Exceptions

* You do a lot on this in your practicals, so we'll just touch
on it here

* The traditional way of handling errors is to return a value
that indicates success/failure/error

public int-divide(double a, double b) {
if (b==0) return -1; // error
double result = a/b;
return O; // success

}

if (divide(x,y)<0) System.out.printin(“Failure!!”);

* Problems:
* Could ignore the return value

* Have to keep checking what the 'codes' are for
success, etc.

* The result can't be returned in the usual way

" An exception is an object that can be thrown up by a
method when an error occurs and caught by the
calling code

(public double divide(double a, double b) throws DivideByZeroException { J
if (b==0) throw, DivideByZeroException();
else return a/b',

}

try {
“double z = divide(x,y);

-

catch(DivideByZeroException d) {

// Handle error here

}

= Advantages:

Class name is descriptive (no need to look up codes)

Doesn't interrupt the natural flow of the code by
requiring constant tests

The exception object itself can contain state that
gives lots of detail on the error that caused the
exception

Can't be ignored, only handled

Copying Java Obj

" Sometimes we really do want to copy an obje

L~
Person object Person object / Person object
(name = (name = (name =
MBOb") ' MBOb" MBob")
T T T
r r r_copy

" Java calls this cloning
" We need special support for it

Cloning

" Every class in Java ultimately inherits from the
Object class

" The Object class contains a clon€() method
" So just call this to clone an object, right?
" Wrong!

" Surprisingly, the problem is defining what copy
actually means

Copying Java Objects

" Sometimes we really do want to copy an object

Person object
(name =
{“ BOb")

" Java calls this cloning

-

Person object
(name =
{ Bob")

Person object
(name =
{“ Bob")

" We need special support for it

I Copy

" Every class in Java ultimately inherits from the
Object class

" The Object class contains a clone() method
" So just call this to clone an object, right?
" Wrong!

" Surprisingly, the problem is defining what copy
actually means

public class MyClass {
private float price = 77;

}

MyClass MyClass MyClass
object object object
(price=77) (price=77) (price=77)

Shallow and Deep Copies

public class MyClass {
private MyOtherClass moc;

}

MyClass
object

MyOtherClass
object

S

MyClass
object

———p

MyClass
object

MyOtherClass
object

MyClass
object

MyClass
object

MyOtherClass
object

MyOtherClass
object

Java Cloning

" So do you want shallow or deep?

* The default implementation of clone() performs a
shallow copy

" But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

* Java has a Cloneable interface

" If you call clone on anything that doesn't extend this
interface, it fails

Marker Interfaces

" |f you go and look at what's in the Cloneable interface,
you'll find it's empty!! What's going on?
= Well, the clone() method is already inherited from Object
so it doesn't need to specify it
" This is an example of a Marker Interface
= A marker interface is an empty interface that is used to
label classes
" This approach is found occasionally in the Java libraries

Distributing Java Classes

" S0 you've written some great classes that might be useful
to others. You release the code. What if you've named your
class the same as someone else?

" E.g. There are probably 100s of “Vector” classes out
there..!

"= Most languages define some way that you can keep your
descriptive class name without getting it confused with
others.

" Java uses packages. A class belongs to a package

" A nameless 'default' package unless you specify
otherwise

" You're supposed to choose a package name that is
unique.

" Sun decided you should choose your domain name
" You do have your own domain name, right? ;)

Distributing Classes

package uk.cam.ac.rkh23; <& Class Whatever is part of this package

—

: .
import uk.cam.ac.abc21.*; -

Import all the Classes from some
Class Whatever { other package

" You get to do |lots more about this in your practicals

Access Modifiers Revisited

" Most Languages:
" public - everyone can access directly
" protected - only subclasses can access directly
" private - nothing can access directly

" Java adds:

" package - anything in the same package can
access directly

A\g

ke

The Java Class Libraries

Java Class Library

" Java the platform contains around 4,000
classes/interfaces

" Data Structures

" Networking, Files

" Graphical User Interfaces

" Security and Encryption

" Image Processing

" Multimedia authoring/playback
" And more...

= All neatly(ish) arranged into packages (see API docs)

[Arra‘:jS]

—<interface=> | ™ Important chunk of the class library

Iterable «
" A collection is some sort of grouping of

4 things (objects)

<<interface>> | ® Jsually when we have some grouping we
!) . ur-)
want to go through it (“iterate over it”)

" The Collections framework has two main
Interfaces: Iterable and Collections. They
define a set of operations that all classes
in the Collections framework support

= add(Object 0), clear(), isEmpty(), etc.

Major Collections Interfaces

" <<interface>> Set

= Like a mathematical set in DM 1

* A collection of elements with no duplicates

~.--\.'.-.-'

* Various concrete classes like TreeSet (which keeps the set elements sorted)

= <<interface>> List n—>

* An ordered collection of elements that may contain duplicates
* Arraylist, Vector, LinkedList, etc.

" <<interface>> Queue

* An ordered collection of elements that may contain duplicates and supports
removal of elements from the head of the queue

* PriorityQueue, LinkedLlst, etc. C

}w%7
\{\‘/ < B

f wllass |

| :

Major Collections Interfaces

" <<interface>> Map
* Like relations in DM 1
* Maps key objects to value objects
* Keys must be unique
* Values can be duplicated and (sometimes) null.

" The original Collections framework just dealt with
collections of Objects
" Everything in Java “is-a” Object so that way our
collections framework will apply to any class we like
without any special modification.

" |t gets messy when we get something from our
collection though: it is returned as an Object and
we have to do a narrowing conversion to make use
of it:

/| Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through

iterator it = ts.iterator();

while(it.hasNext()) {
Object o = it.next();
Integer i = (Integer)o;

}

Generics

" |t gets worse when you realise that the add() method
doesn't stop us from throwing in random objects:

// Make a TreeSet object
TreeSet ts = new TreeSet(); —7—_

// Add integers to it
ts.add(new Integer(3)); /

ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();

while(it.hasNext()) { Going to fail for the

Object 0 = it.next() '
Integer i = (Integer A/ second element!

} — (But it will compile:
the error will be at
runtime)

Generics

" To help solve this sort of problem, Java introduced
Generics in JDK 1.5

" Basically, this allows us to tell the compiler what is
supposed to go in the Collection

" So it can generate an error at compile-time, not run-
time

/| Make a TreeSet of Integers
TreeSet<£1teger> ts = new TreeSet<Integer>();

// Add integers to it

ts.add(new Integer(3)); ./ Won't even comoil
____% ts.add(new Person(“Bob”)); A/ on't even compille

——

// Loop through
iterator<lnteger> it = ts.iterator();
l\ while(it.hasNext()) {

Integer i = it.next();
} O 0 need to cast :-)

Notation in Java API

" Set< EZ>/

" | ist<E>
" Queue<E>

" Map<K,V>
.

Polymorphism Revisited

= You might recognise Generics as the “polymorphism”
you met in FOCS when using ML.

= Both allow you to write code that works for multiple
types

* (Parametric) Polymorphism [FP] or Generics [OOP]
* The typeés are determined at compile-time

* (Sub-type or ad-hoc) Polymorphism [OOP]
* The types are determined at run-time
* Needs an inheritance tree

Generics and SubTyping

Animal // Object casting
Person p = new Person();
Animal o = (Animal) p;

4 /I List casting

List<Person> plist = new LinkedList<Person>(); »
Person _D List<Animal> alist = (List<Animal>)plist;

So a list of Persons is a list of Animals, yes?

Z(OLF?SL LE = new @foLFisl/\/)_,' ﬁﬁ

J
M

ot b (bf)

Comparing Java Classes

Comparing Primitives

> Greater Than

> = Greater than or equal to
@ Equal to

1= Not equal to

< Less than

<= Less than or equal to

" Clearly compare the value of a primitive

* But what does (objectl==0bject2) mean??
" Same object?
" Same state (“value”) but different object?

Option 1: a==Db, al=b

" These compare the references

Person pl = new Person("BOb");

Person p2 = new Person(“Bob"); False (references differ)
X (pl==p2);

// (pll=p2); <& True (references differ)

\/ pl==pl;

True (references the same)

String s = “Hello”;
if (s=="Hello"”) System.out.println(“Hello”);
else System.out.printin(“Nope”);

Option 2: The equals() Method

" Object defines an equals() method. By default, this
method just does the same as ==.

" Returns boolean, so can only test equality
" QOverride it if you want it to do something different

" Most (all?) of the core Java classes have properly
iImplemented equals() methods

- =

False (we haven't

Person pl = new Person(“Bob”); :
Person p2 = new Person(“Bob”); overridden _th.e equals()
method so it just

+p—1-==p-27\; compares references

Pl. oq uels (p2)

String s1 = “Bob”; _

String s2 = “Bob”; True (String has equals()
overridden)

(G——s?), 4—
sl.eguu‘s (’823}

Option 3: Comparable<T> Interface

int compareTo(T obj);

= Part of the Collections Framework

" Returns an integer, r:
" r<0 This object is less than obj
* r==0 This object is equal to obj
" r>0 This object is greater than obj

Option 3: Comparable<T> Interface

public class Point implements Comparable<Point> {
private final int mX;
private final int mY;
public Point (int, int y) { mX=x; mY=y; }

// sort by y, then x
public int compareTo(Point p) {
if (MY>p.mY) return 1;
else if (mY<p.mY) return -1;
else {
if (mX>p.mX) return 1;
else if (mX<p.mX) return -1;
else return 0.
}
}
}

/] This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

intgomparegTo(T objl, T obj2)

" Also part of the Collections framework and
allows us to specify a particular comparator
for a particular job

" E.g. a Person might have a compareTo()
method that sorts by surname. We might
wish to create a class AgeComparator that
sorts Person objects by age. We could then
feed that to a Collections object.

Some Examples...

Java's I/O framework

" Support for system input and output (from/to sources
such as network, files, etc).

__ Abstract class for reading

Reader <& data from some source
/) [OXR
4 ~_Concrete Instance that works
\\ InputStreamReader 410/ on an InputStream object
¢
ZIX __ Specialisation that allows us to
FileReader specify a filename, then creates

and InputStream for it

In general file I/O is sloowwww

One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

Java supports this in the form of a BufferedReader

FileReader f = new FileReader(); oo

BufferedReader br = new BufferedReader(f); —
Whenever we call read() on a ZF
BufferedReader it looks in its [1
buffer to see whether it has InputStreamReader BufferedReader

the data already

f;\L, K

B&afferesgd Reader

If not it passes the request
onto the Reader object

We'll come back to this...

In general file I/O is sloowwww

One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

Java supports this in the form of a BufferedReader

FileReader f = new FileReader();

BufferedReader br = new BufferedReader(f); Reader ~
Whenever we call read() on a ZF
BufferedReader it looks in its I 1
buffer to see whether it has InputStreamReader BufferedReader
the data already
If not it passes the request K

onto the Reader object

BufferedReader

We'll come back to this...

In general file I/O is sloowwww

One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

Java supports this in the form of a BufferedReader

FileReader f = new FileReader();

BufferedReader br = new BufferedReader(f); Reader ~
Whenever we call read() on a ZF
BufferedReader it looks in its I 1
buffer to see whether it has InputStreamReader BufferedReader
the data already
If not it passes the request K

onto the Reader object

BufferedReader

We'll come back to this...

