
Exceptions

Error Handling

 You do a lot on this in your practicals, so we'll just touch
on it here

 The traditional way of handling errors is to return a value
that indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the 'codes' are for

success, etc.
 The result can't be returned in the usual way

public int divide(double a, double b) {
 if (b==0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Exceptions

 An exception is an object that can be thrown up by a
method when an error occurs and caught by the
calling code

public double divide(double a, double b) throws DivideByZeroException {
 if (b==0) throw DivideByZeroException();
 else return a/b
}

…

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Exceptions

 Advantages:
 Class name is descriptive (no need to look up codes)
 Doesn't interrupt the natural flow of the code by

requiring constant tests
 The exception object itself can contain state that

gives lots of detail on the error that caused the
exception

 Can't be ignored, only handled

Copying Java Objects

Cloning

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning

 Every class in Java ultimately inherits from the
Object class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy
actually means

Copying Java Objects

Cloning

 Sometimes we really do want to copy an object

 Java calls this cloning

 We need special support for it

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r

Person object
(name =
“Bob”)

r_copy

Cloning

 Every class in Java ultimately inherits from the
Object class
 The Object class contains a clone() method
 So just call this to clone an object, right?
 Wrong!

 Surprisingly, the problem is defining what copy
actually means

Cloning

public class MyClass {
 private float price = 77;
}

MyClass
object

(price=77)
Clone

MyClass
object

(price=77)

MyClass
object

(price=77)

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass
object Shallo

w

MyOtherClass
object MyClass

object

MyOtherClass
object

MyClass
object

MyOtherClass
object

MyClass
object

MyClass
object

MyOtherClass
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a

shallow copy
 But Java developers were worried that this might not be

appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

 Java has a Cloneable interface
 If you call clone on anything that doesn't extend this

interface, it fails

Marker Interfaces

 If you go and look at what's in the Cloneable interface,
you'll find it's empty!! What's going on?

 Well, the clone() method is already inherited from Object
so it doesn't need to specify it

 This is an example of a Marker Interface
 A marker interface is an empty interface that is used to

label classes
 This approach is found occasionally in the Java libraries

Distributing Java Classes

Distributing Classes
 So you've written some great classes that might be useful

to others. You release the code. What if you've named your
class the same as someone else?
 E.g. There are probably 100s of “Vector” classes out

there..!

 Most languages define some way that you can keep your
descriptive class name without getting it confused with
others.

 Java uses packages. A class belongs to a package
 A nameless 'default' package unless you specify

otherwise
 You're supposed to choose a package name that is

unique.
 Sun decided you should choose your domain name
 You do have your own domain name, right? ;)

Distributing Classes

package uk.cam.ac.rkh23;

import uk.cam.ac.abc21.*;

Class Whatever {
…
}

Class Whatever is part of this package

Import all the Classes from some
other package

 You get to do lots more about this in your practicals

Access Modifiers Revisited

 Most Languages:
 public – everyone can access directly
 protected – only subclasses can access directly
 private – nothing can access directly

 Java adds:
 package – anything in the same package can

access directly

The Java Class Libraries

Java Class Library

 Java the platform contains around 4,000
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of

things (objects)
 Usually when we have some grouping we

want to go through it (“iterate over it”)

 The Collections framework has two main
interfaces: Iterable and Collections. They
define a set of operations that all classes
in the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

Major Collections Interfaces

 <<interface>> Map
 Like relations in DM 1

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

Generics

 The original Collections framework just dealt with
collections of Objects
 Everything in Java “is-a” Object so that way our

collections framework will apply to any class we like
without any special modification.

 It gets messy when we get something from our
collection though: it is returned as an Object and
we have to do a narrowing conversion to make use
of it:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Generics

 It gets worse when you realise that the add() method
doesn't stop us from throwing in random objects:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

Generics

 To help solve this sort of problem, Java introduced
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is
supposed to go in the Collection

 So it can generate an error at compile-time, not run-
time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
 Integer i = it.next();
}

Won't even compile

No need to cast :-)

Notation in Java API

 Set<E>
 List<E>
 Queue<E>
 Map<K,V>

Polymorphism Revisited

 You might recognise Generics as the “polymorphism”
you met in FoCS when using ML.

 Both allow you to write code that works for multiple
types

 (Parametric) Polymorphism [FP] or Generics [OOP]
 The types are determined at compile-time

 (Sub-type or ad-hoc) Polymorphism [OOP]
 The types are determined at run-time
 Needs an inheritance tree

Generics and SubTyping
// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;<<interface>>

Collection
Person

<<interface>>
Collection

Animal

So a list of Persons is a list of Animals, yes?

Comparing Java Classes

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (object1==object2) mean??

 Same object?
 Same state (“value”) but different object?

Option 1: a==b, a!=b

 These compare the references

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

p1==p1;

False (references differ)

True (references differ)

True (references the same)

String s = “Hello”;
if (s==”Hello”) System.out.println(“Hello”);
else System.out.println(“Nope”);

Option 2: The equals() Method

 Object defines an equals() method. By default, this
method just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly

implemented equals() methods

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

String s1 = “Bob”;
String s2 = “Bob”;

(s1==s2);

False (we haven't
overridden the equals()
method so it just
compares references

True (String has equals()
overridden)

Option 3: Comparable<T> Interface

int compareTo(T obj);

 Part of the Collections Framework
 Returns an integer, r:

 r<0 This object is less than obj
 r==0 This object is equal to obj
 r>0 This object is greater than obj

Option 3: Comparable<T> Interface
public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Option 4: Comparator<T> interface

int compareTo(T obj1, T obj2)

 Also part of the Collections framework and
allows us to specify a particular comparator
for a particular job

 E.g. a Person might have a compareTo()
method that sorts by surname. We might
wish to create a class AgeComparator that
sorts Person objects by age. We could then
feed that to a Collections object.

Some Examples...

Java's I/O framework

 Support for system input and output (from/to sources
such as network, files, etc).

<<interface>>
Collection

Reader
Abstract class for reading
data from some source

<<interface>>
Collection

InputStreamReader

<<interface>>
Collection

FileReader

Concrete Instance that works
 on an InputStream object

Specialisation that allows us to
specify a filename, then creates
and InputStream for it

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

