are conceptually easier to handle
• Different people can work on different modules simultaneously
• Modules may be re-used in other software projects
• Modules can be individually tested as we go (unit testing)

The module ‘unit’ in OOP is a class.

State and Behaviour

 An object/class has:

 State
 Properties that describe that specific

instance
 E.g. colour, maximum speed, value

 Behaviour/Functionality
 Things that it can do
 These often mutate the state
 E.g. accelerate, brake, turn

Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using English grammar
 Noun → Object
 Verb → Method

“The footballer kicked the ball”

Representing a Class Graphically (UML)

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The “has-a” Association

College Student1 0...*

 Arrow going left to right says “a College has zero or
more students”

 Arrow going right to left says “a Student has exactly 1
College”

 What it means in real terms is that the College class
will contain a variable that somehow links to a set of
Student objects, and a Student will have a variable
that references a College object.

 Note that we are only linking classes: we don't start
drawing arrows to primitive types.

The graphical notation used here is part of UML (Unified Modeling
Language). UML is basically a standardised set of diagrams that
can be used to describe software independently of any programming
language used to create it.

UML contains many different diagrams (touched on in the Software
Design course). Here we just use the UML class diagram such as the
one in the slide.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties
that an object has such as
colour or size)

Class behaviour (actions
an object can do)

'Magic' start point
for the program
(named main by
convention)

Create an object of
type MyFancyClass in
memory and get a
reference to it

There are a couple of interesting things to note for later discussion.
Firstly, the word public is used liberally. Secondly, the main function
is declared inside the class itself and as static. Finally there is the
notation String[] which represents an array of String objects in Java.
You will see arrays in the practicals.

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour

'Magic' start point
for the program

Create an object of
type MyFancyClass

This is here just so you can compare. The Java syntax is based on
C/C++ so it’s no surprise that there’s a lot of similarities. This
certainly eases the transition from Java to C++ (or vice-versa), but
there are a lot of pitfalls to bear in mind (mostly related to memory
management).

Let's Build up Java Ourselves

 We'll start with a simple language that looks like
Java and evolve it towards real Java
 Use the same primitives and Java and the similar

syntax. E.g.
class MyFancyClass {

int someNumber;
String someText;

void someMethod() {

}

}

void main() {
MyFancyClass c = new

MyFancyClass();
}

A red box on the code box means it is not valid Java.

2.1 Encapsulation

Encapsulation

 Here we create 3 Student
objects when our program runs

 Problem is obvious: nothing
stops us (or anyone using our
Student class) from putting in
garbage as the age

 Let's add an access modifier
that means nothing outside the
class can change the age

class Student {
 int age;
}

void main() {
 Student s = new Student();
 s.age = 21;

 Student s2 = new Student();
 s2.age=-1;

 Student s3 = new Student();
 s3.age=10055;
}

Encapsulation

 Now nothing outside the class
can access the age variable
directly

 Have to add a new method to
the class that allows age to be
set (but only if it is a sensible
value)

 Also needed a GetAge()
method so external objects can
find out the age.

class Student {
 private int age;

 boolean SetAge(int a) {
 if (a>=0 && a<130) {

age=a;
return true;

 }
 return false;
 }

 int GetAge() {return age;}
}

void main() {
 Student s = new Student();
 s.SetAge(21);

}

Encapsulation

 We hid the state implementation to the outside world (no
one can tell we store the age as an int without seeing the
code), but provided mutator methods to... errr, mutate
the state

 This is data encapsulation
 We define interfaces to our objects without committing

long term to a particular implementation

 Advantages
 We can change the internal implementation whenever

we like so long as we don't change the interface other
than to add to it (E.g. we could decide to store the age
as a float and add GetAgeFloat())

 Encourages us to write clean interfaces for things to
interact with our objects

Another name for encapsulation is information hiding. The basic
idea is that a class should expose a clean interface that allows inter-
action, but nothing about its internal state. So the general rule is
that all state should start out as private and only have that access
relaxed if there is a very, very good reason.

Encapsulation helps to minimise coupling between classes. High cou-
pling between two class, A and B, implies that a change in A is likely
to ripple through to B. In a large software project, you really don’t
want a change in one class to mean you have to go and fix up the
other 200 classes! So we strive for low coupling.

It’s also related to cohesion. A highly cohesive class contains only a
set of strongly related functions rather than being a hotch-potch of
functionality. We strive for high cohesion.

2.2 Inheritance

Inheritance
class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

 There is a lot of duplication here

 Conceptually there is a hierarchy that
we're not really representing

 Both Lecturers and Students are
people (no, really).

 We can view each as a kind of
specialisation of a general person
 They have all the properties of a

person
 But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance
class Person {
 public int age;
 Public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

 We create a base class (Person)
and add a new notion: classes
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of

Lecturer and Student
 Lecturer and Student

subclass Person

Unfortunately, we tend to use an array of different names for things
in an inheritance tree. For A extends B, you might get any of:

• A is the superclass of B
• A is the parent of B
• A is the base class of B
• B is a subclass of A
• B is the child of A
• B derives from A
• B inherits from A
• B subclasses A

Representing Inheritance Graphically

Student Lecturer

Person

Also known as an “is-a”
relation

As in “Student is-a Person”

Overriding Functionality

 We might want to require that every Person can dance. But
the way a Lecturer dances is not likely to be the same as
the way a Student dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
}

Person defines a
'default'
implementation of
dance()

Lecturer just
inherits the default
implementation

Student overrides
the default

2.3 Abstract Classes

Abstract Methods

 There are times when we have a definite
concept but we expect every specialism
of it to have a different implementation.
We want to enforce that without providing
a default

 E.g. We want to enforce that all objects
that are Persons support a dance()
method

 But we don't now think that there's a
default dance()

 We specify an abstract dance method in
the Person class

 i.e. we don't fill in any implementation
(code) at all in Person.

class Person {
 public void dance();
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

Abstract Classes

 Before we could write Person p = new Person()

 But now p.dance() is undefined

 Therefore we have implicitly made the class abstract ie. It cannot be
directly instantiated to an object

 Languages require some way to tell them that the class is meant to be
abstract and it wasn't a mistake:

 Note that an abstract class can contain state variables that get inherited as
normal

 Note also that, in Java, we can declare a class as abstract despite not
specifying an abstract method in it!!

public abstract class Person {
 public abstract void dance();
}

class Person {
 public:
 virtual void dance()=0;
}

Java C++

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the
class or method is
abstract

2.4 Polymorphic Functions

(Subtype) Polymorphism

 As we descend our inheritance tree we specialise by adding
more detail (a salary variable here, a dance() method
there)

 So, in some sense, a Student object has all the information
we need to make a Person (and some extra).

 It turns out to be quite useful to group things by their
common ancestry in the inheritance tree

 We can do that semantically by expressions like:

Student s = new Student();
Person p = (Person)s;

Person p = new Person();
Student s = (Student)p;

This is a widening conversion (we
move up the tree, increasing
generality: always OK)

This would be a narrowing
conversion (we try to move down
the tree, but it's not allowed here
because the real object doesn't
have all the info to be a Student)x

When we write (Person)s we say we are casting the Student object
to a Person object.

It might look a bit odd, but just remember that going down an
inheritance tree adds stuff. Every object has an intrinsic type when
we create it and it can’t be cast to anything below that type (because
it doesn’t contain the ‘extra’ stuff).

(Subtype) Polymorphism

 Assuming Person has a default
dance() method, what should
happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 Option 1
 Compiler says “p is of type Person”
 So p.dance() should do the default dance() action in

Person

 Option 2
 Compiler says “The object in memory is really a

Student”
 So p.dance() should run the Student dance() method

Polymorphic behaviour

The Canonical Example

 A drawing program that can draw
circles, squares, ovals and stars

 It would presumably keep a list of all
the drawing objects

 Option 1
 Keep a list of Circle objects, a list

of Square objects,...
 Iterate over each list drawing

each object in turn
 What has to change if we want to

add a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example

 Option 2
 Keep a single list of Shape

references
 Figure out what each object really

is, narrow the reference and then
draw()

 What if we want to add a new
shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 If (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 Else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 Else if...

The Canonical Example

 Option 3 (Polymorphic)
 Keep a single list of Shape

references
 Let the compiler figure out what

to do with each Shape reference

 What if we want to add a new
shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations

 Java
 All methods are polymorphic. Full stop.

 C++
 Only functions marked virtual are polymorphic

 Polymorphism is an extremely important concept that you need to
make sure you understand...

2.5 Interfaces

Multiple Inheritance

Student Lecturer

StudentLecturer

 What if we have a Lecturer who studies
for another degree?

 If we do as shown, we have a bit of a
problem

 StudentLecturer inherits two
different dance() methods

 So which one should it use if we
instruct a StudentLecturer to
dance()?

 The Java designers felt that this kind of
problem mostly occurs when you have
designed your class hierarchy badly

 Their solution? You can only extend
(inherit) from one class in Java

 (which may itself inherit from
another...)

 This is a Java oddity (C++ allows
multiple class inheritance)

Interfaces (Java only)
 Java has the notion of an interface which is like a class except:

 There is no state whatsoever

 All methods are abstract

 For an interface, there can then be no clashes of methods or
variables to worry about, so we can allow multiple inheritance

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
 public void turn();
 public void brake();
}

Interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 Public void getIdentifier() {...}
}

abstract
assumed for
interfaces

Q6. Explain the differences between a class, an abstract class and
an interface.

Q7. * Imagine you have two classes: Employee (which represents
being an employee) and Ninja (which represents being a Ninja).
An Employee has both state and behaviour; a Ninja has only
behaviour.

You need to represent an employee who is also a ninja. By
creating only one interface and only one class(NinjaEmployee),
show how you can do this without having to copy method im-
plementation code from either of the original classes.

Recap

 Important OOP concepts you need to
understand:

 Modularity (classes, objects)
 Data Encapsulation
 Inheritance
 Abstraction
 Polymorphism

2.6 Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a
function call

 Every Class has a constructor, which is a function that
gets run automatically whenever you create an object

 Allows you to initialise the object

 No constructor specified? You'll get the default
constructor (which is empty).

 Multiple constructors specified?
 Each constructor must have a different signature (i.e.

a different set of arguments)
 The compiler looks at the arguments you give in your

new command and runs the appropriate one.

MyObject m = new MyObject();

Constructor Chaining

 When you construct an object of a type with
parent classes, we call the constructors of all
of the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

Q8. Write a Java program that demonstrates the notion of con-
structor chaining.

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or

memory that we might have created especially for the
object

class FileReader {
 public:

 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

Cleaning Up

 A typical program creates lots of objects, not all
of which need to stick around all the time

 Approach 1:
 Allow the programmer to specify when objects

should be deleted from memory
 Lots of control, but what if they forget to delete

an object?
 Approach 2:

 Delete the objects automatically (Garbage
collection)

 But how do you know when an object is
finished with?

Cleaning Up (Java)

 Java reference counts. i.e. it keeps track of how many
references point to a given object. If there are none,
the programmer can't access that object ever again so
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Cleaning Up (Java)

 Good:
 System cleans up after us

 Bad:
 It has to keep searching for objects with

no references. This requires effort on
the part of the CPU so it degrades
performance.

 We can't easily predict when an object
will be deleted

Cleaning Up (Java)

 So we can't tell when a destructor would run – so
Java doesn't have them!!

 It does have the notion of a finalizer that gets
run when an object is garbage collected
 BUT there's no guarantee an object will ever

get garbage collected in Java...
 Garbage Collection != Destruction

2.7 Class-Level Data

Class-Level Data and Functionality
 Imagine we have a class ShopItem. Every ShopItem

has an individual core price to which we need to
add VAT

 Two issues here:

1. If the VAT rate changes, we need to find every
ShopItem object and run SetVATRate(...) on it.
We could end up with different items having
different VAT rates when they shouldn't...

2. It is inefficient. Every time we create a new
ShopItem object, we allocate another 32 bits of
memory just to store exactly the same number!

public class ShopItem {
 private float price;
 private float VATRate = 0.175;

 public float GetSalesPrice() {
 return price*(1.0+VATRate);
 }

 public void SetVATRate(float rate) {
 VATRate=rate;
 }

}

 What we have is a piece of information that is class-level not object level

 Each individual object has the same value at all times

 We throw in the static keyword:

public class ShopItem {
 private float price;
 private static float VATRate;

}

Variable created only once
and has the lifetime of the
program, not the object

Class-Level Data and Functionality
 We now have one place to update

 More efficient memory usage

17.5

17.5

17.5

17.5

17.5

17.5

 Can also make methods static too

 A static method must be instance independent i.e. it can't rely on
member variables in any way

 Sometimes this is obviously needed. E.g

public class Whatever {
 public static void main(String[] args) {
 ...
 }
}

Must be able to run this
function without creating an
object of type Whatever
(which we would have to do in
the main()..!)

Why use other static functions?
 A static function is like a function in ML – it can depend only

on its arguments
 Easier to debug (not dependent on any state)
 Self documenting
 Allows us to group related methods in a Class, but not

require us to create an object to run them
 The compiler can produce more efficient code since no

specific object is involved

public class Math {
 public float sqrt(float x) {…}
 public double sin(float x) {…}
 public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
 public static float sqrt(float x) {…}
 public static float sin(float x) {…}
 public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

2.8 Examples

One of the examples we will develop in class is a representation of a
two dimensional vector (x, y). This is obviously a very simple class,
but it brings us to an interesting question of mutability. An im-
mutable class cannot have its state changed after it has been created
(you’re familiar with this from ML, where everything is immutable).
A mutable class can be altered somehow (usually as a side effect of
calling a method).

To make a class immutable:

• Make sure all state is private.
• Consider making state final (this just tells the compiler that

the value never changes once constructed).
• Make sure no method tries to change any internal state.

Some advantages of immutability:

• Simpler to contruct, test and use
• Automatically thread safe (don’t worry if this means nothing

to you yet).
• Allows lazy instatiation of objects.

In fact, to quote Effective Java by Joshua Bloch:

“Classes should be immutable unless there’s a very good
reason to make them mutable... If a class cannot be made
immutable, limit its mutability as much as possible.”

Q9. Modify the Vector2D class to handle subtraction and scalar
product.

Q10. Is the Vector2D class developed in lectures mutable or im-
mutable?

Q11. Vector2D provides a method to add two vectors. Contrast the
following approaches to providing an add method assuming
Vector2D is (i) mutable, and (ii) immutable.

(a) public void add(Vector2D v)

(b) public Vector2D add(Vector2D v)

(c) public Vector2D add(Vector2D v1, Vector2D v2)

(d) public static Vector2D add(Vector2D v1,
Vector2D v2)

Q12. A student wishes to create a class for a 3D vec-
tor and chooses to derive from the Vector2D class (i.e.
public void Vector3D extends Vector2D). The argument is that
a 3D vector is a “2D vector with some stuff added”. Explain
the conceptual misunderstanding here.

Q13. Explain how to write a Java program that is ‘functional’ in
nature i.e. no modifiable variables, methods are mathematical
functions without side effects. Remember the final keyword.

58

Chapter 3

Java Miscellany

3.1 Copying or Cloning Java Objects

Cloning

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning

 Every class in Java ultimately inherits from the
Object class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy
actually means

Cloning

public class MyClass {
 private float price = 77;
}

MyClass
object

(price=77)
Clone

MyClass
object

(price=77)

MyClass
object

(price=77)

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass
object Shallo

w

MyOtherClass
object MyClass

object

MyOtherClass
object

MyClass
object

MyOtherClass
object

MyClass
object

MyClass
object

MyOtherClass
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a

shallow copy
 But Java developers were worried that this might not be

appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

 Java has a Cloneable interface
 If you call clone on anything that doesn't extend this

interface, it fails

Marker Interfaces

 If you go and look at what's in the Cloneable interface,
you'll find it's empty!! What's going on?

 Well, the clone() method is already inherited from Object
so it doesn't need to specify it

 This is an example of a Marker Interface
 A marker interface is an empty interface that is used to

label classes
 This approach is found occasionally in the Java libraries

You might also see these marker interfaces referred to as tag inter-
faces. They are simply a way to label or tag a class. They can be very
useful, but equally they can be a pain (you can’t dynamically tag a
class, nor can you prevent a tag being inherited by all subclasses).

Q14. An alternative strategy to clone()-ing an object is to provide a
copy constructor. This is a constructor that takes the enclosing
class as an argument and copies everything manually:

public class MyClass {
private String mName;
private int[] mData;

// Copy constructor
public MyClass(MyClass toCopy) {
this.mName = toCopy.mName;
// TODO

}
...

}

(a) Complete the copy constructor.

(b) Make MyClass clone()-able (you should do a deep copy).

(c) * Why might the Java designers have disliked copy con-
structors? [Hint: What happens if you want to copy an
object that is being referenced using its parent type?].

(d) * Under what circumstances is a copy constructor a good
solution?

Q15. Consider the class below. What difficulty is there in providing
a deep clone() method for it?

public class CloneTest {
private final int[] mData = new int[100];

}

3.2 Distributing Java Classes

Distributing Classes
 So you've written some great classes that might be useful

to others. You release the code. What if you've named your
class the same as someone else?
 E.g. There are probably 100s of “Vector” classes out

there..!

 Most languages define some way that you can keep your
descriptive class name without getting it confused with
others.

 Java uses packages. A class belongs to a package
 A nameless 'default' package unless you specify

otherwise
 You're supposed to choose a package name that is

unique.
 Sun decided you should choose your domain name
 You do have your own domain name, right? ;)

Distributing Classes

package uk.cam.ac.rkh23;

import uk.cam.ac.abc21.*;

Class Whatever {
…
}

Class Whatever is part of this package

Import all the Classes from some
other package

 You get to do lots more about this in your practicals

Access Modifiers Revisited

 Most Languages:
 public – everyone can access directly
 protected – only subclasses can access directly
 private – nothing can access directly

 Java adds:
 package – anything in the same package can

access directly

3.3 Java Class Libraries

Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Remember Java is a platform, not just a programming language. It
ships with a huge class library : that is to say that Java itself contains
a big set of built-in classes for doing all sorts of useful things like:

• Complex data structures and algorithms
• I/O (input/output: reading and writing files, etc)
• Networking
• Graphical interfaces

Of course, most programming languages have built-in classes, but
Java has a big advantage. Because Java code runs on a virtual ma-
chine, the underlying platform is abstracted away. For C++, for
example, the compiler ships with a fair few data structures, but
things like I/O and graphical interfaces are completely different for
each platform (windows, OSX, Linux, whatever). This means you
usually end up using lots of third-party libraries to get such ‘extras’
— not so in Java.

There is, then, good reason to take a look at the Java class library
to see how it is structured. In fact, we’ll see a lot of design patterns
used in the library...

3.3.1 Collections and Generics

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collections. They
define a set of operations that all classes
in the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

The Java Collections framework is a set of interfaces and classes that
handles groupings of objects and allows us to implement various
algorithms invisibly to the user (you’ll learn about the algorithms
themselves next term).

Major Collections Interfaces

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces

 <<interface>> Map
 Like relations in DM 1

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

There are other interfaces in the Collections class, and you may want
to poke around in the API documentation. In day-to-day program-

ming, however, these are likely to be the interfaces you use.

Obviously, you can’t use the interfaces directly. So Java includes a
few implementations that implement sensible things. Again, you will
find them in the API docs, but as an example for Set:

TreeSet. A Set that keeps the elements in sorted order so that when
you iterate over them, they come out in order.

HashSet. A Set that uses a technique called hashing (don’t worry
— you’re not meant to know about this yet) that happens
to make certain operations (add, remove, etc) very efficient.
However, the order the elements iterate over is neither obvious
nor constant.

Now, don’t worry about what’s going on behind the scenes (that
comes in the Algorithms course), just recognise that there are a series
of implementations in the class library that you can use, and that
each has different properties.

Generics

 The original Collections framework just dealt with
collections of Objects
 Everything in Java “is-a” Object so that way our

collections framework will apply to any class we like
without any special modification.

 It gets messy when we get something from our
collection though: it is returned as an Object and
we have to do a narrowing conversion to make use
of it:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Generics

 It gets worse when you realise that the add() method
doesn't stop us from throwing in random objects:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

Generics

 To help solve this sort of problem, Java introduced
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is
supposed to go in the Collection

 So it can generate an error at compile-time, not run-
time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
 Integer i = it.next();
}

Won't even compile

No need to cast :-)

Notation in Java API

 Set<E>
 List<E>
 Queue<E>
 Map<K,V>

Here the letter between the brackets just signifies some class, so you
might do:

TreeSet<Person> ts = new TreeSet<Person>()

Polymorphism Revisited

 You might recognise Generics as the “polymorphism”
you met in FoCS when using ML.

 Both allow you to write code that works for multiple
types

 (Parametric) Polymorphism [FP] or Generics [OOP]
 The types are determined at compile-time

 (Sub-type or ad-hoc) Polymorphism [OOP]
 The types are determined at run-time
 Needs an inheritance tree

For the most part, when programmers say ‘”polymorphism”, it’s
usually with reference to the sub-type polymorphism.

Generics and SubTyping
// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;<<interface>>

Collection
Person

<<interface>>
Collection

Animal

So a list of Persons is a list of Animals, yes?

Q16. Java generics can handle this issue using wildcards. Explain
how these work. Yes, some research will be required...

3.3.2 Comparing Java Objects

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (object1==object2) mean??

 Same object?
 Same state (“value”) but different object?

The problem is that we deal with references to objects, not objects.
So when we compare two things, do we compare the references of
the objects they point to? As it turns out, both can be useful so we
want to support both.

Option 1: a==b, a!=b

 These compare the references

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

p1==p1;

False (references differ)

True (references differ)

True (references the same)

String s = “Hello”;
if (s==”Hello”) System.out.println(“Hello”);
else System.out.println(“Nope”);

Option 2: The equals() Method

 Object defines an equals() method. By default, this
method just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly

implemented equals() methods

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

String s1 = “Bob”;
String s2 = “Bob”;

(s1==s2);

False (we haven't
overridden the equals()
method so it just
compares references

True (String has equals()
overridden)

I find this mildly irritating: every class you use will support equals()
but you’ll have to check whether or not it has been overridden to do

something other than ==. Personally, I only use equals() on objects
from core Java classes.

Option 3: Comparable<T> Interface

int compareTo(T obj);

 Part of the Collections Framework
 Returns an integer, r:

 r<0 This object is less than obj
 r==0 This object is equal to obj
 r>0 This object is greater than obj

Option 3: Comparable<T> Interface
public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Note that the class itself contains the information on how it is to be
sorted: we say that it has a natural ordering.

Q17. Write a class that represents a 3D point (x,y,z). Give it a
natural order such that values are sorted in ascending order by
z, then y, then x.

Option 4: Comparator<T> interface

int compareTo(T obj1, T obj2)

 Also part of the Collections framework and
allows us to specify a particular comparator
for a particular job

 E.g. a Person might have a compareTo()
method that sorts by surname. We might
wish to create a class AgeComparator that
sorts Person objects by age. We could then
feed that to a Collections object.

At first glance, it may seem that Comparator doesn’t add much
over Comparable. However it’s very useful to be able to specify
Comparators and apply them dynamically to Collections. If you
look in the API, you will find that Collections has a static method
sort(List l, Comparator, c).

So, imagine we have a class Student that stores the forename, sur-
name and exam percentage as a String, String, and a float respec-
tively. The natural ordering of the class sorts by surname. We

might then supply two Comparator classes: ForenameComparator and
ExamScoreComparator that do as you would expect. Then we could
write:

List list = new SortedList();

// Populate list
// List will be sorted naturally
...

// Sort list by forename
Collections.sort(list, new ForenameComparator());

// Sort list by exam score
Collections.sort(list, new ExamScoreComparator());

Q18. (a) Remembering the idea of data encapsulation, write the
code for the Student class.

(b) Write the code for the two Comparators.

(c) Write a program that demonstrates that your code works.

(d) Without generics, the Comparator signature has to be
compareTo(Object o1, Object o2). Show how you would
make this work for your Student class. Assume that it
only makes sense to compare two Student objects.

Q19. The user of the class Car below wishes to maintain a collection
of Car objects such that they can be iterated over in some
specific order.

public class Car {
private String manufacturer;
private int age;

}

(a) Show how to keep the collection sorted alphabetically by
the manufacturer without writing a Comparator.

(b) Show how to keep the collection sorted by {manufacturer,
age}. i.e. sort first by manufacturer, and sub-sort by age.

3.3.3 Java’s I/O Framework

Java's I/O framework

 Support for system input and output (from/to sources
such as network, files, etc).

<<interface>>
Collection

Reader
Abstract class for reading
data from some source

<<interface>>
Collection

InputStreamReader

<<interface>>
Collection

FileReader

Concrete Instance that works
 on an InputStream object

Specialisation that allows us to
specify a filename, then creates
and InputStream for it

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

The reason file I/O is typically so slow is that hard drives take a
long time to deliver information. They contain big, spinning disks
and the read head has to move to the correct place to read the data
from, then wait until the disc has spun around enough to read all the
data it wanted (think old 12 inch record players). Contrast this with
memory (in the sense of RAM), where you can just jump wherever
you like without consequence and with minimal delay.

The BufferedReader simply tries to second guess what will happen
next. If you asked for the first 50 bytes of data from a file, chances
are you’ll be asking for the next 50 bytes (or whatever) before long,
so it loads that data into a buffer (i.e. into RAM) so that if you do
turn out to want it, there will be little or no delay. If you don’t use
it: oh well, we tried.

The key thing is to look at the tree structure: a BufferedReader is-a
Reader but also has-a Reader. The idea is that a BufferedReader has
all the capabilities of the Reader object that it contains, but also
adds some extra functionality.

For example, a Reader allows you to read text in byte-by-byte using
read(). If you have a string of text, you have to read it in character
by character until you get to the terminating character that marks
the end of the string. A BufferedReader reads ahead and can read
the entire string in one go: it adds a readLine() function to do so.
But it still supports the read() functionality if you want to do it the
hard way.

The really nice thing is that we don’t have to write a BufferedReader
for a Reader that we create from scratch. I could create a SerialPortReader
that derives from Reader and I could immediately make a BufferedReader
for it without having to write any more code.

This sort of solution crops up again and again in OOP, and this is
one of the “Design Patterns” we’ll talk about later in the course. So

you may want to come back to this at the end of the course if you
don’t fully ‘get’ it now.

Chapter 4

Design Patterns

4.1 Introduction

Coding anything more complicated than a toy program usually bene-
fits from forethought. After you’ve coded a few medium-sized pieces
of object-oriented software, you’ll start to notice the same general
problems coming up over and over. And you’ll start to automati-
cally use the same solution each time. We need to make sure that
set of default solutions is a good one!

In his 1991 PhD thesis, Erich Gamma compared this to the field of
architecture, where recurrent problems are tackled by using known
good solutions. The follow-on book (Design Patterns: Elements
of Reusable Object-Oriented Software, 1994) identified a se-
ries of commonly encountered problems in object-oriented software
design and 23 solutions that were deemed elegant or good in some
way. Each solution is known as a Design Pattern:

82

A Design Pattern is a general reusable solution to a com-
monly occurring problem in software design.

The modern list of design patterns is ever-expanding and there is no
shortage of literature on them. In this course we will be looking at
a few key patterns and how they are used.

4.1.1 So Design Patterns are like coding recipes?

No. Creating software by stitching together a series of Design Pat-
terns is like painting by numbers — it’s easy and it probably works,
but it doesn’t produce a Picasso! Design Patterns are about intel-
ligent solutions to a series of generalised problems that you may be
able to identify in your software. You might that find they don’t
apply to your problem, or that they need adaptation. You simply
can’t afford to disengage your brain (sorry!)

4.1.2 Why Bother Studying Them?

Design patterns are useful for a number of things, not least:

1. They encourage us to identify the fundamental aims of given
pieces of code

2. They save us time and give us confidence that our solution is
sensible

3. They demonstrate the power of object-oriented programming

4. They demonstrate that näıve solutions are bad

5. They give us a common vocabulary to describe our code

The last one is important: when you work in a team, you quickly
realise the value of being able to succinctly describe what your code
is trying to do. If you can replace twenty lines of comments1 with a
single word, the code becomes more readable and maintainable. Fur-
thermore, you can insert the word into the class name itself, making
the class self-describing.

1You are commenting your code liberally, aren’t you?

4.2 Design Patterns By Example

We’re going to develop a simple example to look at a series of design
patterns. Our example is a new online venture selling books. We
will be interested in the underlying (“back-end”) code — this isn’t
going to be a web design course!

We start with a very simple setup of classes. For brevity we won’t be
annotating the classes with all their members and functions. You’ll
need to use common sense to figure out what each element supports.

Session. This class holds everything about a current browser ses-
sion (originating IP, user, shopping basket, etc).

Database. This class wraps around our database, hiding away the
query syntax (i.e. the SQL statements or similar).

Book. This class holds all the information about a particular book.

4.3 Supporting Multiple Products

Problem: Selling books is not enough. We need to sell CDs and
DVDs too. And maybe electronics. Oh, and sports equipment.
And...

Solution 1: Create a new class for every type of item.

4 It works.
7 We end up duplicating a lot of code (all the products have

prices, sizes, stock levels, etc).
7 This is difficult to maintain (imagine changing how the VAT is

computed...).

Solution 2: Derive from an abstract base class that holds all the
common code.

4 “Obvious” object oriented solution

4 If we are smart we would use polymorphism2 to avoid con-
stantly checking what type a given Product object is in order
to get product-specific behaviour.

4.3.1 Generalisation

This isn’t really an ‘official’ pattern, because it’s a rather funda-
mental thing to do in object-oriented programming. However, it’s
important to understand the power inheritance gives us under these
circumstances.

2There are two types of polymorphism. Ad-hoc polymorphism (a.k.a. runtime
or dynamic polymorphism) is concerned with object inheritance. It is familiar
to you from Java, when the computer automatically figures out which version of
an inherited method to run. Parametric polymorphism (a.k.a. static polymor-
phism) is where the compiler figures out which version of a type to use before
the program runs. You are familiar with this in ML, but you also find it in C++
(templates) and Java (look up generics).

4.4 The Decorator Pattern

Problem: You need to support gift wrapping of products.

Solution 1: Add variables to the Product class that describe
whether or not the product is to be wrapped and how.

4 It works. In fact, it’s a good solution if all we need is a binary
flag for wrapped/not wrapped.

7 As soon as we add different wrapping options and prices for
different product types, we quickly clutter up Product.

7 Clutter makes it harder to maintain.
7 Clutter wastes storage space.

Solution 2: Add WrappedBook (etc.) as subclasses of Product
as shown.

Implementing this solution is a shortcut to the Job centre.

4 We are efficient in storage terms (we only allocate space for
wrapping information if it is a wrapped entity).

7 We instantly double the number of classes in our code.

7 If we change Book we have to remember to mirror the changes
in WrappedBook.

7 If we add a new type we must create a wrapped version. This
is bad because we can forget to do so.

7 We can’t convert from a Book to a WrappedBook without
copying lots of data.

Solution 3: Create a general WrappedProduct class that is both
a subclass of Product and references an instance of one of its siblings.
Any state or functionality required of a WrappedProduct is ‘passed
on’ to its internal sibling, unless it relates to wrapping.

4 We can add new product types and they will be automatically
wrappable.

4 We can dynamically convert an established product object into
a wrapped product and back again without copying overheads.

7 We can wrap a wrapped product!
7 We could, in principle, end up with lots of chains of little ob-

jects in the system

4.4.1 Generalisation

This is the Decorator pattern and it allows us to add functionality
to a class dynamically without changing the base class or having to
derive a new subclass. Real world example: humans can be ‘deco-
rated’ with contact lenses to improve their vision.

Note that we can use the pattern to add state (variables) or func-
tionality (methods), or both if we want. In the diagram above, I
have explicitly allowed for both options by deriving StateDecorator
and FunctionDecorator. This is usually unnecessary — in our book
seller example we only want to decorate one thing so we might as
well just put the code into Decorator.

4.5 State Pattern

Problem: We need to handle a lot of gift options that the customer
may switch between at will (different wrapping papers, bows, gift
tags, gift boxes, gift bags, ...).

Solution 1: Take our WrappedProduct class and add a lot of
if/then statements to the function that does the wrapping — let’s
call it initiate wrapping().

void initiate_wrapping() {
if (wrap.equals("BOX")) {

...
}
else if (wrap.equals("BOW")) {

...
}
else if (wrap.equals("BAG")) {

...
}
else ...

}

4 It works.
7 The code is far less readable.
7 Adding a new wrapping option is ugly.

Solution 2: We basically have type-dependent behaviour, which
is code for “use a class hierarchy”.

4 This is easy to extend.
4 The code is neater and more maintainable.
7 What happens if we need to change the type of the wrapping

(from, say, a box to a bag)? We have to construct a new GiftBag
and copy across all the information from a GiftBox. Then we
have to make sure every reference to the old object now points
to the new one. This is hard!

Solution 3: Let’s keep our idea of representing states with a class
hierarchy, but use a new abstract class as the parent:

Now, every WrappedProduct has-a GiftType. We have retained the
advantages of solution 2 but now we can easily change the wrap-
ping type in-situ since we know that only the WrappedObject object
references the GiftType object.

4.5.1 Generalisation

This is the State pattern and it is used to permit an object to
change its behaviour at run-time. A real-world example is how your
behaviour may change according to your mood. e.g. if you’re angry,
you’re more likely to behave aggressively.

Q20. Suppose you have an abstract class TeachingStaff with two con-
crete subclasses: Lecturer and Professor. Problems arise when
a lecturer gets promoted because we cannot convert a Lecturer
object to a Professor object. Using the State pattern, show how
you would redesign the classes to permit promotion.

4.6 Strategy Pattern

Problem: Part of the ordering process requires the customer to
enter a postcode which is then used to determine the address to
post the items to. At the moment the computation of address from
postcode is very slow. One of your employees proposes a different
way of computing the address that should be more efficient. How
can you trial the new algorithm?

Solution 1: Let there be a class AddressFinder with a method
getAddress(String pcode). We could add lots of if/then/else state-
ments to the getAddress() function.

String getAddress(String pcode) {
if (algorithm==0) {

// Use old approach
...

}
else if (algorithm==1) {

// use new approach
...

}
}

7 The getAddress() function will be huge, making it difficult to
read and maintain.

7 Because we must edit AddressFinder to add a new algorithm,
we have violated the open/closed principle3.

3This states that a class should be open to extension but closed to modifi-
cation. So we allow classes to be easily extended to incorporate new behavior
without modifying existing code. This makes our designs resilient to change but
flexible enough to take on new functionality to meet changing requirements.

Solution 2: Make AddressFinder abstract with a single abstract
function getAddress(String pcode). Derive a new class for each of
our algorithms.

4 We encapsulate each algorithm in a class.
4 Code is clean and readable.
7 More classes kicking around

4.6.1 Generalisation

This is the Strategy pattern. It is used when we want to support dif-
ferent algorithms that achieve the same goal. Usually the algorithm
is fixed when we run the program, and doesn’t change. A real life

example would be two consultancy companies given the same brief.
They will hopefully produce the same result, but do so in different
ways. i.e. they will adopt different strategies. From the (external)
customer’s point of view, the result is the same and he is unaware
of how it was achieved. One company may achieve the result faster
than the other and so would be considered ‘better’.

Note that this is essentially the same UML as the State pattern!
The intent of each of the two patterns is quite different however:

• State is about encapsulating behaviour that is linked to spe-
cific internal state within a class.

• Different states produce different outputs (externally the class
behaves differently).

• State assumes that the state will continually change at run-
time.

• The usage of the State pattern is normally invisible to external
classes. i.e. there is no setState(State s) function.

• Strategy is about encapsulating behaviour in a class. This
behaviour does not depend on internal variables.

• Different concrete Strategys may produce exactly the same out-
put, but do so in a different way. For example, we might have a
new algorithm to compute the standard deviation of some vari-
ables. Both the old algorithm and the new one will produce
the same output (hopefully), but one may be faster than the
other. The Strategy pattern lets us compare them cleanly.

• Strategy in the strict definition usually assumes the class is
selected at compile time and not changed during runtime.

• The usage of the Strategy pattern is normally visible to exter-
nal classes. i.e. there will be a setStrategy(Strategy s) function
or it will be set in the constructor.

However, the similarities do cause much debate and you will find
people who do not differentiate between the two patterns as strongly
as I tend to.

4.7 Composite Pattern

Problem: We want to support entire groups of products. e.g. The
Lord of the Rings gift set might contain all the DVDs (plus a free
cyanide capsule).

Solution 1: Give every Product a group ID (just an int). If
someone wants to buy the entire group, we search through all the
Products to find those with the same group ID.

4 Does the basic job.
7 What if a product belongs to no groups (which will be the

majority case)? Then we are wasting memory and cluttering
up the code.

7 What if a product belongs to multiple groups? How many
groups should we allow for?

Solution 2: Introduce a new class that encapsulates the notion
of groups of products:

If you’re still awake, you may be thinking this is a bit like the Deco-
rator pattern, except that the new class supports associations with
multiple Products (note the * by the arrowhead). Plus the intent is
different – we are not adding new functionality but rather supporting
the same functionality for groups of Products.

4 Very powerful pattern.
7 Could make it difficult to get a list of all the individual objects

in the group, should we want to.

4.7.1 Generalisation

This is the Composite pattern and it is used to allow objects and
collections of objects to be treated uniformly. Almost any hierarchy
uses the Composite pattern. e.g. The CEO asks for a progress

report from a manager, who collects progress reports from all those
she manages and reports back.

Notice the terminology in the general case: we speak of Leafs because
we can use the Composite pattern to build a tree structure. Each
Composite object will represent a node in the tree, with children
that are either Composites or Leafs.

This pattern crops up a lot, and we will see it in other contexts later
in this course.

Q21. A drawing program has an abstract Shape class. Each Shape
object supports a draw() method that draws the relevant shape
on the screen (as per the example in lectures). There are
a series of concrete subclasses of Shape, including Circle and
Rectangle. The drawing program keeps a list of all shapes in a
List<Shape> object.

(a) Should draw() be an abstract method?

(b) Write Java code for the function in the main application
that draws all the shapes on each screen refresh.

(c) Show how to use the Composite pattern to allow sets of
shapes to be grouped together and treated as a single
entity.

(d) Which design pattern would you use if you wanted to
extend the program to draw frames around some of the
shapes? Show how this would work.

4.8 Singleton Pattern

Problem: Somewhere in our system we will need a database and
the ability to talk to it. Let us assume there is a Database class that
abstracts the difficult stuff away. We end up with lots of simultane-
ous user Sessions, each wanting to access the database. Each one
creates its own Database object and connects to the database over
the network. The problem is that we end up with a lot of Database
objects (wasting memory) and a lot of open network connections
(bogging down the database).

What we want to do here is to ensure that there is only one Database
object ever instantiated and every Session object uses it. Then the
Database object can decide how many open connections to have and
can queue requests to reduce instantaneous loading on our database
(until we buy a half decent one).

Solution 1: Use a global variable of type Database that every-
thing can access from everywhere.

7 Global variables are less desirable than David Hasselhoff’s great-
est hits.

7 Can’t do it in Java anyway...

Solution 2: Use a public static variable which everything uses
(this is as close to global as we can get in Java).

public class System {
public static Database database;

}

...

public static void main(String[]) {
// Always gets the same object
Database d = System.database;

}

7 This is really just global variables by the back door.
7 Nothing fundamentally prevents us from making multiple Database

objects!

Solution 3: Create an instance of Database at startup, and pass
it as a constructor parameter to every Session we create, storing a
reference in a member variable for later use.

public class System {
public System(Database d) {...}

}

public class Session {
public Session(Database d) {...}

}

...

public static void main(String[]) {
Database d = new Database();
System sys = new System(d);
Session sesh = new Session(d);

}

7 This solution could work, but it doesn’t enforce that only one
Database be instatiated – someone could quite easily create a
new Database object and pass it around.

7 We start to clutter up our constructors.
7 It’s not especially intuitive. We can do better.

Solution 4: (Singleton) Let’s adapt Solution 2 as follows. We
will have a single static instance. However we will access it through a
static member function. This function, getInstance() will either cre-
ate a new Database object (if it’s the first call) or return a reference
to the previously instantiated object.

Of course, nothing stops a programmer from ignoring the getInstance()
function and just creating a new Database object. So we use a neat
trick: we make the constructor private or protected. This means code
like new Database() isn’t possible from an arbitrary class.

4 Guarantees that there will be only one instance.

4 Code to get a Database object is neat and tidy and intuitive
to use. e.g. (Database d=Database.getInstance();)

4 Avoids clutter in any of our classes.
7 Must take care in Java. Either use a dedicated package or a

private constructor (see below).
7 Must remember to disable clone()-ing!

4.8.1 Generalisation

This is the Singleton pattern. It is used to provide a global point
of access to a class that should be instantiated only once.

There is a caveat with Java. If you choose to make the constructor
protected (this would be useful if you wanted a singleton base class
for multiple applications of the singleton pattern, and is actually the
‘official’ solution) you have to be careful.

Protected members are accessible to the class, any subclasses, and all
classes in the same package. Therefore, any class in the same package

as your base class will be able to instantiate Singleton objects at will,
using the new keyword!

Additionally, we don’t want a crafty user to subclass our singleton
and implement Cloneable on their version. The examples sheet asks
you to address this issue.

Q22. One technique to break a Singleton object is to extend it and
implement Cloneable. This allows Singleton objects can be
cloned, breaking the fundamental goal of a Singleton! Write
a Java Singleton class that is not final but still prevents sub-
classes from being cloned.

4.9 Proxy Pattern(s)

The Proxy pattern is a very useful set of three patterns: Virtual
Proxy, Remote Proxy, and Protection Proxy.

All three are based on the same general idea: we can have a place-
holder class that has the same interface as another class, but actually
acts as a pass through for some reason.

4.9.1 Virtual Proxy

Problem: Our Product subclasses will contain a lot of information,
much of which won’t be needed since 90% of the products won’t be
selected for more detail, just listed as search results.

Solution : Here we apply the Proxy pattern by only loading
part of the full class into the proxy class (e.g. name and price). If
someone requests more details, we go and retrieve them from the
database.

4.9.2 Remote Proxy

Problem: Our server is getting overloaded.

Solution : We want to run a farm of servers and distribute the
load across them. Here a particular object resides on server A, say,
whilst servers B and C have proxy objects. Whenever the proxy
objects get called, they know to contact server A to do the work. i.e.
they act as a pass-through.

Note that once server B has bothered going to get something via
the proxy, it might as well keep the result locally in case it’s used
again (saving us another network trip to A). This is caching and we’ll
return to it shortly.

4.9.3 Protection Proxy

Problem: We want to keep everything as secure as possible.

Solution : Create a User class that encapsulates all the informa-
tion about a person. Use the Proxy pattern to fill a proxy class with
public information. Whenever private information is requested of the
proxy, it will only return a result if the user has been authenticated.

In this way we avoid having private details in memory unless they
have been authorised.

4.10 Observer Pattern

Problem: We use the Remote Proxy pattern to distribute our
load. For efficiency, proxy objects are set to cache information that
they retrieve from other servers. However, the originals could easily
change (perhaps a price is updated or the exchange rate moves). We
will end up with different results on different servers, dependent on
how old the cache is!!

Solution 1: Once a proxy has some data, it keeps polling the
authoritative source to see whether there has been a change (c.f.
polled I/O).

7 How frequently should we poll? Too quickly and we might as
well not have cached at all. Too slow and changes will be slow
to propagate.

Solution 2: Modify the real object so that the proxy can ‘register’
with it (i.e. tell it of its existence and the data it is interested in).
The proxy then provides a callback function that the real object can
call when there are any changes.

4.10.1 Generalisation

This is the Observer pattern, also referred to as Publish-Subscribe
when multiple machines are involved. It is useful when changes need
to be propagated between objects and we don’t want the objects to
be tightly coupled. A real life example is a magazine subscription
— you register to receive updates (magazine issues) and don’t have
to keep checking whether a new issue has come out yet. You unsub-
scribe as soon as you realise that 4GBP for 10 pages of content and
60 pages of advertising isn’t good value.

Q23. Assume there is a machine somewhere on the internet that can
supply the latest stock price for a given stock. The software it
runs is written in Java and implements the interface:

public interface StockReporter {
public double getStockPrice(String stockid);

}

You are given a Java class MyStockReporter that implements
this interface for you. When you use a MyStockReporter object,
your request is automatically passed onto the real machine.

(a) Identify the design pattern in use here

(b) Why is this design inefficient?

(c) Draw a UML class diagram to explain how the Observer
pattern could improve efficiency. Give the changes to the
interface that would be required.

4.11 Abstract Factory

Assume that the front-end part of our system (i.e. the web interface)
is represented internally by a set of classes that represent various
entities on a web page:

Let’s assume that there is a render() method that generates some
HTML which can then be sent on to web browsers.

Problem: Web technology moves fast. We want to use the latest
browsers and plugins to get the best effects, but still have older
browsers work. e.g. we might have a Flash site, a SilverLight site, a
DHTML site, a low-bandwidth HTML site, etc. How do we handle
this?

Solution 1: Store a variable ID in the InterfaceElement class, or
use the State pattern on each of the subclasses.

4 Works.
7 The State pattern is designed for a single object that regularly

changes state. Here we have a family of objects in the same
state (Flash, HTML, etc.) that we choose between at compile
time.

7 Doesn’t stop us from mixing FlashButton with HTMLButton,
etc.

Solution 2: Create specialisations of InterfaceElement:

7 Lots of code duplication.
7 Nothing keeps the different TextBoxes in sync as far as the

interface goes.
7 A lot of work to add a new interface component type.
7 Doesn’t stop us from mixing FlashButton with HTMLButton,

etc.

Solution 3: Create specialisations of each InterfaceElement sub-
class:

4 Standardised interface to each element type.
7 Still possible to inadvertently mix element types.

Solution 4: Apply the Abstract Factory pattern. Here we
associate every WebPage with its own ‘factory’ — an object that is

there just to make other objects. The factory is specialised to one
output type. i.e. a FlashFactory outputs a FlashButton when cre-
ate button() is called, whilst a HTMLFactory will return an HTMLButton()
from the same method.

4 Standardised interface to each element type.
4 A given WebPage can only generate elements from a single

family.
4 Page is completely decoupled from the family so adding a new

family of elements is simple.
7 Adding a new element (e.g. SearchBox) is difficult.

7 Still have to create a lot of classes.

4.11.1 Generalisation

This is the Abstract Factory pattern. It is used when a system
must be configured with a specific family of products that must be
used together.

Note that usually there is no need to make more than one factory for
a given family, so we can use the Singleton pattern to save memory
and time.

Q24. Explain using diagrams how to the Abstract Factory pattern
would help in writing an application that must support differ-
ent languages (english, french, german, etc).

4.12 Summary

From the original Design Patterns book:

Decorator Attach additional responsibilities to an object dynam-
ically. Decorators provide flexible alternatives to subclassing
for extending functionality.

State Allow and object to alter its behaviour when its internal state
changes.

Strategy Define a family of algorithms, encapsulate each on, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Composite Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual ob-
jects and compositions of objecta uniformly.

Singleton Ensure a class only has one instance, and provide a global
point of access to it.

Proxy Provide a surrogate or placeholder for another object to con-
trol access to it.

Observer Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated accordingly.

Abstract Factory Provide an interface for creating families of re-
lated or dependent objects without specifying their concrete
classes.

4.12.1 Classifying Patterns

Often patterns are classified according to what their intent is or what
they achieve. The original book defined three classes:

Creational Patterns . Patterns concerned with the creation of
objects (e.g. Singleton, Abstract Factory).

Structural Patterns . Patterns concerned with the composition
of classes or objects (e.g. Composite, Decorator, Proxy).

Behavioural Patterns . Patterns concerned with how classes or
objects interact and distribute responsibility (e.g. Observer,
State, Strategy).

4.12.2 Other Patterns

You’ve now met eight Design Patterns. There are plenty more (23
in the original book), but this course will not cover them. What has
been presented here should be sufficient to:

• Demonstrate that object-oriented programming is powerful.
• Provide you with (the beginnings of) a vocabulary to describe

your solutions.
• Make you look critically at your code and your software archi-

tectures.
• Entice you to read further to improve your programming.

Of course, you probably won’t get it right first time (if there even
s a ‘right’). You’ll probably end up refactoring your code as new
situations arise. However, if a Design Pattern is appropriate, you
should probably use it.

4.12.3 Performance

Note that all of the examples here have concentrated on structuring
code to be more readable and maintainable, and to incorporate con-
straints structurally where possible. At no point have we discussed
whether the solutions perform better. Many of the solutions exploit
runtime polymorphic behaviour, for example, and that carries with
it certain overheads.

This is another reason why you can’t apply Design Patterns blindly.
[This is a good thing since, if it wasn’t true, programming wouldn’t
be interesting, and you wouldn’t get jobs!].

